高中数学解题常用方法:换元法
4 例析利用换元法解题题型 高中常用数学方法的介绍 例析 体验 练习

【学生版】例析利用换元法解题题型解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。
其实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
所谓换元法:又称辅助元素法、变量代换法;就是通过引进新的变量,改变式子形式来变换研究对象,将问题移至新对象的知识背景中去考查、探究解题思路的做法。
换元法可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来;使非标准型问题标准化,从而便于我们将问题化繁为简、化难为易、化陌生为熟悉,从中找出解题思路;换元法是指引入一个或几个新的变量代替原来的某些变量(或代数式),对新的变量求出结果之后,返回去求原变量的结果。
换元法可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,此方法既适用选择题、填空题,也适用于解答题,多在研究方程、不等式、函数、数列、三角、解析几何中广泛应用;换元的方法有:局部换元、三角换元、均值换元等。
换元的种类有:等参量换元、非等量换元。
一、利用局部换元,实现简化又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
例1、设函数3x 4x )x (f 2+-=,23)x (g x-=,集合}0))x (g (f x {M >=,}2)x (g x {N <=,则N M 为( )A .),1(∞+B .)1,0(C .)1,1(-D .)1,(-∞ 【提示】 【解析】 【评注】例2、设对一切实数x ,不等式2222224(a 1)2a (a 1)x log 2x log log 0a a 14a ++++>+恒成立,则a 的取值范围为__________例3、设0a >,求:2a 2x cos x sin )x cos x (sin a 2)x (f -⋅-+=的最大值和最小值。
高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
高考数学 常用的解题技巧 第02讲 换元法

第02讲:换元法【知识要点】在高中数学解题过程中,如果某个变量比较复杂,在解题过程中,这个变量又经常出现,可以考虑换元,使得书写简单,解题简洁.但是要注意,新元的取值范围,这实际上是数学等价转化的思想.【方法讲评】【例1】已知函数2()21(0,1)g x ax ax b a b =-++≠<,在区间[2,3]上有最大值4,最小值1,设()()g x f x x=. (1)求,a b 的值;(2)不等式(2)20x xf k -⋅≥在[1,1]x ∈-上恒成立,求实数k 的范围.∵1b < ∴1,0a b ==(2)由(1)即2()21g x x x =-+ 1()2f x x x =+- 方程(2)20x x f k -⋅≥化为12222x x x k +-≥⋅ 2111()222x xk +-⋅≥ 令12x t =,221k t t ≤-+ ∵[1,1]x ∈- ∴1[,2]2t ∈记 2()21t t t ϕ=-+∴min ()0t ϕ= ∴0k ≤【点评】(1)在本题的解题过程中,“12x”出现频率较高,所以可以考虑换元得到二次不等式,使书写简单,解答简洁.(2)对“12x ”换元时,要注意求出“12x ”的范围.这个范围是新函数的定义域.【反馈检测1】求函数(sin 1)(cos 1)[,]122y x x x ππ=++∈-的值域.【反馈检测2】已知),(y x p 是圆422=+y x 上的点,试求xy y x t 322-+=的值域.高中数学常见解题技巧第02讲:换元法参考答案【反馈检测1答案】33[42+【反馈检测1详细解析】(sin 1)(cos 1)sinxcosx sinx cosx 1y x x =++=+++ 令sin cos x x t +=,则21sin cos (1)2x x t =- 所以2211(1)1(1)22y t t t =-++=+【反馈检测2答案】[2,10]-【反馈检测2详细解析】由题得1)2()2(22=+y x,设cos ,sin ,[0,2)22x y αααπ==∈ 则432cos 2sin 46sin 2t ααα=-⨯⨯=-2[0,4)απ∈又,即sin 2[1,1]α∈- 故]10,2[-∈t ,所以函数的值域为[2,10]-.。
