完整word版,华师大版八年级下册数学知识点总结
华东师大版八年数学下知识点归纳

一、数与式1.整数的运算:加法、减法、乘法、除法,能够熟练运用各种整数运算的性质。
2.整数的科学计数法和运算:掌握科学计数法的表示方法,并能进行加、减、乘、除运算。
3.分数的加减乘除:熟练掌握分数的加减乘除法运算,注意化简分数和找到最简分数。
4.百分数的应用:能够将百分数转化为小数和分数,灵活运用百分比解决实际问题。
5.带分数的加减乘除:理解带分数的含义,掌握带分数的加减乘除法运算。
二、函数1.函数的概念:理解函数的定义,能够给出函数的自变量、因变量和函数表达式。
2.函数间的关系:掌握函数之间关系的性质,如一次函数、二次函数、反比例函数等。
3.函数的解析式:能够根据已知函数的性质写出其解析式,如直线的解析式、抛物线的解析式等。
4.函数的图象和性质:能够根据函数的解析式绘制出函数的图象,理解函数图象的特点和性质。
三、图形的研究1.平面图形的展开和计算:熟练计算平面图形的周长和面积,理解面积和周长的概念。
2.直角三角形的研究:熟练使用勾股定理解决实际问题,理解正弦、余弦和正切的概念。
3.平行四边形和梯形的研究:能够计算平行四边形和梯形的周长和面积,理解这些图形的性质。
4.圆的性质和计算:理解圆的直径、半径、圆周和圆心角的概念,能够计算圆的周长和面积。
四、常用图形和统计1.线段和角的相交关系:理解直线和线段的相交性质,掌握平行线和垂直线的性质。
2.平面镜像和旋转:理解平面镜像和旋转的概念,能够根据图形的变换关系进行计算和推理。
3.统计调查和数据处理:能够进行统计调查和数据分析,掌握平均数、中位数和众数的计算方法。
五、概率1.随机事件的概率计算:理解事件的概率和样本空间的概念,能够计算事件的概率。
2.多个随机事件的概率:掌握与事件相应的几种概率的计算方法,如和事件、积事件等。
以上是华东师大版八年级数学下册的主要知识点归纳,包括数与式、函数、图形的研究、常用图形和统计、概率等内容。
希望对你的学习有所帮助。
八年级下册数学知识点概括 华师大版

第17章分式1. 定义:形如A/B(A,B是整式,且B中含字母)2. 分式有意义:分母不为0分式无意义:分母为0分式为0:分母不为0,分子为03.分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变即:约分(最简分式),通分4.分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减5.分式方程及其解法:先化为整式方程,再解整式方程,最后检验6.整数指数幂的加减乘除法任何不为0的数的零指数幂为1负整指数幂:a-n=1/a n第18章函数及其图象1.函数和变量①在某一变化过程中,取值始终保持不变的量叫做常量②可以取不同数值的量叫做变量2.自变量的取值范围①当解析式是整式时,自变量的取值范围是全体实数②当解析式是分式时,自变量的取值范围是使分母不为零的实数③当解析式是偶次方根时,自变量的取值范围是使被开方数不小于0的实数3.函数关系的表示方法:解析法,列表法,图象法4.函数图象的画法:列表,描点,连线5.象限问题:第一象限(+, + ), 第二象限(--, + ),第三象限(--,--),第一象限(+,--)6.坐标轴上的点X轴上的点(X,O)Y轴上的点(O,Y)7.点(a,b)对称问题:关于X轴对称的点为(a,-b)关于Y轴对称的点为(-a,b)关于原点对称的点为(-a,-b)8.一次函数①形如y=kx + b ,(k,b为常数,且k≠0)②k>0,b>0时,图象经过一二三象限K>0,b<0时,图象经过一三四象限K<0,b>0时,图象经过一二四象限K<0,b<0时,图象经过二三四象限③K>0时,y随x增大而增大K<0时,y随x增大而减小④用待定系数法求一次函数的关系式:㈠设y=kx + b,㈡将已知条件代入关系式得到方程(组),㈢解方程(组)求出待定系数,㈣将待定系数代回所设函数关系式即可9. 反比例函数①反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;②K>0时,图象在一三象限,y随x增大而减小K<0时,图象在二四象限,y随x增大而增大注意:双曲线的两个分支都是无限接近坐标轴但不与坐标轴相交10. 反比例函数和一次函数的结合题解法将已知的点分别代入反比例函数和一次函数的关系式中,即可求出未知量第19章全等三角形一.命题与定理①命题:可以判断一件事情正误的句子。
(完整版)华师大版八年级下册数学知识点总结

