(完整word版)六年级利润折扣问题
利润和折扣问题Word版

利润和折扣问题知识要点利润问题是一种常见的百分数应用题。
商店出售商品,总是期望获得利润。
一般情况下,商家从厂家购进的价格称为成本(也叫进价),商家在定价的基础上提高价格出售,所赚的钱称之为利润,利润与成本的比称之为利润率,商品的定价由期望的利润率来确定。
商品减价出售时,我们通常称之为打折出售或打折扣出售,几折就是原来的十分之几。
解答利润和折扣问题的应用题,要注意结合生活实际,理解成本、定价、利润、折扣之间的数量关系。
将此类题转化成分数应用题解答,也可根据数量间的相等关系列方程解答。
解答时要理解与掌握下列数量关系:1.利润率=﹙售价-成本﹚÷成本×100%2.售价=成本×﹙1+利润率﹚3.售价=原价×折扣4.定价=成本×﹙1+期望的利润率﹚﹙利润率也称利润百分数,售价也称卖价﹚5.商品销售的毛利率=(销售价-进货价)÷销售价×100%典例解析及同步练习典例1 某商品按定价的80%出售,仍能获得20%的利润。
定价时期望的利润百分数是多少? 解析:求利润的百分数就是求获得的利润占成本的百分之几,因此应该用﹙卖价-成本﹚÷成本,即∶卖价-成本成本=利润的百分数,要求利润的百分数是多少,必须知道商品原来的成本和实际卖价各是多少。
假设定价为1,因为商品实际按定价的80%出售,因此实际卖价就应该是1×80%=0.8。
根据题意,按定价的80%出售后,仍能获得20%的利润,也就是“成本×﹙1+20%﹚=卖价”,因为实际卖价是0.8,所以用0.8÷﹙1+20%﹚就可以求出成本。
当卖价和成本都求出后,就可以求出定价时期望的利润百分数是多少了。
解:设定价为“1”。
商品的实际卖价为:1×80%=0.8商品的成本为:0.8÷﹙1+20%﹚=23定价时期望的利润百分数为:﹙1-23 ﹚÷23=50% 答:定价时期望的利润百分数是50%。
(完整word版)小学数学六年级上册利润问题专项练习分析与解答

利润问题专项练习分析与解答1.小A 以5元/千克购进十千克苹果, 以7元/千克卖出, 赚了多少元? 分析: 基本数量关系为售价-进价(成本)=利润(赚的钱)解答: (7-5)×10=20(元)2.小明在书店花12元买了一本打八折的书, 这样节省了多少元?分析:12元为现价, 根据现价÷折扣=原价, 可以求出原价, 再求和现价的差。
解答: 12÷80%-12=15-12=3(元)3.、一件标价为600元的商品, 八折出售后, 仍赚20元, 这件商品的成本是多少元?分析:600元为售价, 基本数量关系式:折后售价-利润=成本解答: 600×80%-20=480-20=460(元)4.某商场有两件进价不同的上衣均卖了80元, 一件盈利60%, 另一件亏本20%, 这次买卖中商家赢或亏了多少元?分析: 售价÷售价的分率=单元1(成本)解答: 80÷(1+60%)=50(元)—成本180÷(1-20%)=100(元)—成本250+100=150(元)—成本和80+80=160(元)——售价和160-150=10(元), 赢了10元5.某商品按20%的利润定价, 然后按定价的80%出售, 这样就亏损了64元, 这种商品的成本是多少元?分析: 亏损的钱数÷亏损的分率=单位1(成本)解答: 1×(1+20%)×80%=96%—现在的定价占成本的百分之九十六 64÷(1-96%)=1600(元)6.商店以每个56元的价格购进一批篮球, 然后以每个72元卖出, 当卖出 时, 不仅收回了成本, 还获利480元, 这批篮球共多少个?分析:采用方程思路, 一共的成本+480元=全部5/6个数的售价解答: 解设这批篮球一共x 个 56x+480=65x*72 x=120 7、一家商店将彩电先按原售价提高40%, 然后在广告中宣称, 大酬宾8折优惠。
最新整理六年级数学教案2017小升初数学知识点:利润与折扣问题公式.docx

最新整理六年级数学教案2017小升初数学知识点:利润与折扣问题公式2017小升初数学知识点:利润与折扣问题公式工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。
期望利润=成本价×期望利润率。
利润与折扣公式:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣〈1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)[经典例题]例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B 级)解:定价是进价的1+35%打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121.5%-1)=1200(元)答:每台DVD的进价是1200元例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)是乙店的定价(1-10%)×(1+20%)是甲店的定价(1+15%)-(1-10%)×(1+20%)=7%11.2÷7%=160(元)160×(1-10%)=144(元)答:甲店的进货价为144元。
(完整word版)利润问题简单+难

