浙江杭州2010年中考数学试题及答案(Word版)

合集下载

2010年浙江省绍兴市中考数学试卷及答案(word版)

2010年浙江省绍兴市中考数学试卷及答案(word版)

2010 年浙江省绍兴市中考数学试卷及答案 (word 版)数学、选择题(本大题有 10 小题,每小题 4分,共 40分.请选出每小题中一个符合题意的正确选项 , 不选、多选、错选 , 均不给分)11. 1的相反数是 ( )26. 甲、乙、丙、丁四位选手各 10 次射击成绩的平均数和方差如下表:选手 甲乙丙丁平均数 ( 环)9.2 9.2 9.2 9.2 方差 (环2)0.0350.0150.0250.027则这四人中成绩发挥最稳定的是 ( )3. 已知⊙ O 的半径为 5, 弦 AB 的弦心距为 3, 则 AB 的长是 (A.3B.4C.6D.84. 自上海世博会开幕以来 , 中国馆以其独特的造型吸引了世人的目光 .据预测 ,在会展期间 ,参观中国馆的人次 数估计可达到 14 900 000, 此数用科学记数法表示是( ) A. 1.49 106B. 0.149 108C. 14.9 107D. 1.49 107115. 化简 1 1, 可得 ( ) x 1 x 1A.2 x21B.x22 1x1C.2xx2 1D.2xA.2B. - 2C. 1A. B. C. D.第 4 题图A.甲B. 乙C. 丙D.丁7. 一辆汽车和一辆摩托车分别从 A, B 两地去同一城市 它们离 A 地的路程随时间变化的图象如图所示 . 则 下列结论错.误.的是 ( )A .摩托车比汽车晚到 1 h B. A,B 两地的路程为 20 km C. 摩托车的速度为 45 km/h D .汽车的速度为 60 km/h8. 如图,已知△ ABC,分别以 A,C 为圆心,BC,AB 长为 半径画弧 , 两弧在直线 BC 上方交于点 D, 连结 AD, CD. 则有( )A. ∠ADC 与∠BAD 相等B. ∠ADC 与∠BAD 互补C. ∠ADC 与∠ABC 互补D. ∠ADC 与∠ABC 互余4x 3, y 3)是反比例函数 y 的图象上的三个点xx 3>0,则 y 1, y 2, y 3的大小关系是 ( )A. y 3< y 1< y 2B. y 2< y 1< y 3C. y 1< y 2<y 3D. y 3< y 2< y110. 如图为某机械装置的截面图 ,相切的两圆⊙ O 1, ⊙O 2均与⊙ O 的弧 AB相切,且 O 1O 2∥l 1( l 1为水 平线),⊙O 1,⊙O 2的半径均为 30mm,弧 AB 的 最低点到 l 1的距离为 30 mm,公切线 l 2与 l 1间的 距离为 100 mm. 则⊙ O 的半径为 ( )二、填空题(本大题有 6小题,每小题 5分,共 30分.将答案填在题中横线上)11. 因式分解: x2y 9 y = _______________________ .12. 如图, ⊙O 是正三角形 ABC 的外接圆,点P 在劣弧 AB 上,ABP =22°,则 BCP 的度数为 _____________________ .13. _______________________________________ 不等式- 2x 3 0的解是 ____________________________________________________ .14. 根据第六届世界合唱比赛的活动细则 , 每个参赛的合唱团在比赛时须演唱 4首歌曲 . 爱乐合唱团已确定了 2首歌曲 ,还需在 A,B 两首歌曲中确定一首 ,在9. 已知 (x 1, y 1),( x 2, y 2) , 且 x 1< x 2< 0,A.70 mm C.85 mmB.80 mm D.100 mm第 7 题图第 8 题图C,D 两首歌曲中确定另一首,则同时确定A, C为参赛歌曲的概率是______________________________________________________________________________15.做如下操作:在等腰三角形ABC中, AB= AC,AD平分∠ BAC, 交BC于点D .将△ ABD 作关于直线AD 的轴对称变换,所得的像与△ ACD 重合.对于下列结论: ①在同一个三角形中, 等角对等边; ②在同一个三角形中, 等边对等角; ③等腰三角形的顶角平分线、底边上的中线和高互相重合由上述操作可得出的是(将正确结论的序号都填上).16.水管的外部需要包扎, 包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况), 需计算带子的缠绕角度(指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2, 则的余弦值为.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23 小题每小题12 分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算: | 2| 2sin30 o( 3)2(tan45 o)1;(2)先化简,再求值: 2(a 3)(a 3) a(a 6) 6,其中a 2 1.18.分别按下列要求解答:(1)在图1中,将△ ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△ A1B1 C1. 画出△ A1B1C1;(2)在图2中,△ABC 经变换得到△ A2B2C2.描述变换过程.0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 第 16 题图第 18 题图 1 第 18 题图 2x19. 绍兴有许多优秀的旅游景点 ,某旅行社对 5 月份本社接待的外地游客来绍旅游的首选景点作了一次抽样调查 , 调查结果如下图表1)请在上述频数分布表中填写空缺的数据 , 并补全统计图;2)该旅行社预计 6 月份接待外地来绍的游客 2 600 人,请你估计首选景点是鲁迅故里的人数.20. 如图, 小敏、小亮从 A, B 两地观测空中 C 处一个气球 , 分 别测得仰角为 30°和 60°, A,B 两地相距 100 m.当气球 沿与 BA 平行地飘移 10秒后到达 C ′处时 ,在 A 处测得气 球的仰角为 45° .(1)求气球的高度(结果精确到 0.1 m);2)求气球飘移的平均速度(结果保留 3个有效数字) .第20题图21. 在平面直角坐标系中 , 一次函数的图象与坐标轴围成的三角形 , 叫做此一次函数的坐标三角形 . 例如,图中的一次函数的图象与 x, y 轴分别交于点 A, B,则△OAB 为此函数的坐标三角形 .3(1)求函数 y =x +3 的坐标三角形的三条边长;43( 2)若函数 y = x +b (b 为常数) 的坐标三角形周长为 16,景点 频数频率鲁迅 6500.32 故里5柯岩 350胜景五泄 3000.15瀑布大佛外地游客来绍旅游首选景点的频数分布外地游客来绍旅游首选景点统计4 求此三角形面积.22.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000 元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用 5 000 元.(1)当每间商铺的年租金定为13 万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275 万元?23.(1)如图1,在正方形ABCD 中,点E,F分别在边BC, CD 上, AE, BF交于点O, ∠AOF=90° . 求证:BE=CF.(2) 如图2,在正方形ABCD 中,点E,H,F,G 分别在边AB, BC, CD, DA上,EF,GH 交于点O,∠FOH =90°, EF =4.求GH 的长.(3)已知点E, H, F, G分别在矩形ABCD的边AB, BC, CD, DA上,EF, GH交于点O, ∠FOH=90°,EF=4. 直接写出下列两题的答案:①如图3, 矩形ABCD 由2 个全等的正方形组成, 求GH 的长;24.如图,设抛物线C1:y a x 1 2 5, C2:y a x 1 2 5,C1与C2的交点为A, B, 点A的坐标是(2,4),点B的横坐标是-2.1)求a的值及点B 的坐标;2)点D在线段AB上,过D作x轴的垂线,垂足为点H, 在DH的右侧作正三角形DHG. 记过C2顶点M的直线为l , 且l 与x轴交于点N.① 若l过△DHG 的顶点G,点D 的坐标为(1, 2),求点N 的横坐标;② 若l 与△DHG的边DG相交,求点N的横坐标的取值范围.浙江省 2010 年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题(本大题有10 小题,满分40 分)1.D 2 .C 3. D 4. D 5 .B 6.B 7 .C 8. B 9. A 10. B二、填空题(本大题有6 小题,满分30 分)第 24 题图11.y(x 3)(x 3) 12. 38 °13.x 31114. 15. ②③ 16.2 42三、解答题(本大题8 小题,满分80 分)有17.(本题满分 8 分)解: (1) 原式= 2+1-3+1 = 1.(2) 原式= a 6a , 当 a 2 1时, 原式= 4 2 3 . 18.(本题满分 8 分)(1) 如图.(2) 将△ABC 先关于点 A 作中心对称图形 ,再向左平移2 个单位 , 得到△ A 2B 2C 2.(变换过程不唯一)19.(本题满分 8 分)(1) 0. 175, 150.图略.(2) 解:2 600 ×0.325= 845(人) . 20.(本题满分 8 分) 解:( 1)作 CD ⊥AB,C /E ⊥AB,垂足分别为 D, E.∵ CD = BD · tan 60°, CD =( 100+BD )·tan 30° , ∴(100+BD )·tan30°=BD ·tan 60°,气球的高度约为 86.6 m.(2) ∵ BD =50, AB = 100,∴ AD =150 ,又∵ AE =C /E =50 3,∴ DE = 150-50 3 ≈ 63.40 ,∴ 气球飘移的平均速度约为 6.34 米/ 秒.21.(本题满分 10 分)3解:(1) ∵ 直线 y =x +3 与 x 轴的交点坐标为( 4, 0),与 y 轴交点坐标为( 0,3),43∴函数 y = x + 3 的坐标三角形的三条边长分别为 3,4, 5.4 34(2) 直线 y = x +b 与 x 轴的交点坐标为 ( b ,0),与 y 轴交点坐标为 (0, b),434 532 当 b>0 时, b b b 16,得 b =4,此时 , 坐标三角形面积为 ;3 3 34 532 当 b<0 时,b b b 16 ,得 b =- 4,此时 , 坐标三角形面积为3 3 33 32综上 , 当函数 y = x +b 的坐标三角形周长为 16 时 , 面积为 .BD =50, CD =50 3 ≈ 86.6 m ,能租出 24 间 . 第 18 题图43 22.(本题满分12 分)解:(1)∵ 30 000 ÷5 000 =6,2)设每间商铺的年租金增加 x 万元, 则每间商铺的年租金定为10.5 万元或 15 万元 .23.(本题满分 12 分)(1) 证明:如图 1,∵ 四边形 ABCD 为正方形,∴ AB=BC,∠ ABC=∠BCD=90°, ∴ ∠EAB+∠ AEB=90°. ∵ ∠EOB=∠ AOF = 90°,∴ ∠FBC+∠AEB=90°,∴ ∠EAB=∠FBC , ∴ △ABE ≌△ BCF , ∴ BE=CF .(2) 解:如图 2,过点 A 作AM //GH 交BC 于 M , 过点 B 作 BN//EF 交 CD于 N, AM 与 BN 交于点 O /, 则四边形 AMHG 和四边形 BNFE 均为平行四边形, ∴ EF=BN ,GH=AM ,∵ ∠FOH =90°, AM //GH , EF//BN , ∴ ∠NO /A=90 故由 (1) 得, △ABM ≌△ BCN , ∴ AM=BN , ∴ GH=EF=4.(3) ① 8.② 4n .24.(本题满分 14 分)解:( 1)∵ 点A (2,4)在抛物线 C 1上,∴ 把点A 坐标代入 y a x 125得 a =1. ∴ 抛物线 C 1 的解析式为 y x 2 2x 4, 设 B (-2, b ),∴ b =-4, ∴ B (-2, - 4) .2)①如图 1,M(1, 5), D(1, 2), 且DH ⊥x 轴,∴ 点M 在 DH 上, MH=5.x30-)×( 10+ x )-( 30-0.52x 2-11x +5=0, x)× 1- x0.5 0.5x = 5 或 0.5 , 0.5 = 275,NO ′M第 23 题图 2过点 G 作 GE ⊥DH, 垂足为 E, 由△DHG 是正三角形 ,可得 EG= 3, EH=1, ∴ ME = 4.设 N ( x, 0 ), 则 NH =x -1, 由△ MEG ∽△ MHN , 得ME MH EGHN5 x 1x 543 1,点N 的横坐标为 5 3 1.4第 24 题图 1② 当点D移到与点A 重合时, 如图2,直线l 与DG 交于点G, 此时点N的横坐标最大.过点G, M作x轴的垂线,垂足分别为点Q,F, 设N(x,0),∵ A (2, 4), ∴ G (2 2 3 , 2),∴ NQ=x 2 2 3,NF =x 1, GQ=2, MF =5. ∵△NGQ∽△ NMF,∴NQ GQ ∴NF MF ,∴x 2 2 3 2 ∴x 1 5,10 3 8 ∴x .3 当点D 移到与点B 重合时, 如图3,直线l 与DG 交于点D, 即点B, 此时点N 的横坐标最小∵ B(-2, -4), ∴设N(x,0),∵ △BHN∽△ MFN ,∴x 2 4∴1 x 5, ∴点N 横坐标的范围为H(-2, 0), D(-2, -4),∴NH BH ,∴FNMF ,2x.32 103 8 ≤x≤33 第24 题图2第24 题图3图4。