八年级华师大版数学(下)第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使BA =0的条件是:A=0,B ≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式 单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式的整式,分式的值不变。
用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
华师大版八年级数学下函数及其图像知识点归纳精编WORD版

华师大版八年级数学下函数及其图像知识点归纳精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。
2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。
(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。
(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。
②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。
③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。
3 .函数值:当自变量取某一数值时对应的函数值。
这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。
(2)当已知函数值求自变量的值就是解方程。
(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。
二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上→x为任意实数,y=0(2)点p(x,y)在y轴上→x=0,y为任意实数3 .关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线→x=y.(2)点p(x,y)在第二,四象限夹角平分在线→x+y=0 5.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。
(完整版)华东师大版八年数学下知识点归纳

华师大版八年级数学下册各章知识汇总精编第16章分式1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第17章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
华师大版八年级下册数学初中数学知识点总结

知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
华师大版八年级数学下册知识要点

八年级下数学各章知识要点第17章分式复习要点1、形如AB (A、B都是整式,且B中含有字母,BWO)的式子叫做分式。
整式和分式统称有理式。
2、分母W0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是包等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、歹h解、验、答。
第18章函数及图象的复习要点1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数—对应。
数轴上的点A、B的坐标为x1、x2,则AB = 1 。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y = 0; y轴上的点横坐标X= 0 0第一象限内的点x>0,y>0;第二象限内的点x<0,y>0 ;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0; x轴下方的点,纵坐标y<0; y轴左边的点,横坐标x<0; y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
(完整word版)华师大版八年级数学下函数及其图像知识点归纳