换元法在高中数学解题中的应用

换元法在高中数学解题中的应用换元法是高中数学中常用的一种解题方法,它在求解一些复杂的积分、微分、方程等问题时起到了非常重要的作用。
在高中数学中,换元法的应用涉及到了一些基本的知识点,如函数的复合、反函数、导数和微分等,通过灵活运用这些知识,可以帮助我们更好地理解和解决一些数学问题。
下面我们就来具体地了解一下,换元法在高中数学解题中的应用。
我们来讨论换元法在求解积分问题中的应用。
在高中数学中,我们经常会遇到一些复杂的积分,如含有根式、三角函数、指数函数等的积分,有时候直接使用常规的积分公式很难求解,这时就需要运用换元法来简化问题。
换元法的核心思想是通过代换将原积分问题转化为一个更简单的形式,然后再利用简单的积分公式进行求解。
举一个具体的例子来说明,比如要求解\int \frac{1}{x\sqrt{1-x^2}}dx这个积分,这是一个典型的换元法的应用题。
我们可以令u=1-x^2,然后求出du=-2xdx,将原积分问题中的x\sqrt{1-x^2}替换成\sqrt{u},同时将dx也替换成\frac{-1}{2\sqrt{u}}du,这样原积分就变成了\int \frac{-1}{2\sqrt{u}}du,这个积分就非常容易求解了。
通过这个例子我们可以看到,换元法可以帮助我们将原本复杂的积分问题转化为一个更简单的形式,从而更容易地求解。
除了在求解积分问题中的应用,换元法在解微分方程、解函数极值、确定定积分上限等问题中也有着重要的应用。
在解微分方程中,有时候需要通过换元法将一个微分方程转化为一个更简单形式的方程,从而更容易求解。
在解函数极值的问题中,也经常需要使用换元法来将一个复杂的函数转化为一个形式更简单的函数,从而更容易求解函数的极值点。
在确定定积分上限的问题中,有时候也需要使用换元法将一个复杂的积分问题转化为一个更简单的形式,从而更容易确定积分的上限。
可以看到,换元法在高中数学解题中有着广泛的应用。
换元法高中数学思想方法

换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
例如解不等式:4x+2x-2≥0,先变形为设2x=t〔t>0〕,而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用代数式中与三角知识中有某点联系进展换元。
如求函数y=x+1-x的值域时,易发现x∈[0,1],设x=sin2α,α∈[0,π2],问题变成了熟悉的求三角函数值域。
为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。
如变量x、y适合条件x2+y2=r2〔r>0〕时,那么可作三角代换x=rcosθ、y=rsinθ化为三角问题。
均值换元,如遇到x+y=S形式时,设x=S2+t,y=S2-t等等。
我们使用换元法时,要遵循有利于运算、有利于标准化的原那么,换元后要注重新变量围的选取,一定要使新变量围对应于原变量的取值围,不能缩小也不能扩大。
如上几例中的t>0和α∈[0,π2 ]。
Ⅰ、再现性题组:1.y=sinx·cosx+sinx+cosx的最大值是_________。
2.设f(x2+1)=loga(4-x4) 〔a>1〕,那么f(x)的值域是_______________。
换元法在高中数学解题中的应用

换元法在高中数学解题中的应用换元法是高中数学中的一种重要解题方法,它常常应用在代数、微积分和函数等领域。
换元法是一种通过引入新的变量或函数来简化原问题的方法,它能够将原问题转化为更容易处理的形式,从而解决原问题。
本文将着重介绍换元法在高中数学解题中的应用,探讨它的作用和优势。
在代数中,换元法常常用于简化复杂的代数式或方程。
当我们要求解一个关于变量的复杂方程时,可以通过引入新的变量或代数式来简化原方程,从而更容易求解。
当我们要对一个复杂的代数式进行因式分解或化简时,也可以运用换元法来转化成更简单的形式,便于进行后续操作。
对于如下代数式:x^4 + 4x^3 + 6x^2 + 4x + 1,我们可以引入新的变量y=x+1,从而将原式转化为y^4的形式,进而进行简化或因式分解操作。