浙江省杭州市2010年数学中考模拟试卷及答案浙教版

浙江省杭州市2010年数学中考模拟试卷及答案浙教版

某某省某某市2010年中考模拟卷数学试卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.-(-17-)的相反数是 ( )(原创) (A )-7 (B )17(C )7±(D )17- 2.小明在纸上看到的t R ABC 如图(1),小红在放大镜下看到的此三角形如图(2),则A∠的三个三角函数值( ) (原创)(A)都增大 (B)都不变 (C)都减小 (D)不能确定 3.下列运算正确的是( ) (原创)(A )()()22a b a b a b +--=- (B )()2239a a +=+(C )2242a a a +=(D )()22424aa -=4.在图中的几何体中,它的左视图是( ) (原创)5.教室的一扇窗户打开后,用窗钩可以将其固定,这里所运用的几何原理是( ) (原创)(A )两点之间线段最短 (B )三角形的稳定性(C )两点确定一条直线 (D)垂线段最短6.在等腰ABC 中,AB=AC ≠BC ,现以该三角形的任意一条边为公共边作一个与ABC 全等的等腰三角形,问有几个这样的三角形可以做出来?( ) (改编) (A )3个 (B )4个 (C )5个 (D )7个7.数据3,3,4,5,4,x,6的平均数是4,则x 的值为( ) (原创) (A )3 (B )4 (C )5(D )68.由3,4,5三个数字随机生成点的坐标,如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x+1图像上的概率是( ) (原创)CAC (D)(C)(B)(A)第4题图(A )29 (B) 91 (C)23 (D)139.已知w 关于t的函数:2w t=,则下列有关此函数图像的描述正确的是( )(原创)(A )该函数图像与坐标轴有两个交点 (B )该函数图像经过第一象限 (C )该函数图像关于原点中心对称 (D )该函数图像在第四象限 10.设12340,,,,x x x x 是正整数,且1234058x x x x ++++=,则222212340x x x x ++++的最大值和最小值为( )(改编)(A )400,94 (B )200,94 (C )400,47 (D )200,47 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.在实数X 围内分解因式32x x -的结果为。