华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。
2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。
(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。
(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。
②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。
③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。
3 .函数值:当自变量取某一数值时对应的函数值。
这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。
(2)当已知函数值求自变量的值就是解方程。
(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。
二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上→x为任意实数,y=0(2)点p(x,y)在y轴上→x=0,y为任意实数3 .关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线→x=y.(2)点p(x,y)在第二,四象限夹角平分在线→x+y=05.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级华师大版数学(下)第16章分式§16.1分式及基本性质一、分式的概念A1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子B 叫做分式。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:A=0的条当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使B件是:A=0,B≠0。
二、分式的基本性质通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
三、分式的符号法则:(1)-a b = a -b =-a b ;(2)-a -b =a b ;(3)- -a -b=a b §16.2分式的运算一、分式的乘除法应用法则时要注意:(1)分式中的符号法则与有理数乘除法中的符号法则相同,即“同号得正,异号得负,多个负号出现看个数,奇负偶正”;(2)当分子分母是多项式时,应先进行因式分解,以便约分;(3)分式乘除法的结果要化简到最简的形式。
二、分式的加减法(一)同分母分式的加减法1、 用式子表示:2、注意事项:(1)“分子相加减”是所有的“分子的整体”相加减,各个分子都应有括号;当分子是单项式时括号可以省略,但分母是多项式时,括号不能省略;(2)分式加减运算的结果必须化成最简分式或整式。
(二)异分母分式的加减法1、法则:异分母分式相加减,先通分,转化为同分母分式后,再加减。
用式子表示:bd bc ad bdbc bd ad d c b a ±=±=±。
2、注意事项:(1)在异分母分式加减法中,要先通分,这是关键,把异分母分式的加减法变成同分母分式的加减法。
(2)若分式加减运算中含有整式,应视其分母为1,然后进行通分。
(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分式之和的形式参与运算,可使运算简便。
四、分式的混合运算注意事项:(1)有理数的运算顺序和运算规律对分式运算同样适用,要灵活运用交换律、结合律和分配律;(2)分式运算结果必须化到最简,能约分的要约b c a b c b a ±=±分,保证运算结果是最简分式或整式。
§16.3 可化为一元一次方程的分式方程一、分式方程基本概念1、定义:方程中含有分式,并且分母中含有未知数的方程叫做分式方程。
二、分式方程的解法1、解分式方程的基本思想:化分式方程为整式方程。
方法是:方程两边都乘以各分式的最简公分母,约去分母,化为整式方程求解。
2、解分式方程的一般步骤:(1)去分母。
即在方程两边都乘以各分式的最简公分母,约去分母,把原分式方程化为整式方程;(2)解这个整式方程;(3)验根。
验根方法:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原分式方程的根,使最简公分母为0的根是原分式方程的增根,必须舍去。
这种验根方法不能检查解方程过程中出现的计算错误,还可以采用另一种验根方法,即把求得的未知数的值代入原方程进行检验,这种方法可以发现解方程过程中有无计算错误。
3、分式方程的增根。
意义是:把分式方程化为整式方程后,解出的整式方程的根有时只是这个整式的方程的根而不是原分式方程的根,这种根就是增根,因此,解分式方程必须验根。
三、分式方程的应用1、列分式方程解应用题的一般步骤如下:(1)审题。
理解题意,弄清已知条件和未知量;(2)设未知数。
合理的设未知数表示某一个未知量,有直接设法和间接设法两种;(3)找出题目中的等量关系,写出等式;(4)用含已知量和未知数的代数式来表示等式两边的语句,列出方程;(5)解方程。
求出未知数的值;(6)检验。
不仅要检验所求未知数的值是否为原方程的根,还要检验未知数的值是否符合题目的实际意。
“双重验根”。
§16.4 零指数幂与负整数指数幂一、零指数幂1、定义:任何不等于零的实数的零次幂都等于1,即a 0=1(a ≠0)。