这种方法能够大大简化代数式的求解过程,提高解决问题的效率。
二、换元法在微积分中的应用在微积分中,换元法是一种常用的积分方法,它常常用于求解含有根式、三角函数等特殊形式的积分。
通过引入新的变量或函数,可以将原积分转化为更容易处理的形式,从而利用已知积分的性质或方法求解原积分。
对于积分\int \frac{1}{x\sqrt{x^2+1}} dx,我们可以通过引入新的变量u=x^2+1,从而将原积分转化为\int \frac{1}{2\sqrt{u}} du的形式,利用已知积分\int\frac{1}{\sqrt{u}} du的性质求解原积分。
这种方法在解决含有根式的积分时具有很大的优势,能够简化积分的求解过程,提高解题的效率。
在函数的研究中,换元法也具有重要的应用价值。
当我们要对一个复杂的函数进行求导或积分时,可以通过引入新的变量或函数来简化原函数,从而利用已知函数的性质或方法求解原函数。
换元法在高中数学解题中的应用

换元法在高中数学解题中的应用1. 引言1.1 介绍换元法换元法是高中数学中常用的一种解题方法,通过对变量进行替换或者转化,可以简化问题的处理过程,使得原本复杂的数学题目变得更容易解决。
换元法在数学中的应用非常广泛,不仅可以用来解一元二次方程、化简代数式,还可以用来证明数学定理、解决几何问题以及处理微积分问题等。
在数学中,换元法是一种灵活的工具,能够帮助我们更加深入地理解数学概念,提高问题解决效率。
通过适当选择变量的替换,可以将原本复杂的问题简化为更容易处理的形式,从而更快地得出解答。
换元法在高中数学学习中起着举足轻重的作用,不仅可以帮助我们更好地掌握数学知识,还可以培养我们的逻辑思维能力和解决问题的能力。
要想在高中数学学习中取得更好的成绩,掌握好换元法这一重要的解题工具是至关重要的。
通过不断练习和理解,我们可以更好地运用换元法解决各种数学问题,提高自己的数学解题能力,为未来的学习和工作打下坚实的基础。
1.2 换元法在解高中数学问题中的重要性在高中数学中,换元法可以用于解一元二次方程。
通过适当的变量替换,可以将原问题转化为简单的一次方程问题,从而更容易地求解方程的解。
换元法还可以用于化简复杂的代数式,从而简化计算过程,提高计算效率。
换元法还可以用于证明数学定理。
通过巧妙地引入新的变量,可以简化证明过程,使得证明更加清晰和简洁。
换元法还可以用于解决几何问题和微积分问题,在解决这些问题时发挥着非常重要的作用。
换元法在高中数学解题中的灵活运用可以帮助学生更好地理解和掌握数学知识,提高解题效率和解题能力。
换元法是高中数学学习中不可或缺的重要工具,学生应该认真学习和掌握这一方法,以便更好地应对各种数学问题。
2. 正文2.1 利用换元法解一元二次方程利用换元法解一元二次方程是高中数学学习中非常常见的问题。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知数,x为未知数。
当解一元二次方程时,有时候可以通过换元法来简化计算过程。
高中数学数列学习中换元法的运用

高中数学数列学习中换元法的运用【摘要】换元法在高中数学中是一种重要的数学技巧,通过引入适当的变量,将原问题转化为更易解决的形式。
在数列学习中,换元法的应用多方面且重要。
它可以帮助我们求解数列的和、推导通项公式、解决递推关系、辨析不同数列类型以及解决综合题等。
掌握换元法能够提升学生的数学解题效率,让他们更好地理解数列的性质和规律。
换元法在高中数学数列学习中具有重要意义,有助于学生深入理解数学知识,提高数学学习的效果和成绩。
通过掌握换元法,学生可以更加灵活地运用数学知识,解决各种数列问题,从而在数学学习中取得更好的成就。
【关键词】高中数学、数列、换元法、求和、通项公式、递推关系、辨析、综合题、重要性、理解性质、规律、提升效率1. 引言1.1 什么是换元法换元法是高中数学数列学习中的重要方法之一,是解决数列相关问题的重要工具。
换元法的基本思想是将原有的数学问题通过引入新的未知数或参数,转化为更简单直观的形式。
在数列学习中,换元法可以帮助我们更好地理解数列的性质和规律,解决复杂的数列问题。
通过引入新的变量,可以使得原本复杂的数列表达式变得更加简洁,从而更容易推导通项公式、求和、解决递推关系等问题。
换元法的意义在于简化数列问题的求解过程,使得学生可以更快更准确地解决数列相关的难题。
