高中数学解题基本方法--参数法 大全

合集下载

高考数学解题思想方法-参数法

高考数学解题思想方法-参数法

六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。

直线与二次曲线的参数方程都是用参数法解题的例证。

换元法也是引入参数的典型例子。

辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。

参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。

参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。

运用参数法解题已经比较普遍。

参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。

Ⅰ、再现性题组:1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。

2. (理)直线x ty t=--=+⎧⎨⎪⎩⎪2232上与点A(-2,3)的距离等于2的点的坐标是________。

(文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。

3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为____________________。

4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。

5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。

(填“增”或“减”)6. 椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是_____。

A. 3B. 11C. 10D. 22【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=11+k,所以e=-1kk k2+;3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则12xy=6、12yz=4、12xz=3,所以xyz=24,体积为4。

高考数学中的参数方程解析技巧

高考数学中的参数方程解析技巧

高考数学中的参数方程解析技巧高中数学中,参数方程是一个比较重要的知识点,它在高考中也经常出现。

在考场上如何快速解析参数方程是一个必备的技巧。

本文将从以下几个方面探讨高考数学中的参数方程解析技巧。

一、掌握参数方程的基本概念和性质首先,我们需要掌握参数方程的基本概念和性质。

参数方程就是用一个或多个变量来表示一组解的方程,通常是用二元函数表示。

例如,设:x=f(t) , y=g(t) ,则称x,y是由参数t确定的一组函数或者向量。

又如,曲线的参数方程可以表示为:x=cos t, y=sin t。

同时,我们还需要了解参数方程的基本性质。

比如,当参数t取遍一个区间时,对应的点以一定的方式运动,从而构成一个曲线(或者说路径)。

因此,参数方程很适合用来表示一些曲线、轨迹等形状。

二、常见的参数方程解题方法1、画图法:画出参数曲线的关键点和性质,如切线斜率、弧长等,利用图形解决问题。

2、换元法:将复杂的参数方程化简成简单的形式,以便求解。

比如,将参数方程中的sin t,cos t换成tan t,以求得此函数的导数。

3、消元法:当问题中只需求出一种变量的值时,可以通过解方程组,消元得到所求的变量。

例如,已知x=f(t) , y=g(t),求y=f(x) 时,可以用消元法解得。

4、向量法:参数方程中的x,y一般可以看作是向量的i,j分量。

因此,我们可以构造出向量的形式,利用向量的性质解题。

三、解析参数方程的常见技巧1、化简参数方程:通过变形,将参数方程化为指数函数、三角函数等常见函数形式,以便于求导。

2、求导、求导数:通过求导,可以求出参数曲线的切线斜率、曲率等性质,以便于解析问题。

3、曲率半径:利用曲率半径和曲率公式,可以求出参数曲线上任意一点的曲率半径。

4、求交点、对称点:通过等式联立,求得参数方程下两曲线的交点坐标。

通过在参数方程下的对称关系求得参数曲线下的对称点。

四、例题分析1、设直线 L : y=x+k(k > 0),曲线 C 的参数方程为 x=cost ,y=sin(t+θ). 试确定θ的取值范围,并解决直线 L 在曲线 C 上的截距。

高中数学求参数取值范围题型与方法总结归纳

高中数学求参数取值范围题型与方法总结归纳

参数取值问题的题型与方法一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。

例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。

解:原不等式即:4sinx+cos2x<45-a -a+5,要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。

f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3,∴45-a -a+5>3即45-a >a+2,上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a<8. 另解:a+cos2x<5-4sinx+45-a 即a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1],整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。

设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1,∴f(x)在[-1,1]内单调递减。

∴只需f(1)>0,即45-a >a -2.(下同)例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求APPB的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB =BAx x -,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.思路1: 从第一条想法入手,AP PB =BA x x -已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.解1:当直线l 垂直于x 轴时,可求得51-=PB AP ;当l与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l的方程为:3+=kx y ,代入椭圆方程,消去y得()045544922=+++kx x k,解之得 .4959627222,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x ,所以21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得952≥k ,所以51592918112-<-+-≤-k ,综上 511-≤≤-PB AP . 思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式。