浙江省杭州2010年5月份九年级数学中考模拟考试试卷浙教版

浙江省杭州2010年5月份九年级数学中考模拟考试试卷浙教版

2010年某某5月份中考模拟考试数学试卷考生须知:1.本科目试卷分试题卷和答题卷两部分.满分为120分,考试时间100分钟. 2.答题前,必须在答题卷的密封区内填写班级和某某.3.所有答案都必须做在答题卷指定的位置,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.一.仔细选一选(本题有10个小题,每小题3分,共30分) 1.下列运算正确的是( )A .523x x x=+ B .x x x =-23C .623x x x =⋅ D .x x x =÷232.在函数21-=x y 中,自变量x 的取值X 围是( ) A .2-≠x B .2≠x C .x ≤2D .x ≥23.今年我市初中毕业生约有25000人,该数据用科学记数法表示为( ) A .31025⨯ B .61025.0⨯ C .4105.2⨯ D .41025.0⨯ 4.我市去年6月上旬日最高气温如下表所示:日 期12345678910最高气温(℃) 30 28 30 32 34 32 26 30 33 35那么这10天的日最高气温的平均数和众数分别是( )A.32,30 B.31,30 C.32,32 D.30,305.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=75o ,∠C=45o, 那么sin ∠AEB 的值为( )A.21B.33C.22D.236.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成 这个几何体的小立方体的个数是( )A .3B .4C .5D .6主视图左视图 俯视图7.下列命题,正确的是( ) A .如果|a |=|b |,那么a =b(第5题图)B .等腰梯形的对角线互相垂直C .顺次连结四边形各边中点所得到的四边形是平行四边形D .相等的圆周角所对的弧相等8.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值X 围是( )A .a >-1B .a ≥-1C .a ≤1D .a <19.如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .M B .N C .P D .Q10.如图,ABC ∆中,BC AB ⊥,4==BC AB ,D 为BC 的中点,在AC边上存在一点E ,连结EB ED ,,则BDE ∆周长的最小值为( ) A .52 B .32 C .252+ D .232+二. 认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解23xy x -=.221x y -=12.如图,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数的图象,则阴影部分的面积是.13.豆豆沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡度为.14. “五·一”节,某超市开展“有奖促销”活动,凡购物不少于30元的顾客均有一次转动转盘的机会(如图,转盘被分为8个全等的小扇形),当指针最终指向数字8时,该顾客获一等奖;当指针最终指向3或5时,该顾客获二等奖(若指针指向分界线则重转). 经统计,当天发放一、二等奖奖品共600份,那么据此估计参与此次活动的顾客为人次.15.如图,菱形ABCD 的对角线AC 、BD 交于点O ,其中AC =8,BD =6,以OC 、OB 为边作矩形OBEC ,矩形OBEC 的对角线OE 、BC 交于点F ,再以CF 、FE 为边作第一个菱形CFEG ,菱形CFEG 的对角线FG 、CE 交于点H ,如此继续,得到第n 个菱形的周长等于.K P NMLKJHG F EO BDAC(第16题图)12 34567 8第14题(第10题图) (第14题图)(第12题图)ABC DE16. 如图,在矩形ABCD 中,AD =5,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于.三. 全面答一答(本题有8个小题,共66分) 17.(本题6分) (11122323tan 30--;(2)方程0652=--x x .18.(本题6分)请把下面的直角进行三等分.(要求用尺规作图,不写作法,但要保留作图痕迹.)19.(本题6分)如图,直线b kx y +=与反比例函数ky x=(x <0)的图象相交于点A 、B ,与x 轴交于点C ,其中A 点坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数解析式 (2)求△AOC 的面积20.(本题8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答ba46%22%0~14岁60岁以41~5915~40200 250 150100 300 0~14 15~40 41~59 60岁以上 年龄60230100(第15题图)下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a =,b =;(2)补全条形统计图; (3)若该辖区在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.21.(本题8分)如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作∥BD ,过点B 作BN ∥AC ,与BN 交于点N ,试判断线段BN 与的数量关系,并证明你的结论.22.(本题10分)阅读材料并解答问题:与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,,与正n 边形各边都相切的圆叫做正n 边形的内切圆,设正(3)n n ≥边形的面积为边形正n S ,其内切圆的半径为r ,试探索正n 边形的面积.(结果可用三角函数表示)如图①,当3n =时,设AB 切圆O 于点C ,连结OC OA OB ,,,OC AB ⊥∴, OA OB =∴,12AOC AOB ∠=∴,2AB BC =∴. 在Rt AOC △中,60336021=⋅=∠AOC ,OC r =,,, 60tan 260tan ⋅=⋅=∴r AB r AC ,60tan 60tan 2212r r r S OAB =⋅⋅=∴∆ 60tan 332⋅==∴∆r S S OAB 正三角形.(1) 如图②,当4n =时,仿照(1)中的方法和过程可求得:=正四边形S; (2)如图③,当5n =时,仿照(1)中的方法和过程求.正五边形S ; (3)如图④,根据以上探索过程,请直接写出=边形正n S .BCA DMN BC 图①23. (本题10分)某校原有600X 旧课桌急需维修,经过A 、B 、C 三个工程队的竞标得知,A 、B 的工作效率相同,且都为C 队的2倍,若由一个工程队单独完成,C 队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360X ,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A 、B 队提高的工作效率仍然都是C 队提高的2倍.这样他们至少还需要3天才能完成整个维修任务. ⑴求工程队A 原来平均每天维修课桌的X 数;⑵求工程队A 提高工作效率后平均每天多维修课桌X 数的取值X 围.24.(本题12分)已知:如图,直线l :13y x b =+,经过点104M ⎛⎫⎪⎝⎭,,一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:11223311(0)(0)(0)(0)n n A x A x A x A x ++,,,,,,,,(n 为正整数),设101x d d =<<().(1)求b 的值;(2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示);(3)定义:若抛物线的顶点..及抛物线与x 轴的两个交点....构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.n 2202010年某某5月份中考模拟考试数学 参考答案一、选择题(共10题,每题3分,共30分.)二、填空题(共6题,每题4分,共24分.)11.___________________ ___1600_三、解答题(共8题,共66分.) 17.(1)原式=3322132--+- (2分) =23(3分) (2) 1,621-==x x (6分)18.(1)作等边三角形3分。

2010年萧山区中考数学试卷参考答案

2010年萧山区中考数学试卷参考答案

2010年萧山区中考数学试卷参考答案一、选择题(本题有10小题,每题3分,共30分)二、填空题(本题有6小题,每题4分,共24分)11.减小 12. 5 13.0120 14. 2 15. 16.3n+1三、解答题(本题有8小题,17-19题各6分,20-22题各8分,23题10分,24题14分,共66分)17.(本题6分)解:原式=4a 2+4a+1-4a-2+3 ————————————2分 =4a 2+2 ————————————— 2分 当a=2时,4a 2+2=4102)2(2=+⨯———————2分18.(本题6分)解:方程两边同乘(x-1)(x+1),得2(x-1)-x=0————————————————2分解这个方程,得x=2——————————————2分检验:当x=2时,0)1)(1(≠+-x x所以x=2是原方程的解————————————2分19.(本题答案不唯一,每个2分,总计6分)20.(本题8分)解:(1)图略;—————————————————(2分)(2)200×12%=24(户).—————————————————(2分) 答:回答“非常满意”的居民有24户.————————————(1分)(3)185********8023=⨯+(户).————————————————(2分) 答:对“违章搭建情况”不满意或非常不满意的居民估计有1854户.————(1分)21.(本题8分)解:(1)依题意得y=2x 350-————————————————(2分) (2)根据题意列不等式组图甲(是中心对称图形 但不是轴对称图形)图乙(是轴对称图形但不是中心对称图形) 图丙(既是轴对称图形 又是中心对称图形)150x+140×2350x -<3000 x ≤2350x -——————————(2分) 解这个不等式组325<x ≤10 ————————————(1分) ∴x 取9或10又∵x=9时 y=29350⨯-=223不为整数 ∴舍去。

2010年杭州市中考数学模拟试题答题卷

2010年杭州市中考数学模拟试题答题卷

word 2010年某某市各类高中招生文化考试数学答题纸姓名某某号考生禁填缺考考生,由监考员用2B铅笔填涂下面的缺考标记缺考标记注意事项1.答题前,考生先将自己的某某、某某号填写清楚,请认真核对条形码上的某某号、某某。