通过学习换元法,学生可以拓展数学思维,培养逻辑推理能力,提升数学解题效率。
掌握换元法不仅可以帮助学生在高考等考试中取得好成绩,还能为日后的数学学习打下坚实的基础。
了解和掌握换元法对于高中数学数列学习具有重要意义,是学生提高数学学习能力和水平的关键一步。
1.2 换元法的意义换元法在数列学习中扮演着重要的角色,它是一种常用的数学方法,能够帮助学生解决数列问题。
换元法的意义主要体现在以下几个方面:换元法可以帮助学生简化数列求和的过程。
在数列求和中,有时候数列的通项公式并不容易找到,或者数列本身比较复杂,这时候就可以通过换元法将问题转化为更简单的形式,从而更容易求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点练习一、填空题1. 求函数的解析式:(1)已知,则.(2)已知,则.2. 设实数,,,满足,则的取值范围是.3. 已知函数,则的解析式为.4. 若函数,则的解析式为.5. 函数满足,则.6. 函数的值域是.7. 已知,则.8. 若,则的解析式为.9. 方程的解是.10. 对于问题:"已知关于的不等式的解集为,解关于的不等式 ",给出如下一种解法:参解:由的解集为,得的解集为,即关于的不等式的解集为.参考上述解法,若关于的不等式的解集为,则关于的不等式的解集为.11. 设,则函数的值域是.12. 为正实数,且,则的最大值为.13. 函数,其中,则其值域为.14. 已知的三边长,,满足,,则的取值范围为.15. 如图,矩形中,、分别为线段、上的点,且满足,若,则的最小值为.16. 正方形的四个顶点分别是、、、,点在正方形内,且点到各边的距离的平方和为,并与直线的距离最短,则点坐标是.17. 在三角形中,,,,点,分别在边,上,且,则的最大值为.18. 已知各项均为正数的等比数列,若,则的最小值为.19. 已知,,满足则的最大值为.20. 已知正数满足:,,则的取值范围是.二、解答题21. 已知,则.已知,则.22. 求下列函数的值域(1) ;(2)23. 求函数的最小值.24. 函数,求在上的最小值.25. 若有最大值和最小值,求实数,的值.26. 学校食堂改建一个开水房,计划用电炉或煤炭烧水,但用煤时也要用电鼓风及时排气,用煤烧开水每吨开水费为元,用电炉烧开水每吨开水费为元,,.其中为毎吨煤的价格,为每百度电的价格,如果烧煤时的费用不超过用电炉时的费用,则仍用原备的锅炉使用煤炭烧水,否则就用电炉烧水.(1)如果两种方法烧水费用相同,试将每吨煤的价格表示为每百度电价的函数;(2)如果每百度电价不低于元,则用煤烧水时每吨煤的最高价是多少?27. 已知点是圆上任意一点.(1)求点到直线的距离的最大值和最小值;(2)求的最大值和最小值;(3)求的最大值和最小值.28. 已知函数有且仅有一个零点,求的取值范围,并求出该零点.29. 已知,求.30. 若函数且在上的最大值为,求的值.31. 已知实数满足,求的最小值.32. 已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为.(1)求椭圆的方程;(2)直线过点且与椭圆相交于、两点,当面积取得最大值时,求直线的方程.33. 一动圆与圆:外切,与圆:内切.(1)求动圆圆心的轨迹的方程;(2)设过圆心的直线:与轨迹相交于,两点,请问(为圆的圆心)的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线的方程;若不存在,请说明理由.34. 函数,.(1)若,求的最大值;(2)设时,若对任意,都有恒成立,且的最大值为,求的表达式.35. 已知椭圆的焦点坐标为,,过垂直于长轴的直线交椭圆于,两点,且,(1)求椭圆的方程;(2)过的直线与椭圆交于不同的两点,,则的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.36. 知函数,实数,满足,设,.(1)当函数的定义域为时,求的值域;(2)求函数关系式,并求函数的定义域;(3)求的取值范围.37. 已知,,且,求证:.38. 已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数的周期为,当时,方程恰有两个不同的解,求实数的取值范围.39. 已知函数在处取得极值.(1)求的值;(2)当时,求证:.40. 已知椭圆,过作互相垂直的两直线,,分别与椭圆交于,两点.