2、特别注意:零的零次幂无意义。
即00无意义。
若问当x=_____时,(x-2)0有意义。
答案是:x ≠2。
二、负整数指数幂1、定义:任何不等于的数的-n (n 为正整数)次幂,都等于这个数的n 次幂的倒数,即a -n =na 1(a ≠0,n 为正整数) 2、注意事项:(1)负整数指数幂成立的条件是底数不为0;(2)正整数指数幂的所有运算法则均适用于负整式指数幂,即指数幂的运算可以扩大到整数指数幂范围;(3)要避免像5-2=-2×5=-10的错误,正确算法是:。
三、用科学计数法表示绝对值小于1的数1、规则:绝对值小于1的数,利用10的负整式指数幂,把它表示成a ×10-n (n 为正整数),其中1≤|a|<10。
2、注意事项:(1)n 为该数左边第一个非零数字前所有0的个数(包括小数点前的那个零)。
如-0.00021=-2.1×10-4(2)注意数的符号的变化,在数前面有负号的,其结果也要写符号。
(3)写科学记数法的关键的是确定10n 的指数n 的值。
第17章 函数及其图象25151522==-§17.1变量与函数一、函数概念1、定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与其对应,那么,我们就说y是x的函数,其中x叫做自变量,y叫做因变量。
2、对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。
二、函数的表示法:(1)列表法;(2)图象法;(3)解析法。
三、求函数自变量的取值范围1.实际问题中的自变量取值范围按照实际问题是否有意义的要求来求。
2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)解析式为整式的,x取全体实数;(2)解析式为分式的,分母必须不等于0式子才有意义;(3)解析式的是偶次方根的被开方数必须是非负数式子才有意义;(4)解析式是奇次方根的,自变量的取值范围是全体实数。
3.函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。
§17.2函数的图象一、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
2、平面直角坐标系中的点与有序实数对一一对应。
3、坐标的特征:x轴上点的纵坐标等于零;y轴上点的横坐标等于零.4、对称点的坐标特征(最好画图来看)(1)关于x轴对称的两点:(2)关于y轴对称的两点:;(3)关于原点对称的两点:5、点到两坐标轴的距离:点A(a,b)到x轴的距离为|b|,点A(a,b)到y轴的距离为|a|。
二、函数的图象作函数图象的方法:描点法。
步骤:(1)列表;(2)描点;(3)连线。
§17.3 一次函数一、一次函数的概念“正比例函数”与“成正比例”的区别:正比例函数一定是y=kx这种形式,而成正比例则意义要广泛得多,它反映了两个量之间的固定正比例关系,如a+3与b-2成正比例,则可表示为:a+3=k (b-2)(k≠0)二、一次函数的图象1、若两个不同的一次函数的一次项的系数相同,则这它们的图象平行。
2、交点:坐标轴交点,两函数交点三、一次函数的性质1、一次函数y=kx+b(k、b为常数,k≠0)的性质(1)当k>0时,①当b>0时,图象经过一、三、二象限,y随x的增大而增大,这时函数图象从左到右上升。
②当b<0时,图象经过一、三、四象限,y 随x的增大而增大,这时函数图象从左到右上升。
(2)当k<0时,①当b>0时,图象经过二、四、一象限,y随x的增大而减小,这时函数图象从左到右下降。
②当b<0时,图象经过二、四、一象限,y 随x的增大而减小,这时函数图象从左到右下降。
四、确定正比例函数好一次函数的解析式:待定系数法五、一次函数(正比例函数)的应用:与方程的应用差不多,注意审题步骤。
§17.4 反比例函数一、反比例函数(1)将y= k x 转化为xy=k ,由此可得反比例函数中的两个变量的积为定值,即某两个变量的积为一定值时,则这两个变量就成反比例关系。
(2)“反比例函数”与“成反比例”之间的区别在于,前者是一种函数关系,而后者是一种比例关系,不一定是反比例函数,如说s 与t 2成反比例,可设为s= k t 2(k ≠0的常数),但这显然不是反比例函数。
二、反比例函数y= k x 的性质1、性质:(1)当k>0时,图象的两个分支位于一、三象限,在每个象限内,y 随x 的增大而减小;(2)当k<0时,图象的两个分支位于二、四象限,在每个象限内,y 随x 的增大而增大;注意:不能笼统地说反比例函数的“y 随x 的增大而增大或减小”,必须注意是在“各自的象限内”2、反比例函数的表达式中的几何意义如图所示,若点A 是反比例函数y= k x上的点,且AB 垂直于x 轴,垂足为B ,AC 垂直于y 轴,垂足为C ,则S 矩形ABOC =|k|,S △AOB =S △AOC = 12 S 矩形ABOC = 12|k| 三、反比例函数的应用。
注意联系实际问题和用解决方程应用题的思路。
第18章 平行四边形A BC O§18.1平行四边形的性质一、平行四边形的性质(一)平行四边形的有关概念1、定义:有两组对边分别平行的四边形叫做平行四边形。
2、表示方法:专用符号:“ ”。
如图的平行四边形看表示为: ABCD ;读作:“平行四边形ABCD ”3、平行四边形的“对边”是指:互相平行的两边;“对角”是指:“开口”相对的两角。
4、平行四边形的对角线:指两对角定点的连线。
(二)平行四边形的性质1、平行四边形的对边相等,对角相等。
2、平行四边形的对角线互相平分。