2.1-10题必须使用2B铅笔填涂;其它题答案必须使用黑色字迹的钢笔或签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图时,仍使用2B铅笔。

5.保持清洁,不要折叠,不要弄破。

填涂样例正确填涂12345678910A A A A A A A A A AB B B B B B B B B BC C C C C C C C C CD D D D D D D D D D123456A A A A A AB B B B B BC C C C C CD D D D D D11..12..13..14..15. 、.16.;;.17.(本小题6分)18.(本小题6分)(1)(2)19.(本小题6分)(1)(2)20.(本小题8分)边长:21. (本小题8分)(1)表中的a ;(2)请把频数分布直方图补充完整;(3)第组;(4)条合理化建议:22.(本小题10分)(1)(2)贴条形码区a主视图左视图俯视图18151296350 100 120 140 160 180跳绳次数频数(人数)A D B北C东45°60°word23.(本小题10分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效24.(本小题12分)(1)(2)(3)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请勿在此区域内作答DAP↓C图2G2 4 6 8 1012108642yO x图1。

2010年浙江省绍兴市初中毕业生学业考试数学试卷(word版含答案)

2010年浙江省绍兴市初中毕业生学业考试数学试卷(word版含答案)

二、填空题(本大题有 6 小题,满分 30 分)
11. y(x + 3)(x − 3)
12. 38° 13. x < − 3 2
三、解答题(本大题有 8 小题,满分 80 分)
7.C 8. B 9. A 10. B
Байду номын сангаас
14. 1 4
15.②③
16. 1 2π
17.(本题满分 8 分)
解:(1) 原式= 2+1-3+1=1.
B
C
第 8 题图
D.∠ADC 与∠ABC 互余
9.已知(x1, y1),(x2, y2),(x3, y3)是反比例函数 y = − 4 的图象上的三个点,且 x1<x2<0, x
x3>0,则 y1,y2,y3 的大小关系是( )
A. y3<y1<y2
B. y2<y1<y3
C. y1<y2<y3
D. y3<y2<y1
15.做如下操作:在等腰三角形 ABC 中,AB= AC,AD 平分∠BAC,
交 BC 于点 D.将△ABD 作关于直线 AD 的轴对称变换,所得的
像与△ACD 重合.
对于下列结论:①在同一个三角形中,等角对等边;②在同一个三 角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线
第 15 题图
第 23 题图 1
第 23 题图 2
(3) 已知点 E,H,F,G 分别在矩形 ABCD 的边 AB,BC,CD,DA 上,EF,GH 交于点 O, ∠FOH=90°,EF=4. 直接写出下列两题的答案: ①如图 3,矩形 ABCD 由 2 个全等的正方形组成,求 GH 的长; ②如图 4,矩形 ABCD 由 n 个全等的正方形组成,求 GH 的长(用 n 的代数式表示).

杭州市上城区2010年中考一模数学试题及答案

2010年杭州市各类高中招生文化考试上城区一模试卷数 学考生须知:1.本科目试卷分试题卷和答题卷两部分.满分为120分,考试时间100分钟. 2.答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.试 题 卷一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.下列判断中,你认为正确的是( ) A .0的倒数是0B.2π是分数 C. 1.2大于1 D.4的值是±22.2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达 到51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是( ) A. 5.18×1010 B. 51.8×109 C. 0.518×1011 D. 518×108 3.下面四个几何体中,左视图是四边形的几何体共有( )A. 1个B. 2个C. 3个D. 4个4.下列函数的图象,经过原点的是( )A.x x y 352-=B.12-=x yC.xy 2=D.73+-=x y 5.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4 5 6 9 户数3421则关于这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨 C .极差是3吨 D .平均数是5.3吨6.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若 BD =6,DF =4,则菱形ABCD 的边长为( ) A.42 B.32C.5D.7A BCDEFO (第6题)(第10题) 7.Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a b A B +D.cos sin a b A B+8.已知下列命题:①若00a b >>,,则0a b +>;②若22a b ≠,则a b ≠;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分; ⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是( ) A. ① ③④B. ①②④C. ③④⑤D. ②③⑤9.甲、乙两个工程队完成某项工程,首先是甲单独做了10天, 然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系,那么实际完成这项工程所用 的时间比由甲单独完成这项工程所需时间少( ) A.12天B.14天C.16天D.18天10.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( ) A. 2.5AB B. 3AB C. 3.5AB D. 4AB二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:244x y xy y -+= .12.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是 .13.如图是与杨辉三角有类似性质的三角形数垒,a b c d 、、、是相邻两行的前四个数(如图所示),那么当a =8时,c = ,d = .14.如图所示,圆锥的母线长OA =8,底面的半径r =2,若一只小虫从A 点出发,绕圆锥 的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是.(第9题)O PQ xy(第12题)(第13题)(第19题)15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =6,BC =8,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .16.如图,已知△OP 1A 1、△A 1P 2A 2、△A 2P 3A 3、……均为等腰直角三角形,直角顶点P 1、P 2、 P 3、……在函数4y x=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2010的横坐标为 . 三.全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题满分6分) (1)计算:21()4sin 302-︒-2009(1)+-+0(2)π-;(2)已知x 2-5x =3,求()()()212111x x x ---++的值. 18.(本小题满分6分)AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线. 19.(本小题满分6分)在如图的方格纸中,每个小正方形的边长都为l. (1)画出将△A 1B 1C 1,沿直线DE 方向向上平移5格得到的△A 2B 2C 2;(2)要使△A 2B 2C 2与△CC 1C 2重合,则△A 2B 2C 2绕点C 2顺时针方向旋转,至少要旋转多少度?(直接写出答案) 20.(本小题满分8分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这(第18题)EAB ′CF B(第15题)(第14题)P 1OA 1A 2A 3P 3P 2yx510(第16题)样就确定点Q 的一个坐标为(x ,y ).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =2x --上的概率. 21.(本小题满分8分)由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a 元/度;每天22:00至8:00为为“谷电”期,电价为b 元/度.下表为某厂4、5月份的用电量和电费的情况统计表:月份 用电量(万度)电费(万元)4 12 6.4 5168.8(1)若4月份“谷电”的用电量占当月总电量的13,5月份“谷电”的用电量占当月总用电量的41,求a 、b 的值. (2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在“谷电”的用电量占当月用电量的比例应在什么范围?22.(本小题满分10分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sinB =c AD ,sinC =bAD,即AD =c sin B ,AD =bsinC ,于是csinB =bsinC ,即C c B b sin sin =.同理有:A a C c sin sin =,BbA a sin sin =, 所以CcB b A a sin sin sin == 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =450,∠C =750,BC =60,则∠A = ;AC =;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB . 23.(本小题满分10分)已知四边形ABCD ,E 是CD 上的一点,连接AE 、BE .(第22题)ABCDE(第23题(1))(1)给出四个条件: ① AE 平分∠BAD ,② BE 平分∠ABC , ③ AE ⊥EB ,④ AB =AD +BC .请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以证明; (2)请你判断命题“AE 平分∠BAD ,BE 平分∠ABC ,E 是CD 的中点,则AD ∥BC ”是否正确,并说明理由.24.(本小题满分12分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B 和D 2(4,)3-. (1)求抛物线的解析式.(2)如果点P 由点A 出发沿AB 边以2cm /s 的速度向点B 运动,同 时点Q 由点B 出发沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动. 设S =PQ 2(cm 2)①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ②当S 取54时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形? 如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.中考一模参考答案及评分标准一.选择题:(本大题10个小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABACDBCDB二.填空题:(本大题6个小题,每小题4分,共24分) 11、2(2)y x - 12、y=x313、9,37 (每空2分) 14、82 15、4 ,724(答对1个得2分,答错不扣分) 16、2(2009+2010) 三.解答题:(共66分) 17、(本题每小题3分,共6分)(1) 原式 = 4 – 2 – 1 + 1 ……………2分 = 2……………1分(2) 原式=x 2-5x+1……………2分= 3+1 = 4 ……………1分18、(本题每小题3分,共6分)(第24题)ABCO B1C1A1C2B2A2DE(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,……1分又∵BD=CD,∴AD是BC的垂直平分线,……………1分∴AB=AC ……………1分(2)连接OD,∵点O、D分别是AB、BC的中点,∴OD∥AC又DE⊥AC,∴OD⊥DE ……………2分∴DE为⊙O的切线.……………1分19、(本题每小题3分,共6分)解:(1)图形正确……………2分结论……………1分(2)至少旋转90.…………3分20.(本小题满分8分)(1)或……………4分(对1个得1分;对2个或3个,对2分;对4个或5个得3分;全对得4分)(2)落在直线y=2x--上的点Q有:(1,-3);(2,-4) ……………2分∴P=62=31……………2分21. (本小题满分8分)(1) 由题意,得32×12a+31×12b=6.4 8a+4b=6.443×16a+41×16b=8.8 12a+4b=8.8 ……………2分(列对1个得1分)解得a=0.6 b=0.4 ……………2分(每个1分)(2)设6月份“谷电”的用电量占当月总电量的比例为k.由题意,得10<20(1-k)×0.6+20k×0.4<10.6 ……………1分解得0.35<k<0.5 ……………2分答:该厂6月份在平稳期的用电量占当月用电量的比例在35%到50%之间(不含35%和50%).BA-2 -3 -41 (1,-2) (1,-3) (1,-4)2 (2,-2) (2,-3) (2,-4)0045sin 3060sin sin sin =∠=∠AB A BC ACB AB 即 ……………1分22、(本小题满分10分)解:(1)∠A=600,AC=620 ……………2分 (2)如图,依题意:BC=60×0.5=30(海里)……………1分 ∵CD ∥BE , ∴∠DCB+∠CBE=1800 ∵∠DCB=300,∴∠CBE=1500∵∠ABE=750。

