2020-2021广州二中应元学校高三数学上期末试卷附答案

合集下载

2020-2021广州市二中应元高中三年级数学下期末试题(含答案)

2020-2021广州市二中应元高中三年级数学下期末试题(含答案)

2020-2021广州市二中应元高中三年级数学下期末试题(含答案)一、选择题1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D2.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .$0.4 2.3y x =+ B .$2 2.4y x =- C .$29.5y x =-+D .$0.3 4.4y x =-+4.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27B .11C .109D .365.已知非零向量a b r r ,满足2a b r r =,且ba b ⊥r r r (–),则a r 与b r的夹角为 A .π6B .π3C .2π3D .5π66.数列2,5,11,20,x ,47...中的x 等于( ) A .28B .32C .33D .277.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 8.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3π B .2,-6π C .4,-6πD .4,3π 9.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确10.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B =I ð( ) A .{}1- B .{}0,1 C .{}1,2,3-D .{}1,0,1,3-11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对12.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与BB .B 与CC .A 与DD .C 与D二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________.14.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.15.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 16.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 17.已知样本数据,,,的均值,则样本数据,,,的均值为 .18.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)19.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.20.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由. 25.已知函数()ln f x x x =. (1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1xf x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)26.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =3BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D. 【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.3.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.4.D解析:D 【解析】 【分析】 【详解】 由秦九韶算法可得()())((())532231? 02311,f x x x x x x x x x x =++++=+++++0ν1∴=1ν=1303⨯+= 2ν33211=⨯+= 3ν113336=⨯+=故答案选D5.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥r r r ,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r ,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.6.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值. 【详解】因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.B解析:B 【解析】 【分析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.A【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2), ∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.9.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下:在(2)中假设n k = 1k <+ (1)1k ++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.10.A【解析】 【分析】本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-I【点睛】易于理解集补集的概念、交集概念有误.11.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.12.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.二、填空题13.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.14.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6 【解析】 【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322zy x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值.由题意得A 点坐标为(2,0), ∴min 326z =⨯=,即32z x y =-的最小值是6. 故答案为6. 【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的纵截距z b 的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距zb取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值. 15.8【解析】∵函数(且)的图象恒过定点A∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.16.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个解析:3+【解析】21a b Q +=,则1111223+3b a a b a b a b a b +=++=+≥+()()11a b+的最小值为3+点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.17.11【解析】因为样本数据x1x2⋅⋅⋅xn 的均值x=5所以样本数据2x1+12x2+1⋅⋅⋅2xn+1的均值为2x+1=2×5+1=11所以答案应填:11考点:均值的性质 解析:【解析】 因为样本数据,,,的均值,所以样本数据,,,的均值为,所以答案应填:.考点:均值的性质.18.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同 解析:16【解析】 【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果. 【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16. 【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.19.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:33493【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况.【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3.在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S ⨯⨯V 代入数据得到1313313332⨯⨯⨯=或者1319333 3.324⨯⨯⨯= 故答案为:334或34【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.20.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去 解析:3【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 22ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题21.(1)0.5;(2)0.1 【解析】 【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出()4P X =所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果. 【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球” 所以()20.50.40.50.60.5P X ==??(2)由题意可知,()4P X =包含的事件为“前两球甲乙各得1分,后两球均为甲得分”所以()40.50.60.50.4+0.50.40.50.40.1P X ==创创创= 【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及()4P X =所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.(1)见解析;(2) 【解析】 【详解】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u v的方向为x 轴正方向,ABu u u v 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得22A ⎛⎫ ⎪ ⎪⎝⎭,2P ⎛ ⎝⎭,2,1,02B ⎛⎫ ⎪ ⎪⎝⎭,22C ⎛⎫- ⎪ ⎪⎝⎭. 所以2222PC ⎛⎫=-- ⎪ ⎪⎝⎭u u u v ,)2,0,0CB =u u u v ,2222PA ⎛=- ⎝⎭u u u v ,()0,1,0AB =u u uv . 设(),,n x y z =r是平面PCB 的法向量,则0,0,n PC n CB ⎧⋅=⎨⋅=⎩u u uv r u u u v r即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2n =--r.设(),,m x y z r =是平面PAB 的法向量,则 0,0,m PA m AB ⎧⋅=⎨⋅=⎩u uu v r u u u v r 即220,0.x z y =⎪=⎩可取()1,0,1m =r. 则3cos ,n m n m n m ⋅==r r r rr r ,所以二面角A PB C --的余弦值为3【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面: ①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角; ③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 23.(I )丙级;(Ⅱ)①;②.【解析】 【分析】(I )以频率值作为概率计算出相应概率,再利用判定规则的三个式子得出判断设备的性能等级。

2020-2021广州市高中必修一数学上期末模拟试卷(附答案)

2020-2021广州市高中必修一数学上期末模拟试卷(附答案)