(1)若直线经过点,求线段的长;(2)求面积的最大值.答案第一部分1 (1);(2)234567891011121314151617181920第二部分21 ;22 (1) 设,则,且.于是.由,得的值域为.(2) 令,则,.所以.因为,所以.所以原函数的值域为.23 设,所以因为当时,函数递增,所以,函数的最小值为24 令,则.,,,即在上的最小值为.25 .令,,则,的对称轴为.①当时,函数在为减函数,,,解得:,.②当时,函数在为增函数,,,,.③当时,.(i)当时,.解得:,与矛盾;(ii)当时,.解得:,与矛盾.综合上述:,或,.26 (1) 依题意,得,即.(2) 由,得.不妨令,则,则.因为,所以,即.所以当时,,此时.答:每吨煤的最高价为元.27 (1) 圆心到直线的距离为.所以点到直线的距离的最大值为,最小值为.(2) 设,则直线与圆有公共点.所以.所以.所以,.即的最大值为.最小值为.(3) 设,则直线与圆有公共点,所以.所以.所以,.即的最大值为,最小值为.28 因为有且仅有一个零点,所以方程仅有一个实根.设,则方程仅有一个正根.当时,即,当时,;时,(不合题意,舍去),所以,解得,符合题意.当时,即或时,方程有两正或两负根,即有两个零点或没有零点,此时不适合题意.综上,时,有唯一零点,且该零点为.29 设,则,所以所以30 令,则,该二次函数在上是增函数.①若,,故当时,,解得(舍去).②若,,故当时,.所以或(舍去).综上可得或.31 可将改写为,令,可得,,,则.因为,所以,当时,,所以的最小值为.32 (1) 设椭圆的方程为().由题意,得所以所求椭圆的方程为.(2) 由题意知直线的斜率存在,设直线的方程为.由消去,得.由直线与椭圆相交于两点,得,解得.设,,则,.原点 到直线 的距离为 .所以.令 ,则. 当且仅当,即 时,. 此时从而直线 的方程为.33 (1) 设动圆圆心为 ,半径为 .由题意,得 , , 所以 .由椭圆定义知 在以 , 为焦点的椭圆上,且 , , 所以 . 于是动圆圆心 的轨迹 的方程为.(2)如图,设 内切圆 的半径为 ,与直线 的切点为 ,则三角形 的面积当 最大时, 也最大, 内切圆的面积也最大. 设 , ,则.由得 , 解得,.所以.令 ,则,且 ,从而.令,则.当时,,在上单调递增,则有,从而,即当,时,有最大值,即得,这时所求内切圆的面积为,所以存在直线:,的内切圆的面积最大值为.34 (1) 令,,则,所以等价于求,的最大值.因为,的图象的对称轴为,结合函数图象可知故的最大值为.(2) 令,则,由恒成立可得,,.因为,所以,而,所以,即,所以.又时,,所以,结合可知二次函数的图象的顶点坐标为,所以,,所以.35 (1) 设椭圆方程为,由焦点坐标可得.由,可得,解得故椭圆方程为.(2) 设,,设的内切圆的径,则的周长为,.因此最大,就最大.由题知,直线的斜率不为零,可设直线的方程为,由得,得则令,则,则当且仅当,时,,所以,这时所求内切圆面积的最大值为.36 (1) 若,令,在上为增函数,,,所以的值域为.(2) 实数,满足,则则,而,,所以,.由题意,,则,所以.又,即,所以,当且仅当时取等号.综上所述,的定义域为.(3)令,,在上恒成立,所以在上单调递增.又,,所以,所以.37 ,可设,则,,又,且,而指数函数是减函数,所以,即注:式“ ”当,时成立.同理,并结合式,得(当且仅当或时取“ ”)38 (1) 的最小正周期为,由,得.又由解得由,即,解得,所以.(2) 由的周期为及,得.令,由,得.如图所示,若在上有两个不同的解,则,所以方程当时恰好有两个不同的解,则,因此,实数的取值范围是.39 (1) 由已知,得.由在处取得极值,得,即,解得.经验证,得适合题意.(2) 由(1)知,.令,则.令,则.令,则.当时,,则函数在上为增函数;当时,,则函数在上为减函数,所以,即对任意,恒成立,即.由,得当时,由得.当时,以代换式中的,得.当时,,由得,,所以,从而函数在上为增函数,于是,当时,,即当时,.再由,得,则函数在上为增函数,所以当时,,即当时,,因此.40 (1) 不妨设的方程为,则的方程为.由得,从而.同理可得.直线的斜率为.由点斜式,得的方程为,即,从而直线过定点.又因为直线过,所以直线的方程为.由得.由弦长公式,得(2) 由(1),得,.由弦长公式,得于是令,则当且仅当时,面积的最大值为.。