高中数学21种解题方法与技巧全汇总

高中数学21种解题方法与技巧全汇总

01解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

02因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法03配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:04换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元05待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写06复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型07数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组08化简二次根式基本思路是:把√m化成完全平方式。

即:09观察法10代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

导数题中求参问题的常见解法

导数题中求参问题的常见解法

导数题中求参问题的常见解法方法一:函数最值法例一:设函数f(x)=e2x+ae x a∈R。

(1)当a=-4时,求f(x)的单调区间;(2)若对任意的x∈R,f(x)≥a2x 恒成立,求实数a的取值范围。

+2lnx 。

练习:设函数f(x)=1x(1)讨论函数f(x)的单调性。

(2)如果对所有x≥1 ,都有f(x)≤ax,求a的取值范围。

方法二:分离参数法例二:已知f(x)=ln x-x3+2e x2-ax,a∈R,其中e为自然对数的底数.(1)若f(x)在x=e处的切线的斜率为e2,求a;(2)若f(x)有两个零点,求a的取值范围.练习:已知函数f(x)=e x−asinx−1 (a∈R)。

(1)若a=1,求f(x)在x=0处的切线方程;(2)若f(x)≥0对一切x∈[0,1]恒成立,求实数a的取值范围。

方法三:变换后构造新函数法(重点在变换)例三:已知函数f(x)=ax2−ax,g(x)=xlnx ,若f(x)≥g(x)恒成立,求实数a的值。

练习:已知函数f(x)=alnx−2ax+1,对任意x≥1,f(x)≥−e x−1恒成立。

求实数a的取值范围。

(本题的重点在处理方法)方法四切线法例四:已知(1−x2)e x≤ax+1,对x≥0恒成立,求a的取值范围。

练习:1、已知函数f (x )=(x +1)lnx −a(x −1)。

(1) 当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2) 若当x ∈(1,+∞)时,f(x)>0,求a 的取值范围。

2、若函数f (x )=lnx −e x −2mx +n ,f(x)≤0对任意x ∈(0,+∞)都成立,求n m 的最大值。

法五::不等式法例题五:已知函数f (x )=x (e 2x −a )−lnx ,若f(x)≥1在(0,+∞)上恒成立,则实数a 的取值范围是( )A 、 (−∞,e −1]B 、 (−∞,e −1)C 、 (−∞,2]D 、(−∞,2)解:因为f (x )≥1在(0,+∞)恒成立,所以a ≤xe 2x −lnx−1x 令h (x )=e lnx e 2x −lnx−1x =e lnx+2x −lnx−1x ≥lnx+2x+1−lnx−1x =2练习:1已知函数f (x )=axe x (a ∈R,e 为自然对数的底数),g (x )=lnx +kx +1(k ∈R).(1) 若k=-1,求函数g(x)的单调区间。

高中数学含参数方程的解题技巧及应用实例

高中数学含参数方程的解题技巧及应用实例

高中数学含参数方程的解题技巧及应用实例数学中的参数方程是一种常见的表达方式,它可以描述一条曲线或者一个平面的方程。

在高中数学中,我们经常会遇到含有参数方程的问题,因此掌握解题技巧对于学生们来说非常重要。

本文将介绍一些解题技巧,并通过实例来说明其应用。

一、参数方程的基本概念在开始介绍解题技巧之前,我们首先来了解一下参数方程的基本概念。

参数方程是由参数表示的一组方程,通常用来描述曲线或者平面上的点的位置。

一个参数方程通常由两个或多个参数方程组成,例如:x = f(t)y = g(t)其中,x和y是曲线上的点的坐标,t是参数。

通过给定不同的参数值,我们可以得到曲线上的不同点。

二、解题技巧及应用实例1. 求参数方程的交点当我们需要求解两个参数方程的交点时,可以将两个参数方程联立起来,解得参数的值,再代入其中一个参数方程中求得交点的坐标。