2020-2021广州市高中必修一数学上期末模拟试卷(附答案)一、选择题1.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,22.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞3.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]5.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-16.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>7.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 8.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.已知01a <<,则方程log xa a x =根的个数为( )A .1个B .2个C .3个D .1个或2个或3根10.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.函数y =11x -在[2,3]上的最小值为( ) A .2B .12 C .13 D .-1212.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值 二、填空题13.已知函数12()log f x x a =+,2()2g x x x =-,对任意的11[,2]4x ∈,总存在2[1,2]x ∈-,使得12()()f x g x =,则实数a 的取值范围是______________.14.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;15.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.16.已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 17.已知35m n k ==,且112m n+=,则k =__________ 18.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.19.若函数()242x xf x a a =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.20.已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 三、解答题21.已知函数31()31x xf x -=+. (1)证明:()f x 为奇函数;(2)判断()f x 的单调性,并加以证明; (3)求()f x 的值域.22.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B I U ;(2)若()R C C A ⊆,求实数a 的取值范围. 23.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 24.已知()1log 1axf x x-=+(0a >,且1a ≠). (1)当(],x t t ∈-(其中()1,1t ∈-,且t 为常数)时,()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;(2)当1a >时,求满足不等式()()2430f x f x -+-≥的实数x 的取值范围. 25.已知全集U=R ,集合{}12A x x x =-或 ,{}213U B x x p x p 或=-+ð. (1)若12p =,求A B ⋂; (2)若A B B ⋂=,求实数p 的取值范围.26.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≤-. (1)求()U A C B ⋂;(2)若函数()lg(2)f x x a =+的定义域为集合C ,满足A C ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .2.C解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又Q 函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 4.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.5.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0x t t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.6.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.7.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立; ∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.8.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a <⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.10.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题. 11.B解析:B【解析】y=1 1x-在[2,3]上单调递减,所以x=3时取最小值为12,选B.12.D解析:D【解析】【分析】由题意画出函数图像,利用图像性质求解【详解】画出()f x的图像,如图(实线部分),由()1152y xy x=+⎧⎪⎨=-⎪⎩得()1,2A.故()f x有最大值2,无最小值故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.【解析】分析:对于多元变量任意存在的问题可转化为求值域问题首先求函数的值域然后利用函数的值域是函数值域的子集列出不等式求得结果详解:由条件可知函数的值域是函数值域的子集当时当时所以解得故填:点睛:本解析:[0,1]【解析】分析:对于多元变量任意存在的问题,可转化为求值域问题,首先求函数()(),f xg x的值域,然后利用函数()f x的值域是函数()g x值域的子集,列出不等式,求得结果.详解:由条件可知函数()f x的值域是函数()g x值域的子集,当11,24x⎡⎤∈⎢⎥⎣⎦时,()[]1,2f x a a∈-++,当[]21,2x∈-时,()[]1,3g x∈-,所以1123a a -+≥-⎧⎨+≤⎩ ,解得01a ≤≤,故填:[]0,1. 点睛:本题考查函数中多元变量任意存在的问题,一般来说都转化为子集问题,若是任意1x D ∈,存在2x E ∈,满足()()12f x g x >,即转化为()()min min f x g x >,若是任意1x D ∈,任意2x E ∈,满足()()12f x g x >,即转化为()()min max f x g x >,本题意在考查转化与化归的能力.14.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为: 解析:[)5,+∞【解析】 【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可. 【详解】当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+, 当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+, 且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-, 且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++, 且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥,故实数m 的取值范围为[)5,+∞ 故答案为:[)5,+∞ 【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.15.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与解析:1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即210,a a a --==(舍去),或a = 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2. 【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.16.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦.故答案为:310,23⎛⎤⎥⎝⎦.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.17.【解析】因为所以所以故填【解析】因为35mnk ==,所以3log m k =,5log n k =,11lg5lg3lg152lg lg lg m n k k k+=+==,所以1lg lg152k ==k =18.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+Q 为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.19.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解解析:2或12【解析】 【分析】 将函数化为()2()26x f x a =+-,分01a <<和1a >两种情况讨论()f x 在区间[]1,1-上的最大值,进而求a . 【详解】()242x x f x a a =+-()226x a =+-, 11x -≤≤Q ,01a ∴<<时,1x a a a -<<,()f x 最大值为()21(1)2610f a --=+-=,解得12a =1a >时,1x a a a -≤≤,()f x 最大值为()2(1)2610f a =+-=,解得2a =,故答案为:12或2. 【点睛】本题考查已知函数最值求参,答题时需要结合指数函数与二次函数性质求解.20.【解析】试题分析:设因为因此【考点】指数运算对数运算【易错点睛】在解方程时要注意若没注意到方程的根有两个由于增根导致错误 解析:42【解析】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒== 【考点】指数运算,对数运算. 【易错点睛】在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误 三、解答题21.(1)证明见详解;(2)函数()f x 在R 上单调递,证明见详解;(3)(1,1)- 【解析】 【分析】(1)判断()f x 的定义域,用奇函数的定义证明可得答案;(2)判断()f x 在R 上单调递增,用函数单调性的定义证明可得答案;(2)由312()13131x x xf x -==-++,可得30x >,可得231x +及231x -+的取值范围,可得()f x 的值域.【详解】证明:(1)易得函数()f x 的定义域为R ,关于原点对称,且3113()()3131x xx x f x f x -----===-++,故()f x 为奇函数;(2)函数()f x 在R 上单调递增,理由如下:在R 中任取12x x <,则1233x x -<0,131x +>0,231x +>0,可得1212121212123131222(33)()()(1)(1)31313131(31)(31)x x x x x x x x x x f x f x ----=-=---=++++++<0 故12()()0f x f x -<,函数()f x 在R 上单调递增;(3)由312()13131x x x f x -==-++,易得30x >,311x +>,故231x +0<<2,231x +-2<-<0,故2131x -+-1<<1, 故()f x 的值域为(1,1)-.【点睛】本题主要考查函数单调性及奇偶性的判断与证明及求解函数的值域,综合性大,属于中档题.22.(1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)[]1,2a ∈ 【解析】 【分析】(1)首先求得[]()1,3,,3A B ==-∞,由此求得,A B A B ⋂⋃的值.(2)(),1R C C a a =+,由于()[],11,3a a +⊆,故113a a ≥⎧⎨+≤⎩,解得[]1,2a ∈.【详解】解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)∵{}|1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+,∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.23.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】 【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值. 【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值, 当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去; 当()23f =时,解得1m =,此时3为最大值,符合题意. 综上所述,1m =. 【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型. 24.(1)见解析(2)51,3⎛⎫ ⎪⎝⎭【解析】 【分析】(1)先判定函数的单调性,结合单调性来进行求解()f x 是否存在最小值;(2)先判断函数的奇偶性及单调性,结合奇偶性和单调性把()()2430f x f x -+-≥进行转化求解. 【详解】(1)由101xx ->+可得1010x x ->⎧⎨+>⎩或1010x x -<⎧⎨+<⎩,解得11x -<<,即函数()f x 的定义域为()1,1-,设1211x x -<<<,则()()()211212122111111x x x x x x x x ----=++++,∵1211x x -<<<,∴210x x ->,()()12110x x ++>,∴12121111x x x x -->++, ①当1a >时()()12f x f x >,则()f x 在()1,1-上是减函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 有最小值,且最小值为()1log 1atf t t-=+; ②当01a <<时,()()12f x f x <,则()f x 在()1,1-上是增函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 无最小值.(2)由于()f x 的定义域为()1,1-,定义域关于原点对称,且()()111log log 11a a x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭,所以函数()f x 为奇函数.由(1)可知,当1a >时,函数()f x 为减函数,由此,不等式()()2430f x f x -+-≥等价于()()234f x f x -≥-,即有2341211431x x x x -≤-⎧⎪-<-<⎨⎪-<-<⎩,解得513x <<,所以x 的取值范围是51,3⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查函数性质的综合应用,奇偶性和单调性常结合求解抽象不等式问题,注意不要忽视了函数定义域,侧重考查数学抽象和逻辑推理的核心素养. 25.(1)722⎛⎤ ⎥⎝⎦,; (2)342p p -或. 【解析】 【分析】由题意可得{}213B x p x p =-≤≤+,(1)当12p =时,结合交集的定义计算交集即可; (2)由题意可知B A ⊆.分类讨论B =∅和B ≠∅两种情况即可求得实数p 的取值范围.【详解】因为{}213U B x x p x p =-+,或ð, 所以(){}213UUB B x p x p ==-≤≤+痧,(1)当12p =时,702B ⎡⎤=⎢⎥⎣⎦,,所以7=22A B ⎛⎤⋂ ⎥⎝⎦,, (2)当A B B ⋂=时,可得B A ⊆.当B =∅时,2p -1>p +3,解得p >4,满足题意;当B ≠∅时,应满足21331p p p -≤+⎧⎨+<-⎩或213212p p p -≤+⎧⎨->⎩ 解得44p p ≤⎧⎨<-⎩或432p p ≤⎧⎪⎨>⎪⎩; 即4p <-或342p <≤.综上,实数p 的取值范围342p p -或. 【点睛】本题主要考查交集的定义,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.26.(1){}23x x <<(2)()2,+∞ 【解析】 【分析】(1)先化简集合B ,再根据集合的交并补运算求解即可;(2)函数()lg(2)f x x a =+定义域对应集合可化简为2a C x x ⎧⎫=>-⎨⎬⎩⎭,又A C ⊆,故由包含关系建立不等式即可求解; 【详解】(1)由题知,{}2B x x =≤,{}2U C B x x ∴=>{}13A x x =-≤<Q(){}23UA CB x x ∴⋂=<<(2)函数()lg(2)f x x a =+的定义域为集合2a C x x ⎧⎫=>-⎨⎬⎩⎭,A C ⊆Q ,12a∴-<-, 2a ∴>.故实数a 的取值范围为()2,+∞. 【点睛】本题考查集合的交并补的混合运算,由集合的包含关系求参数范围,属于基础题。