2007-2010年杭州市数学中考试题

2007年杭州市数学中考试题一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.下列运算的结果中,是正数的是( ) A.()12007-- B.()20071- C.()()12007-⨯- D.()20072007-÷2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A.()4,3- B.()3,4-- C.()3,4- D.()3,4-3.如图,用放大镜将图形放大,应该属于( ) A.相似变换 B.平移变换 C.对称变换 D.旋转变换4.有一组数据如下:3,6,5,2,3,4,3,6。

那么这组 数据的中位数是( )A.3或4B.4C.3D.3.5 5.因式分解()219x --的结果是( )A.()()81x x ++B.()()24x x +-C.()()24x x -+D.()()108x x -+ 6.如图,正三角形A B C 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与,A B 重合,则B PC ∠等于( )A.30︒B.60︒C.90︒D.45︒7.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米(第6题)A C O BP(第7题)45︒30︒BAD C(第3题)8.如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限9.右图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是( )A.这两个四边形面积和周长都不相同B. 这两个四边形面积和周长都相同C. 这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长D. 这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长10.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是( )A.1216B.172C.136D.112二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.两圆的半径分别为3和5,当这两圆相交时,圆心距d 的取值范围是 。

杭州市中考数学试卷及答案(Word解析版)

浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(杭州)根据~杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.~杭州市每年GDP增长率相同B.杭州市的GDP比翻一番C.杭州市的GDP未达到5500亿元D.~杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算~GDP增长率,~GDP增长率,进行比较可得A的正误;根据统计图可以大约得到和GDP,可判断出B的正误;根据条形统计图可得杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到~杭州市的GDP逐年增长.解答:解:A.~GDP增长率约为:=,~GDP增长率约为=,增长率不同,故此选项错误;B.杭州市的GDP约为7900,GDP约为4900,故此选项错误;C.杭州市的GDP超过到5500亿元,故此选项错误;D.~杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中和的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表学校2011年2012年杭州A中438 442杭州B中435 442杭州C中435 439杭州D中435 439考点:算术平均数.分析:先算出的平均最低录取分数线和的平均最低录取分数线,再进行相减即可.解答:解:的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。

2010年浙江省杭州市中考数学试卷(解析版含答案)