例如,考虑以下两个参数方程:x = ty = t^2我们需要求解这两个参数方程的交点。

将第一个参数方程代入第二个参数方程中,得到:t^2 = t解这个方程,我们可以得到t=0或t=1。

将这两个t值代入第一个参数方程中,我们可以得到两个交点坐标:(0,0)和(1,1)。

2. 求参数方程的导数在一些问题中,我们需要求参数方程的导数。

对于参数方程x=f(t)和y=g(t),它们的导数可以通过对x和y分别关于t求导得到。

例如,考虑以下参数方程:x = t^2y = 2t我们需要求解这个参数方程的导数。

对x和y分别关于t求导,我们可以得到:dx/dt = 2tdy/dt = 2这样,我们就得到了参数方程的导数。

3. 求参数方程的弧长在一些问题中,我们需要求解参数方程所描述的曲线的弧长。

为了求解弧长,我们可以使用积分的方法。

对于参数方程x=f(t)和y=g(t),它们的弧长可以通过积分公式得到:L = ∫[a,b] √(dx/dt)^2 + (dy/dt)^2 dt其中,[a,b]表示积分区间,dx/dt和dy/dt分别是参数方程的导数。

高中数学解题方法系列:导数解参数问题的8种策略

高中数学解题方法系列:导数解参数问题的8种策略

高中数学解题方法系列:导数解参数问题的八种策略现探讨一下用导数求参数范围的几种常见题型及求解策略。

策略一:分离变量法所谓分离变量法,是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知.解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下结论均为已知x 的范围,求a 的范围:结论一、 不等式()()f x g a ≥恒成立⇔[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max ()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min ()()f x g a ≤(即求解()f x 的最小值).案例1、若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 分析:)0(12)(>+='x xax x f 依题意方程120ax x +=在()0,+∞内有解,即)0,()0(212-∞∈⇒>-=a x xa 案例2、若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 分析:由题意可知02)(≤++-='x bx x f ,在(1,)x ∈-+∞上恒成立, 即1)1()2(2-+=+≤x x x b 在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-, 案例3、设a ∈R ,若函数3axy e x =+,x ∈R 有大于零的极值点,则( ) A .3a >-B .3a <-C .13a >-D .13a <-分析:'()3axf x ae =+,若函数在x R ∈上有大于零的极值点,即'()30axf x ae=+=有正根。

高中数学21种解题方法与技巧全汇总

高中数学21种解题方法与技巧全汇总

解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组基本思路是:把√m化成完全平方式。

即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解题基本方法--参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。

直线与二次曲线的参数方程都是用参数法解题的例证。

换元法也是引入参数的典型例子。

辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。

参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。

参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。

运用参数法解题已经比较普遍。

参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。

Ⅰ、再现性题组:1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。

2. (理)直线x ty t=--=+⎧⎨⎪⎩⎪2232上与点A(-2,3)的距离等于2的点的坐标是________。

(文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。

3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为____________________。

4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。

5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。

(填“增”或“减”)6. 椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是_____。

A. 3B. 11C. 10D. 22【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=11+k,所以e=-1kk k2+;3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则12xy=6、12yz=4、12xz=3,所以xyz=24,体积为4。

5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;6小题:设x=4sinα、y=2cosα,再求d=|sin cos|4425αα+-的最大值,选C。

Ⅱ、示范性题组:例1. 实数a、b、c满足a+b+c=1,求a2+b2+c2的最小值。

【分析】由a+b+c=1 想到“均值换元法”,于是引入了新的参数,即设a=13+t1,b=13+t2,c=13+t3,代入a2+b2+c2可求。

【解】由a+b+c=1,设a=13+t1,b=13+t2,c=13+t3,其中t1+t2+t3=0,∴ a2+b2+c2=(13+t1)2+(13+t2)2+(13+t3)2=13+23(t1+t2+t3)+t12+t22+t32=13+t12+t22+t32≥13所以a2+b2+c2的最小值是13。

【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。

本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:a2+b2+c2=(a+b+c)2-2(ab+bc+ac)≥1-2(a2+b2+c2),即a2+b2+c2≥13。

两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。

例2. 椭圆x216+y24=1上有两点P、Q,O为原点。

连OP、OQ,若kOP·kOQ=-14,①.求证:|OP|2+|OQ|2等于定值;②.求线段PQ中点M的轨迹方程。

【分析】由“换元法”引入新的参数,即设xy==⎧⎨⎩42cossinθθ(椭圆参数方程),参数θ1、θ2为P、Q两点,先计算kOP·kOQ得出一个结论,再计算|OP|2+|OQ|2,并运用“参数法”求中点M的坐标,消参而得。