2020-2021学年广东省广州二中应元学校九年级(下)开学数学试卷(含参考答案与试题解析)

2020-2021学年广东省广州二中应元学校九年级(下)开学数学试卷(含参考答案与试题解析)
第 4页(共 31页)
甲口罩每袋的进价为 22.2 元,乙口罩每袋的进价为 17.8 元,要使药店获利最大,应该购 进甲、乙两种口罩各多少袋,并求出最大利润. 22.(8 分)如图,已知一次函数 y=﹣ x+4 的图象分别与 x 轴,y 轴交于点 A,B,且与双 曲线 y= (k 为常数,k≠0)在第二象限内交于点 C,作 CD⊥x 轴于点 D,若 OD= OB. (1)求线段 OA、OB 的长度. (2)求双曲线的解析式. (3)直接写出不等式 x+ >4 的解集.
C. 3.(3 分)不等式组
D. 的解集在数轴上正确表示的是( )
A. B. C.
D. 4.(3 分)如果两个相似三角形的面积之比为 9:4,那么这两个三角形的周长之比为( )
A.81:16
B.27:12
C.9:4
D.3:2
5.(3 分)下列说法正确的是( )
A.为了解三名学生的视力情况,采用抽样调查
AD=3,CD=9,则 AE 的长为 .
14.(3 分)如图,正方形 ABCD 内接于⊙O,点 P 是 上的一点,则∠CPD 的度数是
度.
15.(3 分)已知二次函数 y=﹣(x+k)2+h,当 x>﹣2 时,y 随 x 的增大而减小,则 k 的取
值范围是

16.(3 分)如图,正方形 ABCD 中,AB=2,点 E 为 BC 中点,以 AD 为直径的半圆交线段 DE 于点 F,连接 BF 交 CD 于点 G.下列结论: ①BF=2;
11.(3 分)某公司年产值为 3020000 元,3020000 用科学记数法表示为