2010年浙江省杭州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D.22.(3分)4的平方根是()A.±2 B.2 C.﹣2 D.163.(3分)方程x2+x﹣1=0的根是()A.1﹣B .C.﹣1+D .4.(3分)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件5.(3分)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是()A.矩形B.正方形C.菱形D.正三角形6.(3分)16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是()A.平均数B.极差C.中位数D.方差7.(3分)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π8.(3分)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°9.(3分)已知a,b为实数,则解可以为﹣2<x<2的不等式组是()A .B .C .D .10.(3分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x 轴所得的线段长度大于;③当m<0时,函数在x >时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④二、填空题(共6小题,每小题4分,满分24分)11.(4分)至2009年末,杭州市参加基本养老保险约有3 422 000人,用科学记数法表示应为人.12.(4分)分解因式:m3﹣4m=.13.(4分)如图,已知∠1=∠2=∠3=62°,则∠4=度.14.(4分)一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要位.15.(4分)先化简﹣(﹣),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).16.(4分)如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG=.三、解答题(共8小题,满分66分)17.(6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.18.(6分)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.19.(6分)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确.20.(8分)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):上海世博会前20天日参观人数的频数分布表:(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.21.(8分)已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求+的值.22.(10分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=2BD,设BD=a,求BC的长.23.(10分)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.24.(12分)在平面直角坐标系xOy中,抛物线的解析式是y=+1,点C的坐标为(﹣4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.(1)写出点M的坐标;(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1:2时,求t的值.2010年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2010•杭州)计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D.2【分析】此题比较简单.先算乘方,再算加法.【解答】解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.【点评】此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.(3分)(2011•呼伦贝尔)4的平方根是()A.±2 B.2 C.﹣2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【解答】解:∵(±2 )2=4,∴4的平方根是±2.故选:A.【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.3.(3分)(2010•杭州)方程x2+x﹣1=0的根是()A.1﹣B .C.﹣1+D .【分析】观察原方程,可用公式法求解.【解答】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>0,x=;故选D.【点评】本题考查了一元二次方程的解法.正确理解运用一元二次方程的求根公式是解题的关键.4.(3分)(2013•衡阳)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选:A.【点评】用到的知识点为:必然事件指在一定条件下一定发生的事件.5.(3分)(2010•杭州)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是()A.矩形B.正方形C.菱形D.正三角形【分析】柱体的左视图一定是矩形或正方形,判断出这个长方形的边长即可.【解答】解:三棱柱的左视图的高一定是棱长,而宽等于俯视图正三角形的高,这个高一定小于棱长,那么左视图为矩形.故选A.【点评】解决本题的难点是判断出柱体的左视图的宽与棱长的大小比较.6.(3分)(2010•杭州)16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是()A.平均数B.极差C.中位数D.方差【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【解答】解:由于总共有15个人,且他们的分数互不相同,第8的成绩是中位数,要判断是否进入前8名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π【分析】由图可知,四个小圆的直径和等于大圆直径,4个小圆大小相等,故小圆直径为12÷4=3,根据周长公式求解.【解答】解:大圆周长为12π,四个小圆周长和为4×(12÷4)π=12π,5个圆的周长的和为12π+12π=24π.故选B.【点评】本题主要考查相切两圆的性质,解题的关键是熟记圆周长的计算公式:直径×π.8.(3分)(2013•攀枝花)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′.【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故选:C.【点评】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.9.(3分)(2010•杭州)已知a,b为实数,则解可以为﹣2<x<2的不等式组是()A .B .C .D .【分析】可根据不等式组解集的求法得到正确选项.【解答】解:A、所给不等式组的解集为﹣2<x<2,那么a,b为一正一负,设a>0,则b<0,解得x >,x<,∴原不等式组无解,同理得到把2个数的符号全部改变后也无解,故错误,不符合题意;B、所给不等式组的解集为﹣2<x<2,那么a,b同号,设a>0,则b>0,解得x >,x <,解集都是正数;若同为负数可得到解集都是负数;故错误,不符合题意;C、理由同上,故错误,不符合题意;D、所给不等式组的解集为﹣2<x<2,那么a,b为一正一负,设a>0,则b<0,解得x <,x >,∴原不等式组有解,可能为﹣2<x<2,把2个数的符号全部改变后也如此,故正确,符合题意.故选D.【点评】此题考查学生逆向思维,由解来判断不等式,是一道好题;用到的知识点为:大小小大中间找;大大小小无解.10.(3分)(2010•杭州)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x >时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有()A.①②③④B.①②④C.①③④D.②④【分析】①当m=﹣3时,根据函数式的对应值,可直接求顶点坐标;②当m>0时,直接求出图象与x轴两交点坐标,再求函数图象截x轴所得的线段长度,进行判断;③当m<0时,根据对称轴公式,进行判断;④当m≠0时,函数图象经过同一个点.【解答】解:根据定义可得函数y=2mx2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴=﹣=,==,∴顶点坐标是(,),正确;②函数y=2mx2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣,0),当m>0时,1﹣(﹣)=+>,正确;③当m<0时,函数y=2mx2+(1﹣m)x+(﹣1﹣m)开口向下,对称轴x=﹣>,∴x可能在对称轴左侧也可能在对称轴右侧,错误;④y=2mx2+(1﹣m)x+(﹣1﹣m)=m(2x2﹣x﹣1)+x﹣1,若使函数图象恒经过一点,m≠0时,应使2x2﹣x﹣1=0,可得x1=1,x2=﹣,当x=1时,y=0,当x=﹣时,y=﹣,则函数一定经过点(1,0)和(﹣,﹣),正确.故选B.【点评】公式法:y=ax2+bx+c 的顶点坐标为(,),对称轴是x=.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2010•杭州)至2009年末,杭州市参加基本养老保险约有3 422 000人,用科学记数法表示应为 3.422×106人.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.422,10的指数为7﹣1=6.【解答】解:3 422 000人=3.422×106人.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.12.(4分)(2013•泰安)分解因式:m3﹣4m=m(m﹣2)(m+2).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.【解答】解:m3﹣4m,=m(m2﹣4),=m(m﹣2)(m+2).【点评】本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题的关键,要注意分解因式要彻底.13.(4分)(2010•杭州)如图,已知∠1=∠2=∠3=62°,则∠4=118度.【分析】因为∠1=∠2=∠3=62°,所以可知两直线a、b平行,由同旁内角互补求得∠4结果.【解答】解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.14.(4分)(2010•杭州)一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要4位.【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可.【解答】解:因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为.故密码的位数至少需要4位.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(4分)(2010•杭州)先化简﹣(﹣),再求得它的近似值为 5.20(精确到0.01,≈1.414,≈1.732).