【解】由x216+y24=1,设xy==⎧⎨⎩42c o ss i nθθ,P(4cosθ1,2sinθ1),Q(4cosθ2,2sinθ2),则kOP ·kOQ=2411sincosθθ∙2422sincosθθ=-14,整理得到:cosθ1 cosθ2+sinθ1sinθ2=0,即cos(θ1-θ2)=0。

∴ |OP|2+|OQ|2=16cos 2θ1+4sin2θ1+16cos2θ2+4sin2θ2=8+12(cos 2θ1+cos2θ2)=20+6(cos2θ1+cos2θ2)=20+12cos (θ1+θ2)cos (θ1-θ2)=20,即|OP|2+|OQ|2等于定值20。

由中点坐标公式得到线段PQ 的中点M 的坐标为x y M M=+=+⎧⎨⎩21212(cos cos )sin sin θθθθ,所以有(x 2)2+y 2=2+2(cos θ1 cos θ2+sin θ1 sin θ2)=2,即所求线段PQ 的中点M 的轨迹方程为x 28+y 22=1。

【注】由椭圆方程,联想到a 2+b 2=1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。

本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M 点的坐标后,将所得方程组稍作变形,再平方相加,即(cos θ1+ cos θ2)2+(sin θ1+sin θ2)2,这是求点M 轨迹方程“消参法”的关键一步。

一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x 、y 坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。

本题的第一问,另一种思路是设直线斜率k ,解出P 、Q 两点坐标再求:设直线OP 的斜率k ,则OQ 的斜率为-14k,由椭圆与直线OP 、OQ 相交于PQ 两点有: x y y kx 224160+-==⎧⎨⎩,消y 得(1+4k 2)x 2=16,即|x P |=4142+k ; x y y k x22416014+-==-⎧⎨⎪⎩⎪,消y 得(1+142k )x 2=16,即|x Q |=||8142k k +; 所以|OP|2+|OQ|2=(12+k ∙4142+k )2+(11162+k ∙||8142k k+)2=20801422++k k=20。

即|OP|2+|OQ|2等于定值20。

在此解法中,利用了直线上两点之间的距离公式|AB|=12+k AB ∙|x A -x B |求|OP|和|OQ|的长。

例3.已知正四棱锥S —ABCD 的侧面与底面的夹角为β,相邻两侧面的夹角为α,求证:cos α=-cos 2β。

【分析】要证明cos α=-cos 2β,考虑求出α、β的余弦,则在α和β所在的三角形中利用有关定理求解。

【解】连AC 、BD 交于O ,连SO ;取BC 中点F ,连SF 、OF ;作BE ⊥SC 于E ,连DE 。

则∠SFO =β,∠DEB =α。

设BC =a (为参数), 则SF =OF cos β=a2cos β,SC =SF FC 22+=(cos )()a a 2222β+=a2cos β12+cos β又 ∵BE =SF BC SC ·=a 22cos β⨯1212acos cos ββ+=a 12+cos β在△DEB 中,由余弦定理有:cos α=22222BE BD BE -=2122122222⨯+-⨯+a a a cos cos ββ=-cos2β。

所以cos α=-cos 2β。

【注】 设参数a 而不求参数a ,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数辅助解决有关问题。

Ⅲ、巩固性题组:1. 已知复数z 满足|z|≤1,则复数z +2i在复平面上表示的点的轨迹是________________。

2. 函数y =x +2+142--x x 的值域是________________。

3. 抛物线y =x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值为_____A. 5B. 10C. 23D. 34. 过点M(0,1)作直线L ,使它与两已知直线L 1:x -3y +10=0及L 2:2x +y -8=0所截得的线段被点P 平分,求直线L 方程。

5. 求半径为R 的球的内接圆锥的最大体积。

CA B6. f(x)=(1-a 2cos 2x)sinx ,x ∈[0,2π),求使f(x)≤1的实数a 的取值范围。

7. 若关于x 的方程2x 2+xlg ()a a 23318-+lg 2(a a 212-)+lg 212a a -=0有模为1的虚根,求实数a 的值及方程的根。

8. 给定的抛物线y 2=2px (p>0),证明:在x 轴的正向上一定存在一点M ,使得对于抛物线的任意一条过点M 的弦PQ ,有12||MP +12||MQ 为定值。

相关文档
最新文档