12.(3 分)方程 2x2=x 的根是

13.(3 分)如图,在矩形 ABCD 中,按以下步骤作图:①分别以点 A 和点 C 为圆心,以大

2020-2021广州二中应元学校高三数学下期末试卷附答案

2020-2021广州二中应元学校高三数学下期末试卷附答案

2020-2021广州二中应元学校高三数学下期末试卷附答案一、选择题1.()22x xe ef x x x --=+-的部分图象大致是( ) A . B .C .D .2.命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<0 3.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .4.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .195.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i 6.在下列区间中,函数()43x f x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭7.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112D .25248.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30°C .45︒D .15︒ 9.若,αβv v 是一组基底,向量γv =x αu v +y βu v (x,y ∈R),则称(x,y)为向量γv 在基底αu v ,βu v 下的坐标,现已知向量αu v 在基底p u v =(1,-1), qv =(2,1)下的坐标为(-2,2),则αu v 在另一组基底m u v =(-1,1), n v =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2) 10.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1 B .1 C .2 D .411.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( )A .只能是左端点的函数值()i f xB .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +) D .以上答案均正确 12.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对二、填空题13.设正数,a b 满足21a b +=,则11a b +的最小值为__________. 14.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 15.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.16.计算:1726cos()sin 43ππ-+=_____. 17.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.18.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.19.锐角△ABC 中,若B =2A ,则b a 的取值范围是__________. 20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.22.已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程.(2)当60ABC ∠=︒时,求菱形ABCD 面积的最大值.23.在ABC △中,BC a =,AC b =,已知a ,b 是方程22320x x -+=的两个根,且2cos()1A B +=.(1)求角C 的大小;(2)求AB 的长.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.25.已知函数()ln f x x x =.(1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1x f x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)26.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ;(2)平面//EFG 平面11BDD B .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项.【详解】 由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x -所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项 根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项当x=1.001时,代入()f x 可得()0f x >,排除B 选项所以选A【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题. 2.D解析:D【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0.故选D .3.C解析:C【解析】【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项.故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.考点:三视图.4.D解析:D【解析】掷骰子共有36个结果,而落在圆x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41369=. 故选D 5.C【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C.考点:本题主要考查复数的乘法运算公式. 6.C解析:C【解析】【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43x f x e x =+-在R 上连续单调递增, 且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫ ⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.7.C解析:C【解析】由算法流程图知s =0+12+14+16=1112.选C. 8.C解析:C【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.9.D【解析】【分析】【详解】 由已知αu r =-2p u r +2q r =(-2,2)+(4,2)=(2,4),设αu r =λm u r +μn r =λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得02λμ=⎧⎨=⎩ ∴αu r =0m u r +2n r ,∴αu r 在基底m u r , n r 下的坐标为(0,2).10.C解析:C【解析】【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值.【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tan tan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-, 则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C .【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.11.C解析:C【解析】【分析】【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i fξξ∈ []1,i i x x +),故选C . 12.B解析:B【解析】【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解.【详解】 设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题13.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个解析:3+【解析】21a b Q +=,则1111223+3b a a b a b a b a b +=++=+≥+()()11a b+的最小值为3+点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.14.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1【解析】【详解】化简三角函数的解析式,可得()22311cos cos 44f x x x x x =--=-++=2(cos 1x -+,由[0,]2x π∈,可得cos [0,1]x ∈,当cos x =时,函数()f x 取得最大值1. 15.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性 解析:1(,)9-+∞ 【解析】【分析】【详解】 试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭. 考点:利用导数判断函数的单调性.16.【解析】【分析】利用诱导公式化简题目所给表达式根据特殊角的三角函数值求得运算的结果【详解】依题意原式【点睛】本小题主要考查利用诱导公式化简求值考查特殊角的三角函数值考查化归与转化的数学思想方法属于基【解析】【分析】利用诱导公式化简题目所给表达式,根据特殊角的三角函数值求得运算的结果.【详解】 依题意,原式17π26ππ2πcossin cos 4πsin 8π4343⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭π2πcos sin 432=+=. 【点睛】 本小题主要考查利用诱导公式化简求值,考查特殊角的三角函数值,考查化归与转化的数学思想方法,属于基础题.利用诱导公式化简,首先将题目所给的角,利用诱导公式变为正角,然后转化为较小的角的形式,再利用诱导公式进行化简,化简过程中一定要注意角的三角函数值的符号.17.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2解析:63-【解析】【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列, 所以66(12)6312S --==--,故答案是63-. 点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.18.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答解析:2【解析】【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC= ,再由向量数量积的公式加以计算,可得AB AC ⋅u u u v u u u v 的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt △ACD 中,1AD AB 12==,可得cosA=11,cosA AD AB AC AB AC AB AC AB AC AC AC=∴⋅=⋅=⋅⋅=u u u u v u u u u v u u u u v u u u u v u u u u v u u u v u u u v =2. 故答案为2【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.19.【解析】【分析】【详解】因为为锐角三角形所以所以所以所以所以解析:【解析】【分析】【详解】因为ABC ∆为锐角三角形,所以02202B A A B πππ⎧<=<⎪⎪⎨⎪<--<⎪⎩,所以0463A A πππ⎧<<⎪⎪⎨⎪<<⎪⎩, 所以(,)64A ππ∈,所以sin 2cos sin b B A a A==,所以b a ∈. 20.660【解析】【分析】【详解】第一类先选女男有种这人选人作为队长和副队有种故有种;第二类先选女男有种这人选人作为队长和副队有种故有种根据分类计数原理共有种故答案为解析:660【解析】【分析】【详解】第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2412A =种,故有4012480⨯= 种;第二类,先选2女2男,有226215C C =种,这4人选2人作为队长和副队有2412A =种,故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为660.三、解答题21.(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2 【解析】分析:(1)将1a =代入函数解析式,求得()11f x x x =+--,利用零点分段将解析式化为()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,然后利用分段函数,分情况讨论求得不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭; (2)根据题中所给的()0,1x ∈,其中一个绝对值符号可以去掉,不等式()f x x >可以化为()0,1x ∈时11ax -<,分情况讨论即可求得结果.详解:(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥;若0a >,11ax -<的解集为20x a <<,所以21a ≥,故02a <≤. 综上,a 的取值范围为(]0,2.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.22.(1)20x y ++=(2)【解析】【分析】【详解】Ⅰ)由题意得直线BD 的方程为1y x =+.因为四边形ABCD 为菱形,所以AC BD ⊥.于是可设直线AC 的方程为y x n =-+. 由2234{x y y x n+==-+,得2246340x nx n -+-=. 因为A C ,在椭圆上,所以212640n ∆=-+>,解得n <<. 设A C ,两点坐标分别为1122()()x y x y ,,,,则1232n x x +=,212344n x x -=,11y x n =-+,22y x n =-+. 所以122n y y +=. 所以AC 的中点坐标为344n n ⎛⎫ ⎪⎝⎭,. 由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n =+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=.(Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=o , 所以AB BC CA ==.所以菱形ABCD 的面积2S AC =.由(Ⅰ)可得2223162-+==n AC ,所以2(316)433S n n ⎛=-+-<< ⎝⎭,故当0n =时,有max 16==S23.120o C =,c =【解析】试题分析:解:(1)()()1cos cos cos 2C A B A B π⎡⎤=-+=-+=-⎣⎦,所以120C =o(2)由题意得{2a b ab +==∴222222cos 2cos120AB AC BC AC BC C a b ab =+-⋅⋅=+-o=()(2222210a b ab a b ab ++=+-=-=∴AB =考点:本题考查余弦定理,三角函数的诱导公式的应用点评:解决本题的关键是用一元二次方程根与系数之间关系结合余弦定理来解决问题24.(1)3x +y +2=0;(2)(x -2)2+y 2=8.【解析】【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求.【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩, ∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |=()()22200222-++=. ∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8.【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.25.(1)见解析;(2)见证明【解析】【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为证e x ﹣x 2﹣xlnx ﹣1>0,根据xlnx ≤x (x ﹣1),问题转化为只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),根据函数的单调性证明即可.【详解】(1)()()21ln 1(0)f x x g x x x x x x =-=->,()22ln 'x g x x -=,当()20,x e ∈,()'0g x >,当()2,x e ∈+∞,()'0g x <,()g x ∴在()20,e 上递增,在()2,e +∞上递减,()g x ∴在2x e =取得极大值,极大值为21e,无极大值. (2)要证f (x )+1<e x ﹣x 2.即证e x ﹣x 2﹣xlnx ﹣1>0,先证明lnx ≤x ﹣1,取h (x )=lnx ﹣x+1,则h ′(x )=,易知h (x )在(0,1)递增,在(1,+∞)递减,故h (x )≤h (1)=0,即lnx ≤x ﹣1,当且仅当x =1时取“=”,故xlnx ≤x (x ﹣1),e x ﹣x 2﹣xlnx ≥e x ﹣2x 2+x ﹣1,故只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),则k ′(x )=e x ﹣4x+1,令F (x )=k ′(x ),则F ′(x )=e x ﹣4,令F ′(x )=0,解得:x =2ln2,∵F ′(x )递增,故x ∈(0,2ln2]时,F ′(x )≤0,F (x )递减,即k ′(x )递减, x ∈(2ln2,+∞)时,F ′(x )>0,F (x )递增,即k ′(x )递增,且k ′(2ln2)=5﹣8ln2<0,k ′(0)=2>0,k ′(2)=e 2﹣8+1>0,由零点存在定理,可知∃x 1∈(0,2ln2),∃x 2∈(2ln2,2),使得k ′(x 1)=k ′(x 2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1,k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立.【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题.26.(1)证明见解析(2)证明见解析【解析】【分析】(1)结合几何体,因为,E G 分别是,BC SC 的中点,所以//EG SB .,再利用线面平行的判定定理证明.(2)由,F G 分别是,DC SC 的中点,得//FG SD .由线面平行的判定定理//FG 平面11BDD B .,再由(1)知,再利用面面平行的判定定理证明.【详解】证明:(1)如图,连接SB ,,E G Q 分别是,BC SC 的中点,//EG SB ∴.又SB ⊂Q 平面11,BDD B EG ⊄平面11BDD B ,所以直线//EG 平面11BDD B .(2)连接,,SD F G Q 分别是,DC SC 的中点,//FG SD ∴.又∵SD ⊂平面11,BDD B FG ⊄平面11,BDD B//FG ∴平面11BDD B .又EG ⊂平面,EFG FG ⊂平面,EFG EG FG G ⋂=,∴平面//EFG 平面11BDD B .【点睛】本题主要考查了线面平行,面面平行的判断定定理,还考查了转化化归的能力,属于中档题.。