【分析】根据a=化简原式后再解答.【解答】解:原式=﹣(﹣)=﹣(﹣)=﹣+=3≈3×1.732≈5.196≈5.20【点评】在根式的解答过程中,经常遇到类似本题的题型,在解答此类题型时,化简时,先把分数化成根式形式后,再去解答会比较容易一些.16.(4分)(2010•杭州)如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC 分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG= 3+3.【分析】连接OD,则OD⊥AC、OD∥CB,易证得OD是△ABC的中位线,则OD=3;由此可求得OF、BF的长;根据OD ∥CB,可证得△ODF、△BFG都是等腰三角形,所以BF=BG=3﹣3,再由CG=BC+BG即可求出CG的长.【解答】解:连接OD,则OD⊥AC;∵∠C=90°,∴OD∥CB;∵O是AB 的中点,∴OD是△ABC的中位线,即OD=BC=3;∵AC=BC=6,∠C=90°,∴AB=6,则OB=3,∵OD∥CG,∴∠ODF=∠G;∵OD=OF,则∠ODF=∠OFD,∴∠BFG=∠OFD=∠G,∴BF=BG=OB﹣OF=3﹣3,∴CG=BC+BG=6+3﹣3=3+3.【点评】此题主要考查了切线的性质,三角形中位线定理及等腰三角形的性质等知识的综合应用,能够发现△BFG是等腰三角形是解答此题的关键.三、解答题(共8小题,满分66分)17.(6分)(2010•杭州)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.【分析】方法1:用有序实数对(a,b)表示;方法2:用方向和距离表示.【解答】解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3处.【点评】本题考查了确定物体位置的两种方法.无论运用哪种方法表示一个点在平面中的位置,都要用两个数据才能表示.18.(6分)(2010•杭州)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.【分析】(1)点P到A,B两点的距离相等,即作AB的垂直平分线,点P到∠xOy的两边的距离相等,即作角的平分线,两线的交点就是点P的位置.(2)根据坐标系读出点P的坐标.【解答】解:(1)作图如右,点P即为所求作的点.(2)设AB的中垂线交AB于E,交x轴于F,由作图可得,EF⊥AB,EF⊥x轴,且OF=3,∵OP是坐标轴的角平分线,∴P(3,3),同理可得:P(3,﹣3),综上所述:符合题意的点的坐标为:(3,3),(3,﹣3).【点评】本题主要考查了线段垂直平分线上的点到线段两端的距离相等和角平分线上的点到角两边的距离相等.19.(6分)(2010•杭州)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确.【分析】(1)由已知的命题1,命题2,命题3要猜想出命题n,首先要发现它们的共同点或不变的内容:叙述的都是点(x,y)是直线y=kx 与双曲线的交点,然后要找到它们变化的内容及变化的规律:这个点的坐标在变,其中横坐标x=n,纵坐标y=n2;直线的解析式在变,其中k=n,双曲线的解析式也在变,其中m=n3.从而写出命题n;(2)把x=n分别代入y=nx与y=,分别计算出对应的y值,然后与n2比较即可.【解答】解:(1)命题n:点(n,n2)是直线y=nx与双曲线y=的一个交点(n是正整数);(2)把代入y=nx,左边=n2,右边=n•n=n2,∵左边=右边,∴点(n,n2)在直线上.同理可证:点(n,n2)在双曲线上,∴点(n,n2)是直线y=nx与双曲线y=的一个交点,命题正确.【点评】对于这类寻找规律的题目,首先要仔细研究已知条件,找到它们的共同点,发现它们变化的内容及变化的规律,才能由特殊推到一般,从而得到正确结论.注意总结出的一般规律应满足题目给出的特殊子,此法也常用来检验总结出的一般规律是否正确.本题考查了学生分析问题、解决问题的能力.20.(8分)(2010•杭州)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):上海世博会前20天日参观人数的频数分布表:(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.【分析】(1)根据表格的数据求出14.5﹣21.5小组的组中值,最后即可补全频数分布表和频数分布直方图;(2)根据表格知道日参观人数不低于22万的天数有两个小组,共9天,除以总人数即可求出所占的百分比;(3)利用每一组的组中值和每一组的频数可以求出上海世博会(会期184天)的参观总人数.【解答】解:(1)(14.5+21.5)÷2=18,1﹣0.25﹣0.3﹣0.3=0.15,上海世博会前20天日参观人数的频数分布表:频数分布表,频数分布直方图;(2)依题意得,日参观人数不低于22万有6+3=9天,所占百分比为9÷20=45%;(3)∵世博会前20天的平均每天参观人数约为==20.45(万人),∴上海世博会(会期184天)的参观总人数约为20.45×184=3762.8(万人).【点评】本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.也运用了样本估计总体的思想.21.(8分)(2010•杭州)已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求+的值.【分析】(1)体积=底面积×高;表面积=4个侧面积+2个底面积.(2)把所给数值代入(1)得到的公式计算即可.【解答】解:(1)当a=2,h=3时,V=a2h=12;S=2a2+4ah=32;(2)∵a2h=12,2a(a+2h)=32,∴h=,a+2h=,∴+===.【点评】本题主要考查直棱柱的体积与表面积的求法及灵活运用能力.22.(10分)(2010•杭州)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=2BD,设BD=a,求BC的长.【分析】(1)由BD∥AC,得∠EAC=∠B;根据已知条件,易证得AB:AC和BD:AE的值相等,由此可根据SAS判定两个三角形相似.(2)首先根据已知条件表示出AB、AD、AC的值,进而可由勾股定理判定∠D=∠E=90°;根据(1)得出的相似三角形的相似比,可表示出EC、AE的长,进而可在Rt△BEC中,根据勾股定理求出BC 的长.【解答】(1)证明:∵BD∥AC,点B,A,E在同一条直线上,∴∠DBA=∠CAE,又∵==3,∴△ABD∽△CAE;(4分)(2)连接BC,解:∵AB=3AC=3BD,AD=2BD,∴AD2+BD2=8BD2+BD2=9BD2=AB2,∴∠D=90°,由(1)得△ABD∽△CAE∴∠E=∠D=90°,∵AE=BD,EC=AD=BD,AB=3BD,∴在Rt△BCE中,BC2=(AB+AE)2+EC2=(3BD +BD)2+(BD)2=BD2=12a2,∴BC=2a.(6分)【点评】此题主要考查了相似三角形的判定和性质,以及勾股定理的应用.能够由勾股定理判断出△ABD和△AEC是直角三角形,是解答(2)题的关键.23.(10分)(2010•杭州)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.【分析】(1)作BH⊥PQ于点H,在Rt△BHP中,利用特殊角的三角函数值求出BH的长与260千米相比较即可.(2)以B为圆心,以260为半径作圆交PQ于P1、P2两点,根据垂径定理即可求出P1P2的长,进而求出台风影响B市的时间.【解答】解:(1)作BH⊥PQ于点H.在Rt△BHP中,由条件知,PB=480,∠BPQ=75°﹣45°=30°,∴BH=480sin30°=240<260,∴本次台风会影响B市.(2)如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=240,由条件得BP1=BP2=260,∴P1P2=2=200,∴台风影响的时间t==5(小时).故B市受台风影响的时间为5小时.【点评】本题考查的是直角三角形的性质及垂径定理在实际生活中的运用,解答此题的关键是构造出直角三角形及圆.24.(12分)(2010•杭州)在平面直角坐标系xOy中,抛物线的解析式是y=+1,点C的坐标为(﹣4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.(1)写出点M的坐标;(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1:2时,求t的值.【分析】(1)由于四边形ABCO是平行四边形,那么对边AB和OC相等,由此可求出AB的长,由于A、B关于抛物线的对称轴(即y轴)对称,由此可得到A、B的横坐标,将它们代入抛物线的解析式中即可求出A、B的坐标,也就得到了M点的坐标;(2)①根据C、M的坐标,易求得OM、OC的长;过Q作QH⊥x轴于H,易证得△HQP∽△OMC,根据相似三角形得到的比例线段,即可求出t、x的函数关系式;在求自变量的取值范围时,可参考两个方面:一、P、C重合时,不能构成四边形PCMQ;二、Q与B或A重合时,四边形PCMQ是平行四边形;只要x不取上述两种情况所得的值即可;②由于CM、PQ的长不确定,因此要分类讨论:一、CM>PQ,则CM:PQ=2:1,由(2)的相似三角形知OM=2QH,即M点纵坐标为Q点纵坐标的2倍,由此可求得t的值;二、CM<PQ,则CM:PQ=1:2,后同一.【解答】解:(1)∵OABC是平行四边形,∴AB∥OC,且AB=OC=4,∵A,B在抛物线上,y轴是抛物线的对称轴,∴A,B的横坐标分别是2和﹣2,代入y=+1得,A(2,2),B(﹣2,2),∴M(0,2),(2)①过点Q作QH⊥x轴,连接MC.∵CM∥PQ,∴∠QPC=∠MCO,∵∠COM=∠PHQ=90°,∴△HQP∽△OMC,设垂足为H,则HQ=y,HP=x﹣t,由△HQP∽△OMC,得:=,即:t=x﹣2y,∵Q(x,y)在y=+1上,∴t=﹣+x﹣2.当点P与点C重合时,梯形不存在,此时,t=﹣4,解得x=1±,当Q与B或A重合时,四边形为平行四边形,此时,x=±2∴x的取值范围是x≠1±,且x≠±2的所有实数;②分两种情况讨论:(1)当CM>PQ时,则点P在线段OC上,∵CM∥PQ,CM=2PQ,∴点M纵坐标为点Q纵坐标的2倍,即2=2(+1),解得x=0,∴t=﹣+0﹣2=﹣2;(2)当CM<PQ时,则点P在OC的延长线上,∵CM∥PQ,CM=PQ,∴点Q纵坐标为点M纵坐标的2倍,即+1=2×2,解得:x=±2;(2分)当x=﹣2时,得t=﹣﹣2﹣2=﹣8﹣2,当x=2时,得t=2﹣8.【点评】此题主要考查了平行四边形的性质、抛物线的对称性、梯形的判定和性质以及相似三角形的性质等知识的综合应用能力.参与本试卷答题和审题的老师有:Liuzhx;算术;开心;MMCH;CJX;lanchong;bjy;zhangCF;hbxglhl;王岑;疯跑的蜗牛;HLing;蓝月梦;py168;Linaliu;nhx600;fuaisu;HJJ(排名不分先后)菁优网2017年3月6日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年杭州市各类高中招生文化考试数学考生须知:1.本试卷满分120分, 考试时间100分钟.2.答题前, 在答题纸上写姓名和准考证号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4.考试结束后, 试题卷和答题纸一并上交.试题卷一. 仔细选一选(本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1. 计算(– 1)2 + (– 1)3 =A.– 2B. – 1C. 0D. 22. 4的平方根是A. 2B. ± 2C. 16D. ±163. 方程x2 + x– 1 = 0的一个根是A. 