2020-2021广州市二中应元初三数学上期末试题(含答案)

2020-2021广州市二中应元初三数学上期末试题(含答案)

2020-2021广州市二中应元初三数学上期末试题(含答案)一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023B .2021C .2020D .2019 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( )A .2B .1C .0D .﹣1 3.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 4.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .12 5.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .96.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等8.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C .50°D .65°9.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰10.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)11.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89πC .8-49πD .8-89π 12.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( )A .﹣3B .﹣1C .1D .3二、填空题13.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.14.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.15.已知二次函数,当x _______________时,随的增大而减小. 16.三角形两边长分别是4和2,第三边长是2x 2﹣9x +4=0的一个根,则三角形的周长是_____.17.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.18.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.19.已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:_____.20.如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A=___________°.三、解答题21.关于x的一元二次方程x2﹣2x﹣(n﹣1)=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为取值范围内的最小整数,求此方程的根.22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC 关于原点中心对称的得到△A 1B 1C 1;(2)画出△ABC 关于C 点顺时针旋转90°的△A 2B 2C 2;(3)在(2)的条件下,求出B 点旋转后所形成的弧线长.24.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y (吨)与销售价x (万元)之间的函数关系为y =-x +2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?25.已知抛物线y =x 2-2x -8与x 轴的两个交点为A ,B (A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A.【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4.A解析:A【解析】【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴,∴S扇形ABD=230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键. 5.C解析:C【解析】试题解析:∵m ,n 是方程x 2﹣2x ﹣1=0的两根∴m 2﹣2m=1,n 2﹣2n=1∴7m 2﹣14m=7(m 2﹣2m )=7,3n 2﹣6n=3(n 2﹣2n )=3∵(7m 2﹣14m+a )(3n 2﹣6n ﹣7)=8∴(7+a )×(﹣4)=8∴a=﹣9.故选C .6.B解析:B【解析】【分析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.解析:A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.8.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.9.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.B解析:B【解析】试题解析:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=80°,∴S扇形AEF=280?28 3609ππ=,S△ABC=12AD•BC=12×2×4=4,∴S阴影部分=S△ABC-S扇形AEF=4-89π.12.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.二、填空题13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在解析:213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC222264213BE BC+=+=.故答案是:13【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.15.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质16.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x=12时,12+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=10.故答案为:10.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键. 17.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.18.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n=90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90【解析】【分析】根据弧长公式列式计算,得到答案.【详解】设这个扇形的圆心角为n°,则6180nπ⋅=3π,解得,n=90,故答案为:90.【点睛】考核知识点: 弧长的计算.熟记公式是关键.19.4【解析】【分析】由抛物线开口向上可知a>0再由开口的大小由a的绝对值决定可求得a的取值范围【详解】解:∵抛物线y1=ax2的开口向上∴a>0又∵它的开口比抛物线y2=3x2+2的开口小∴|a|>3解析:4【解析】【分析】由抛物线开口向上可知a>0,再由开口的大小由a的绝对值决定,可求得a的取值范围.【详解】解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意【点睛】本题主要考查二次函数的性质,掌握二次函数的开口大小由a的绝对值决定是解题的关键,即|a|越大,抛物线开口越小.20.35【解析】【分析】【详解】解:∵PC与⊙O相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为35解析:35【解析】【分析】【详解】解:∵PC与⊙O相切,∴∠OCP=90°,∴∠COP=90°-∠P=90°-20°=70°,∵OA=OC,∴∠A=∠ACO,∵∠A+∠ACO=∠COP,∴∠A=35°,故答案为35.三、解答题21.(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.22.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A 1B 1C 即为所求;(2)如图所示:△A 2B 2C 2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.23.(1)图见详解;(2)图见详解;(3)32π. 【解析】【分析】 (1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A 1B 1C 1为所求;(2)如图示,△A 2B 2C 2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1,由题图可知,半径3BC =,根据弧长的公式得:¼2239036320BB p p ´==´. 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键.24.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y (x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w 万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x 2+3x-1.04,令w=0.96,则-x 2+3x-1.04=0.96解得x 1=1,x 2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x 2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w 最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.25.(1)A (-2,0),B (4,0),C (0,-8);(2)S △ABC =24【解析】【分析】(1)令y=0可求得相应方程的两根,从而求得A 、B 的坐标;令x=0,可求得C 点坐标. (2)根据A 、B 、C 三点坐标直接可求得△ABC 的面积.【详解】(1)在y =x 2-2x -8,令0x =,可得8y =-,即C 点坐标为(0,8)C -令0y =,得2280x x =-- 解得122,4x x =-=∵A 在B 的左侧∴(2,0),(4,0)A B -(2)∵(2,0),(4,0),(0,8)A B C --∴6,8AB OC ==S △ABC =12AB OC ⋅=1682⨯⨯=24 【点睛】本题考查了抛物线与坐标轴的交点问题,解题的关键在于求出交点坐标.。

2020-2021广州二中应元学校高二数学上期末试卷附答案

2020-2021广州二中应元学校高二数学上期末试卷附答案

2020-2021广州二中应元学校高二数学上期末试卷附答案一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K > 2.把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)3.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?4.执行如图所示的程序框图,若输入8x =,则输出的y 值为( )A .3B .52C .12D .34-5.执行如图的程序框图,那么输出的S 的值是( )A .﹣1B .12C .2D .1 6.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα7.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19368.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元9.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ) A .5个B .10个C .20个D .45个10.定义运算a b ⊗为执行如图所示的程序框图输出的S 值,则式子π2πtan cos 43⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭的值是A.-1B.1 2C.1D.3 211.如图,在圆心角为直角的扇形OAB中,分别以,OA OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.21π-B.122π-C.2πD.1π12.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次二、填空题13.阅读如图所示的程序框图,若,,,则输出的结果是________.14.如下图,利用随机模拟的方法可以估计图中由曲线y=22x 与两直线x=2及y=0所围成的阴影部分的面积S :①先产生两组0~1的均匀随机数,a=RAND ( ),b=RAND ( );②做变换,令x=2a ,y=2b ;③产生N 个点(x ,y ),并统计落在阴影内的点(x ,y )的个数1N ,已知某同学用计算器做模拟试验结果,当N=1 000时,1N =332,则据此可估计S 的值为____.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为 .17.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________ 18.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.19.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______. 20.已知由样本数据点集合(){},|1,2,3,,i ix y i n =L L ,求得的回归直线方程为1.230.08y x Λ=+ ,且4x =。

广东省2020-2021学年高三数学上学期期末模拟试题2套(含答案)

广东省2020-2021学年高三数学上学期期末模拟试题2套(含答案)

广东省高三数学上册期末模拟试卷含答案注意:本试卷分选择题和非选择题两部分,共150分,考试时间120分钟.1.答卷前,考生填、涂好学校、班级、姓名及座位号。

2.选择题用2B 铅笔作答;非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,并将答题卡交回。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的。

1.集合4|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{}ln 1B x x =<,则 A .A B φ=B .A B A =C .A B A =D .以上都不对2. 复数z 满足z (1﹣i)=|1+i |,则复数z 的共轭复数在复平面内的对应点位于 A .第一象限B .第二象限C .第三象限D .第四象限3. 若p 是真命题,q 是假命题,则 A .p q ∧是真命题 B .p q ∨是假命题 C .p ⌝是真命题D .q ⌝是真命题4.在ABC ∆中,若15,,sin 43b B A π=∠==,则a = A .325 B .335 C .33 D .533 5.下列函数为偶函数的是A .sin y x =B .)ln y x =C . x y e =D .y =6.函数y =sin (2x +3π)•cos (x ﹣6π)+cos (2x +3π)•sin (6π﹣x )的图象的一条对称轴方程是A .x =4π B .x =2π C .x =π D .x =23π 7.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n= A .9B .10C .12D .138.设,x y 满足约束条件202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .[4,1]-B .3[3,]7-C .(,3][1,)-∞-+∞D .[3,1]-9.已知F 1(﹣3,0)、F 2(3,0)是椭圆12=+2ny m x 的两个焦点,P 是椭圆上的点,当32=∠21πPF F 时,△F 1PF 2的面积最大,则有 A .m =12,n =3 B .m =24,n =6C .m =6,n =23D .m =12,n =610.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的,a b 分别为5,2,则输出的n = A .2 B .3 C .4 D .511.在四面体S ﹣ABC 中,SA ⊥平面ABC ,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为 A .11πB .328πC .310πD .340π12.设函数()f x 的定义域为D ,若满足条件:存在[,]a b D ⊆,使()f x 在[,]a b 上的值域为[,]22a b,则称()f x 为“倍缩函数”.若函数t nx x f +1=)(为“倍缩函数”,则实数t 的取值范围是 A .(﹣∞,l n 2﹣1) B .(﹣∞,l n 2﹣1] C .(1﹣l n 2,+∞)D .[1﹣l n 2,+∞)第Ⅱ卷 (非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分。

2020-2021广州市高三数学上期末试题(及答案)

2020-2021广州市高三数学上期末试题(及答案)

是以
4
为周期的周期数列,则 a2018
a45042
a2
1 5
.
故选 A .
【点睛】
本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.
8.A
解析:A
【解析】
试题分析:
log3 an
1 log3 an1 log3 an1 log3 an
1即 log3
an1 an
1 an1 an
D.
3 5
,1 3
12.在等差数列 an 中, Sn 表示 an 的前 n 项和,若 a3 a6 3 ,则 S8 的值为
()
A. 3
B. 8
C.12
D. 24
二、填空题
13.已知实数
,且
,则
的最小值为____
14.已知 lg x lg y 2 ,则 1 1 的最小值是______. xy
A.1033
B.1034
C.2057
D.2058
5.在 ABC 中, a,b, c 是角 A, B,C 的对边, a 2b , cos A 3 ,则 sin B ( ) 5
A. 2 5
B. 3 5
C. 4 5
D. 8 5
6.在 ABC 中,内角 A, B,C 所对的边分别为 a,b, c ,且 a cos B 4c bcos A,则
结合图象,可得 kAC
1, kBC
1 3