1 –5B.251-C. –1+5D.251+-4. “a是实数, ||0a≥”这一事件是A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件5. 若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是A. 矩形B. 正方形C. 菱形D. 正三角形6. 16位参加百米半决赛同学的成绩各不相同, 按成绩取前8位进入决赛. 如果小刘知道了自己的成绩后, 要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是A. 平均数B. 极差C. 中位数D. 方差 7. 如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为A. 48πB. 24πC. 12πD. 6π8. 如图,在△ABC 中,70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BABA.30 B.35 C.40 D.50 9. 已知a ,b 为实数,则解可以为 – 2 < x < 2的不等式组是 A.⎩⎨⎧>>11bx ax B.⎩⎨⎧<>11bx ax C. ⎩⎨⎧><11bx ax D. ⎩⎨⎧<<11bx ax 10. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①②③④B. ①②④C. ①③④D. ②④ 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11. 至2009年末,杭州市参加基本养老保险约有3422000人,用科学记数 法表示应为 人. 12. 分解因式 m 3– 4m = .13. 如图, 已知∠1 =∠2 =∠3 = 62°,则4∠= .(第7题)(第8题)(第13题)14.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使不知道密码的人一次 就拨对密码的概率小于20101, 则密码的位数至少需要 位. 15. 先化简)12232461(32--, 再求得它的近似值为 .(精确到0.01,2≈1.414,3≈1.732)16. 如图, 已知△ABC ,6==BC AC ,︒=∠90C .O 是AB 的中点, ⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一 个交点,连DF 并延长交CB 的延长线于点G . 则CG = .三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己 能写出的解答写出一部分也可以. 17.(本小题满分6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A ,B 两点. 请你用两种不同方法表述点B 相对点A 的位置.18. (本小题满分6分)如图, 在平面直角坐标系xOy 中, 点A (0,8), 点B (6 , 8 ). (1) 只用直尺(没有刻度)和圆规, 求作一个点P ,使点P 同时满足下 列两个条件(要求保留作图痕迹, 不必写出作法): 1)点P 到A ,B 两点的距离相等; 2)点P 到xOy ∠的两边的距离相等. (2) 在(1)作出点P 后, 写出点P 的坐标.(第16题)(第17题)(第18题).19. (本小题满分6分)给出下列命题:命题1. 点(1,1)是直线y = x 与双曲线y = x1的一个交点; 命题2. 点(2,4)是直线y = 2x 与双曲线y = x8的一个交点; 命题3. 点(3,9)是直线y = 3x 与双曲线y = x27的一个交点; … … .(1)请观察上面命题,猜想出命题n (n 是正整数); (2)证明你猜想的命题n 是正确的.20. (本小题满分8分)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频 数分布 直方图(部分未完成): (1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.21. (本小题满分8分)已知直四棱柱的底面是边长为a 的正方形, 高为h , 体积为V, 表面积等于S. (1) 当a = 2, h = 3时,分别求V 和S ;组别(万人) 组中值(万人)频数频率 7.5~14.5 1150.25 14.5~21.5 60.30 21.5~28.5 25 0.30 28.5~35.5323上海世博会前20天日参观人数的频数分布表上海世博会前20天日参观人数的频数分布直方图(2) 当V = 12,S = 32时,求ha 12 的值.22. (本小题满分10分)如图,AB = 3AC ,BD = 3AE ,又BD ∥AC ,点B ,A ,E 在同一条直线上. (1) 求证:△ABD ∽△CAE ;(2) 如果AC =BD ,AD =22BD ,设BD = a ,求BC 的长.23. (本小题满分10分)如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,距离点P 320千米处. (1) 说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.24. (本小题满分12分)在平面直角坐标系xOy 中,抛物线的解析式是y =241x +1, 点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物 线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点 P (t ,0)在x 轴上. (1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.(第22题)(第23题)(第24题)① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值.2010年杭州市各类高中招生文化考试数学评分标准一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 CBDAACBCDB二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 3.422⨯106 12. m (m +2)(m – 2) 13. 118° 14. 4 15. 5.20 16. 332+三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)方法1.用有序实数对(a ,b )表示.比如:以点A 为原点,水平方向为x 轴,建立直角坐标系,则B(3,3). --- 3分方法2. 用方向和距离表示.比如: B 点位于A 点的东北方向(北偏东45°等均可),距离A点32处. --- 3分18. (本小题满分6分)(1) 作图如右, 点P 即为所求作的点; --- 图形2分, 痕迹2分(2) 设AB 的中垂线交AB 于E ,交x 轴于F , 由作图可得, EF AB ⊥, EF x ⊥轴, 且OF =3,∵OP 是坐标轴的角平分线,(第18题)∴P (3,3). --- 2分19. (本小题满分6分)(1)命题n : 点(n , n 2) 是直线y = nx 与双曲线y =xn 3的一个交点(n 是正整数). --- 3分(2)把 ⎩⎨⎧==2ny n x 代入y = nx ,左边= n 2,右边= n ·n = n 2, ∵左边=右边,∴点(n,n 2)在直线上.--- 2分同理可证:点(n ,n 2)在双曲线上,∴点(n ,n 2)是直线y = nx 与双曲线y = xn 3的一个交点,命题正确.--- 1分20. (本小题满分8分) (1)填频数分布表 --- 2分频数分布直方图 --- 2分(2)日参观人数不低于22万有9天, --- 1分所占百分比为45%.--- 1分组别(万人) 组中值(万人)频数 频率 7.5~14.5 11 5 0.25 14.5~21.5 18 6 0.30 21.5~28.5 25 6 0.30 28.5~35.53230.15上海世博会前20天日参观人数的频数分布表 上海世博会前20天日参观人数的频数分布直方图(3)世博会前20天的平均每天参观人数约为2040920332625618511=+++⨯⨯⨯⨯=20.45(万人)---1分20.45×184=3762.8(万人)∴ 估计上海世博会参观的总人数约为3762.8万人. --- 1分21. (本小题满分8分)(1) 当a = 2, h = 3时, V = a 2h = 12 ;S = 2a 2+ 4ah =32 . --- 4分(2) ∵a 2h = 12, 2a (a + 2h ) =32, ∴ 212a h =, (a + 2h ) =a 16, ∴ha 12+=aha h +2=21216aa a ⋅=34.--- 4分22. (本小题满分10分)(1) ∵ BD ∥AC ,点B ,A ,E 在同一条直线上, ∴ ∠DBA = ∠CAE , 又∵3==AEBDAC AB , ∴ △ABD ∽△CAE .--- 4分(2) ∵AB = 3AC = 3BD ,AD =22BD ,∴ AD 2 + BD 2 = 8BD 2 + BD 2 = 9BD 2 =AB 2, ∴∠D =90°, 由(1)得 ∠E =∠D = 90°, ∵ AE =31BD , EC =31AD =232BD , AB = 3BD , ∴在Rt △BCE 中,BC 2 = (AB + AE )2 + EC 2 = (3BD +31BD )2 + (322BD )2 = 9108BD 2 = 12a 2 , ∴ BC =32 a . --- 6分23. (本小题满分10分)(1) 作BH ⊥PQ 于点H , 在Rt △BHP 中,由条件知, PB = 320, ∠BPQ = 30°, 得 BH = 320sin30° = 160 < 200,∴本次台风会影响B 市.---4分(2) 如图, 若台风中心移动到P 1时, 台风开始影响B 市, 台风中心移动到P 2时, 台风影响结束.由(1)得BH = 160, 由条件得BP 1=BP 2 = 200, ∴所以P 1P 2 = 222160200-=240,--- 4分∴台风影响的时间t =30240= 8(小时).--- 2分24. (本小题满分12分)(1) ∵OABC 是平行四边形,∴AB ∥OC ,且AB = OC = 4, ∵A ,B 在抛物线上,y 轴是抛物线的对称轴, ∴ A ,B 的横坐标分别是2和– 2, 代入y =241x +1得, A(2, 2 ),B(– 2,2),(第22题)(第23题)(第24题)∴M (0,2),---2分(2) ① 过点Q 作QH ⊥ x 轴,设垂足为H , 则HQ = y ,HP = x –t , 由△HQP ∽△OMC ,得:42t x y -=, 即: t = x – 2y , ∵ Q(x ,y )在y = 241x +1上, ∴ t = –221x + x –2. ---2分当点P 与点C 重合时,梯形不存在,此时,t = – 4,解得x = 1±5, 当Q 与B 或A 重合时,四边形为平行四边形,此时,x = ± 2 ∴x 的取值范围是x ≠ 1±5, 且x ≠± 2的所有实数.---2分② 分两种情况讨论:1)当CM > PQ 时,则点P 在线段OC 上, ∵ CM ∥PQ ,CM = 2PQ ,∴点M 纵坐标为点Q 纵坐标的2倍,即2 = 2(241x +1),解得x = 0 , ∴t =–2021+ 0 –2=–2.--- 2分2)当CM < PQ 时,则点P 在OC 的延长线上, ∵CM ∥PQ ,CM =21PQ , ∴点Q 纵坐标为点M 纵坐标的2倍,即241x +1=2⨯2,解得: x = ±32. ---2分当x = –32时,得t = –2)32(21–32–2 = –8 –32, 当x=32时,得t=32–8.---2分。

相关文档
最新文档