所以
பைடு நூலகம்
z
x
y 2
的取值范围为
1,13

故选:A.
【点睛】 本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021广州二中应元学校高三数学上期末试卷附答案一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+ D .若a b <,则a b <2.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4- B .()1,4-C .[]4,1-D .()4,1-3.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .4.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A .223+B 31C .232D 315.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-6.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .37.在ABC V 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a b a+=,则ABC V 的形状一定是( ) A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形8.已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a = A .4B .10C .16D .329.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .2810.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( )A .20B .24C .28D .3211.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6012.在直角梯形ABCD 中,//AB CD ,90ABC ∠=o ,22AB BC CD ==,则cos DAC ∠=( )A .25B.5 C .310D .10 二、填空题13.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.14.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升; 15.如图,在ABC V 中,,43C BC π==时,点D 在边AC 上, AD DB =,DE AB ⊥,E 为垂足若22DE =,则cos A =__________16.已知数列{}n a 的前n 项和为2*()2n S n n n N =+∈,则数列{}n a 的通项公式n a =______.17.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b 是等差数列,且431007e a a ⋅=,则121009b b b +++=L ________.18.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a =g ,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式112020|1|13n nT a -->成立的最大正整数n 的值是__________.19.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = . 20.若log 41,a b =-则+a b 的最小值为_________.三、解答题21.如图,在四边形ABCD 中,7,2,AC CD AD ==2.3ADC π∠=(1)求CAD ∠的正弦值;(2)若2BAC CAD ∠=∠,且△ABC 的面积是△ACD 面积的4倍,求AB 的长. 22.已知等比数列{a n }的前n 项和为S n ,a 114=,公比q >0,S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求{a n }; (2)设b n ()()22212n n n n c n b b log a +==+,,求数列{c n }的前n 项和T n .23.已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足22sin 1cos A C B =-.(1)若2a =,22c =b ; (2)若14sin 4B =,3a =b . 24.已知函数()11f x x x =-++. (1)解不等式()2f x ≤;(2)设函数()f x 的最小值为m ,若a ,b 均为正数,且14m a b+=,求+a b 的最小值.25.设递增等比数列{a n }的前n 项和为S n ,且a 2=3,S 3=13,数列{b n }满足b 1=a 1,点P (b n ,b n +1)在直线x ﹣y +2=0上,n ∈N *. (1)求数列{a n },{b n }的通项公式; (2)设c n nnb a =,求数列{c n }的前n 项和T n . 26.已知等差数列{}n a 的前n 项和为n S ,且24220a a -=,3128S a -=.(1)求数列{}n a 的通项公式;(2)当n 为何值时,数列{}n a 的前n 项和最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0≤<,由不等式的平方法则,22<,即a b <.选D.2.B解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx>424x y y x ∴+≥=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.3.C解析:C【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.4.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.5.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t ++-+-+=='=∴-当t >12时,f (t )递增;当0<t <12时,f (t )递减. 可得t=12处,此时f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.6.B解析:B 【解析】 【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S qq---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.7.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a b a+=得到sin cos sin A C B =,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC V 的形状. 【详解】22cos 2a baC +=Q 1cos sin sin 22sin C A BA ++\=化简得sin cos sin A C B = ()B A C p =-+Qsin cos sin()A C A C \=+即cos sin 0A C =sin 0C ≠Qcos 0A ∴=即0A = 90ABC ∴V 是直角三角形 故选A 【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.8.C解析:C 【解析】由64S S -=6546a a a +=得,()22460,60q q a q q +-=+-=,解得2q =,从而3522=28=16a a =⋅⨯,故选C.9.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质10.A解析:A 【解析】分析:由已知条件构造基本不等式模型()()224x y x y +=+++-即可得出. 详解:,x y Q 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116()[(2)(2)]422x y x y =++++-++ 22226(2)46(22)4202222y x y x x y x y ++++=++-≥+⋅-=++++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20. 故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.11.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.12.C解析:C 【解析】 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=, 在Rt ADE ∆中,222AD AE DE =+=225AC AB BC +在ACD ∆中,由余弦定理得2222310cos 2252AC AD CD DAC AC AD +-∠===⋅⨯⨯, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.二、填空题13.【解析】【分析】由题意可得且即且化简可得由不等式的性质可得的取值范围【详解】解:故有且化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质属于中档题解析:33(0,)(,3)22U【解析】 【分析】由题意可得1q <且0q ≠,即11q -<<且0q ≠,211232a a a =+,化简可得13322a q =+由不等式的性质可得1a 的取值范围. 【详解】解:21123lim()2n n a q a a →∞-=+Q 21123lim 2n a a a →∞∴=+,lim 0nn q →∞= 故有11q -<<且0q ≠,211232a a a =+ 化简可得13322a q =+ 103a ∴<<且132a ≠即133(0,)(,3)22a ∈U故答案为:33(0,)(,3)22U 【点睛】本题考查数列极限以及不等式的性质,属于中档题.14.【解析】试题分析:由题意可知解得所以考点:等差数列通项公式解析:6766【解析】试题分析:由题意可知123417891463,3214a a a a a d a a a a d +++=+=++=+=,解得137,2266a d ==,所以5167466a a d =+=. 考点:等差数列通项公式. 15.【解析】在△ABC 中∵DE ⊥ABDE=∴AD=∴BD=AD=∵AD=BD ∴A=∠ABD ∴∠BDC=∠A+∠ABD=2∠A 在△BCD 中由正弦定理得即整理得cosA=【解析】在△ABC 中,∵DE ⊥AB ,DE=,∴AD, ∴BD =AD=sin A. ∵AD =BD ,∴A =∠ABD , ∴∠BDC =∠A +∠ABD =2∠A , 在△BCD 中,由正弦定理得sin sin BD BCC BDC=∠ ,4sin 2A =,整理得cosA16.【解析】【分析】由当n =1时a1=S1=3当n≥2时an =Sn ﹣Sn ﹣1即可得出【详解】当且时又满足此通项公式则数列的通项公式故答案为:【点睛】本题考查求数列通项公式考查了推理能力与计算能力注意检验 解析:*2)1(n n N +∈【解析】 【分析】由2*2n S n n n N =+∈,,当n =1时,a 1=S 1=3.当n ≥2时,a n =S n ﹣S n ﹣1,即可得出.当2n ≥,且*n N ∈时,()()()2212121n n n a S S n n n n -⎡⎤=-=+--+-⎣⎦ ()2222122n n n n n =+--++- 21n =+,又211123S a ==+=,满足此通项公式,则数列{}n a 的通项公式()*21n a n n N=+∈. 故答案为:()*21n n N+∈【点睛】 本题考查求数列通项公式,考查了推理能力与计算能力,注意检验n=1是否符合,属于中档题.17.2018【解析】【分析】数列{an}{bn}满足bn =lnann∈N*其中{bn}是等差数列可得bn+1﹣bn =lnan+1﹣lnan =ln 常数t 常数et =q >0因此数列{an}为等比数列由可得a1解析:2018【解析】【分析】数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,可得b n +1﹣b n =lna n +1﹣lna n =ln 1n n a a +=常数t .1n na a +=常数e t =q >0,因此数列{a n }为等比数列.由431007e a a ⋅=, 可得a 1a 1009=a 2a 1008431007a a e =⋅==L .再利用对数运算性质即可得出.【详解】解:数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,∴b n +1﹣b n =lna n +1﹣lna n =ln 1n na a +=常数t . ∴1n na a +=常数e t =q >0, 因此数列{a n }为等比数列.且431007e a a ⋅=,∴a 1a 1009=a 2a 1008431007a a e =⋅==L .则b 1+b 2+…+b 1009=ln (a 1a 2…a 1009)==lne 2018=2018.故答案为:2018.【点睛】本题考查了等比数列的通项公式与性质、对数运算性质,考查了推理能力与计算能力,属18.8【解析】【分析】根据求得再求出带入不等式解不等式即可【详解】因为数列为正项的递增等比数列由解得则整理得:使不等式成立的最大整数为故答案为:【点睛】本题主要考查了等比数列的性质和等比数列的求和同时考 解析:8【解析】【分析】根据1524158281a a a a a a +=⎧⎨==⎩,求得15181a a =⎧⎨=⎩,13-=n n a .再求出13(1)3n n T =-,带入不等式112020|1|13n nT a -->,解不等式即可. 【详解】因为数列{}n a 为正项的递增等比数列,由1524158281a a a a a a +=⎧⎨==⎩,解得15181a a =⎧⎨=⎩. 则3q =,13-=n n a .1(1)1323(1)1313n n n T -=⨯=--. 112020|1|13n n T a -->⇒1112020|11|133n n ---->. 整理得:38080n <.使不等式成立的最大整数n 为8.故答案为:8【点睛】本题主要考查了等比数列的性质和等比数列的求和,同时考查了学生的计算能力,属于中档题.19.10【解析】【分析】根据等差数列的前n 项和公式可得结合等差数列的性质即可求得k 的值【详解】因为且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n 项和公式等差数 解析:10【解析】【分析】根据等差数列的前n 项和公式可得70a =,结合等差数列的性质即可求得k 的值.【详解】因为91239S a a a a =+++⋅⋅⋅41234S a a a a =+++,且94S S =所以567890a a a a a ++++=由等差数列性质可知70a =因为40k a a +=所以4770k a a a a +=+=则根据等差数列性质可知477k +=+可得10k =【点睛】本题考查了等差数列的前n 项和公式,等差数列性质的应用,属于基础题.20.1【解析】试题分析:由得所以(当且仅当即时等号成立)所以答案应填1考点:1对数的运算性质;2基本不等式解析:1【解析】试题分析:由log 41,a b =-得104a b =>,所以114a b b b +=+≥=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式.三、解答题21.(1)7(2【解析】【分析】(1)ACD ∆中,设(0)AD x x =>,利用余弦定理得到1x =,再利用正弦定理得到答案.(2)利用面积关系得到sin 4sin .AB BAC AD CAD ⋅∠=⋅∠化简得到cos 2.AB CAD AD ⋅∠=根据(1)中sin 7CAD ∠=解得答案. 【详解】(1)在ACD ∆中,设(0)AD x x =>, 由余弦定理得2227=422cos3x x x x +-⨯⋅π 整理得277x =,解得1x =.所以1, 2.AD CD == 由正弦定理得2sin sin 3DC AC DAC =∠π,解得sin 7DAC ∠= (2)由已知得4ABC ACD S S ∆∆=, 所以11sin 4sin 22AB AC BAC AD AC CAD ⋅⋅∠=⨯⋅⋅∠, 化简得sin 4sin .AB BAC AD CAD ⋅∠=⋅∠所以2sin cos 4sin ,AB CAD CAD AD CAD ⋅∠⋅∠=⋅∠于是cos 2.AB CAD AD ⋅∠=因为sin 7CAD ∠=,且CAD ∠为锐角,所以cos CAD ∠==.代入计算21AB =⨯因此AB =【点睛】本题考查了正弦定理,余弦定理,面积公式,意在考查学生利用正余弦定理解决问题的能力.22.(1)a n 11()2n +=;(2)T n 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【解析】【分析】(1)根据等差中项的性质列方程,并转化为1,a q 的形式,由此求得q 的值,进而求得数列{}n a 的通项公式.(2)利用裂项求和法求得数列{}n c 的前n 项和n T .【详解】(1)由S 1+a 1,S 3+a 3,S 2+a 2成等差数列,可得2(S 3+a 3)=S 2+a 2+S 1+a 1,即有2a 1(1+q +2q 2)=3a 1+2a 1q ,化为4q 2=1,公比q >0,解得q 12=. 则a n 14= ⋅(12)n ﹣111()2n +=; (2)b n 212222111()(2)(1)n n log a log n --===+,c n =(n +2)b n b n +2=(n +2)⋅22221111(1)(3)4(1)(3)n n n n ⎡⎤=-⎢⎥++++⎣⎦, 则前n 项和T n =c 1+c 2+c 3+…+c n ﹣1+c n 14=[22222222221111111111243546(2)(1)(3)n n n n -+-+-++-+-+++L ] 2211111449(2)(3)n n ⎡⎤=+--⎢⎥++⎣⎦ 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【点睛】本小题主要考查等差中项的性质,考查等比数列通项公式的基本量计算,考查裂项求和法,属于中档题.23.(1)b =2)b =【解析】【分析】(12b =,根据已知可求b 的值.(2)利用同角三角函数基本关系式可求cos B ,由余弦定理可得222a c ac =+-,根据已知可求c ,进而可求b 的值. 【详解】(1)Q 22sin 1cos sin A C B B =-=.∴2b =,2a =Q ,c =b ∴=(2)sin 4B =Q ,cos 4B ∴=,∴由余弦定理2222cos b a c ac B =+-222a c ac =+-,又a =c =2b ∴=经检验,b【点睛】本题考查正弦定理,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查计算能力和转化思想,属于基础题.24.(Ⅰ)[]1,1-; (Ⅱ)92. 【解析】【分析】 (Ⅰ)分段去绝对值求解不等式即可;(Ⅱ)由绝对值三角不等式可得2m =,再由()122a b a b a b ⎛⎫+=++⎪⎝⎭,展开利用基本不等式求解即可.【详解】 (Ⅰ)Q ()2121121x x f x x x x -≤-⎧⎪=-<≤⎨⎪>⎩,,, ∴ 122x x ≤-⎧⎨-≤⎩ 或 1122x -<≤⎧⎨≤⎩ 或 122x x >⎧⎨≤⎩∴ 11x -≤≤,∴不等式解集为[]1,1-.(Ⅱ) Q ()()11112x x x x -++≥--+=,∴ 2m =, 又142a b+=,0,0a b >>, ∴1212a b +=,∴ ()125259222222a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当1422a b b a ⎧+=⎪⎨⎪=⎩即323a b ⎧=⎪⎨⎪=⎩时取等号,所以()min 92a b +=. 【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.25.(1)a n =3n ﹣1,b n =2n ﹣1(2)T n =3﹣(n +1)•(13)n ﹣1 【解析】【分析】(1)利用基本量法求解n a ,再代入()1,n n P b b +到直线20x y -+=可得{}n b 为等差数列,再进行通项公式求解即可.(2)利用错位相减求和即可.【详解】(1)递增等比数列{a n }的公比设为q ,前n 项和为S n ,且a 2=3,S 3=13,可得a 1q =3,a 1+a 1q +a 1q 2=13,解得q =3或q 13=, 由等比数列递增,可得q =3,a 1=1,则13-=n n a ;P (b n ,b n +1)在直线x ﹣y +2=0上,可得b n +1﹣b n =2,且b 1=a 1=1,则b n =1+2(n ﹣1)=2n ﹣1;(2)c n n n b a ==(2n ﹣1)•(13)n ﹣1, 前n 项和T n =1•1+3•13+5•19++L (2n ﹣1)•(13)n ﹣1, 13T n =1•13+3•19+5•127++L (2n ﹣1)•(13)n , 相减可得23T n =1+2(1139+++L (13)n ﹣1)﹣(2n ﹣1)•(13)n =1+2•111133113n -⎛⎫- ⎪⎝⎭--(2n ﹣1)•(13)n , 化简可得T n =3﹣(n +1)•(13)n ﹣1. 【点睛】本题主要考查了等比等差数列的通项公式求解以及错位相减的求和方法,属于中档题.26.(1)203n a n =-;(2)当6n =时,数列{}n a 的前n 项和最大.【解析】【分析】(1)设等差数列{}n a 的公差为d ,由24220,a a -=3128S a -=.利用通项公式可得()()112320a d a d +-+=,113328a d a +-=,解方程组即得. (2)令0n a ≥,解得n .【详解】解:(1)设等差数列{}n a 的公差为d ,24220,a a -=Q 3128S a -=.()()112320,a d a d ∴+-+=113328a d a +-=,联立解得:117,a =3d =-.173(1)203n a n n ∴=--=-.(2)令2030n a n =-≥,解得203n ≤. ∴当6n =时,数列{}n a 的前n 项和最大.【点睛】本题考查等差数列的通项公式,考查等差数列的前n项和的最值.解题方法是基本量法,a 确定n值.对前n项和的最大值问题,可通过解不等式0n。

相关文档
最新文档