经济利润问题一般的经济利润问题一、经济问题的有关概念(一)商品利润、折扣问题商品利润问题是小升初考试的常考题型,解决利润问题,首先要明白商品利润问题里的几个量:成本、定价、利润率、打折、成数,根据这几个量的相互关系,分析商品前后的价格变化,解决问题。
成本:商品的买人价,也称作进价、成本价;售价:商品卖给买家时的价钱,也称零售价、卖出价;利润:商品卖出后商家赚到的钱。
商家出售商品,总是期望获得利润。
例如:一台电视机进价(成本)为500 元,以700元卖出,获得的利润就是700 –500= 200 元。
通常利润可以用百分数来表示,200÷500x100%=40%,我们也可以说获得40%的利润。
因此,成本、售价、利润之间的关系为:利润=售价—成本=成本X利润率利润率=售价=成本X(1+利润率)=成本+利润定价=(1+期望利润率)X成本定价(标价)过高商品可能卖不掉,甚至亏本,这时只有降低利润,减价出售,这就是我们平常所看到的“打折”,打折也可用百分数来表示。
如减价10 %,也就是按照标价的1—10% =90%出售,通常称为9折。
因此:卖价=定价X折扣的百分数成本、定价、售价之间的关系如图2 -5 -1所示:(二)利息问题:利息=本金×利率×时间二、简单的经济利润问题(直接运用公式求解即可)(一)常见的商品利润问题例题1:一件衣服的进价为40元,售价为80元,利润是多少元?利润率是多少?分析:利润=售价—成本= 80—40= 40 元;利润率答:利润为40 元。
利润率为100%。
变型1:一件衣服的进价为40元,若要利润率是20%,应把售价定为多少元?变型2:一件衣服进价为40 元,标价为80元,商店要求利润不低于20%,最低可以打几折出售该商品?练习:1.一件衣服的售价为1100 元,利润率为10%,则这件衣服的进价为多少元?卖这件衣服获得了多少利润?2.某商品的进价是500元,标价为725元,商店要求以利润不低于16%的售价打折出售,则售货员最低可以打几折出售此商比商品?例题2:某种书包成本价为50元,某商家按照50%的利润率进行标价。
利润折扣问题

六年级数学下册百分数——利息利润问题知识点一、利润问题:1、成本:我们购买一件产品的买入价叫做件商品的成本,商品的成本一般是一个不变的量,比如一批杯子,进货价是10元/个,这就是商品的成本。
2、销售价(卖出价):当我们进入某种产品后,又以某个价格卖掉这种产品,这个价格就叫做销售价(卖出价),这个量是一个经常变化的量,我们经常所说的“八折销售”、“打多少折扣”,通常都说明销售价格是在不断变化的。
3、利润:商品的销售价减去成本即得到商品的利润,比如一批杯子,进货价是10元/个,当商家以15元/ 个的价格卖出时,即可获得15元-10元=5元的利润。
4、利润率:利润和成本的比,我们叫做商品的利润率。
比如一批杯子,进货价是10元/个,以15元/个的价格卖出时,获得5元的利润,此时的利润率为5÷10=50%。
公式:利润=卖价-成本利润率=利润÷成本×100%利润=成本×利润率定价(原价)=成本×(1+利润率)现价=定价×折扣成本=现价÷折扣÷(1+利润率)例题1:1.某商品买入价(成本)是50元,以70元售出,获得利润的百分数是多少?2.某商品成本是50元,按40%利润出售,这件商品的售价是多少元?3.某商品按40%利润出售,售价是70元,这件商品的成本是多少元?例题2:某商店同时卖出两件商品,每件各得3000元,其中一件盈利20%,另一件亏损20%。
问:结果是盈利还是亏损,或是不亏不盈?例题2:爸爸看好一款手机在甲店和乙店售价均为3400元,甲店“满169元减19元”,乙店“折上折”,就是先打九折,在此基础上再打九五折,在哪个店买这款手机便宜些?例题3:某商店按成本的20%来确定定价,后要按定价打九折出售,仍能获得25.6元的利润,这种商品的成本是多少元?例题4:一种彩电,如果减少定价的10%出售,可盈利215元,如果减少定价的20%出售,就亏本125元。
小学的数学利润与折扣问题

利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣〈1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)利润=成本×利润率在利润问题里,如果题目没有特指的话,一般是以成本为单位“1”的例如:现在有100太冰箱,每台售价是1500元,这样每一台冰箱可获得利润25%,问利润是多少?利润25%指的是利润率,那么每台售价就是成本的:1+25%=125%每台成本就是:1500÷125%=1200(元)每台的利润是:1500-1200=300(元) 或1200×25%=300(元)总利润就是:300×100=30000(元)[专题介绍]工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。
期望利润=成本价×期望利润率。
[经典例题]例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)解:定价是进价的1+35%打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121.5%-1)=1200(元)答:每台DVD的进价是1200元例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)是乙店的定价(1-10%)×(1+20%)是甲店的定价(1+15%)-(1-10%)×(1+20%)=7%11.2÷7%=160(元)160×(1-10%)=144(元)答:甲店的进货价为144元。
六年级利润和折扣的应用题

六年级数学折扣练习题1、某商品按每个7元的利润卖出13个的钱,与按每个11元的利润卖出12个的钱一样多。
这种商品的进货价是每个多少元?2、租用仓库堆放3吨货物,每月租金7000元。
这些货物原计划要销售3个月,由于降低了价格,结果2个月就销售完了,由于节省了租仓库的租金,所以结算下来,反而比原计划多赚了1000元。
问:每千克货物的价格降低了多少元?3、张先生向商店订购了每件定价100元的`某种商品80件。
张先生对商店经理说:“如果你肯减价,那么每减价1元,我就多订购4件。
”商店经理算了一下,若减价5%,则由于张先生多订购,获得的利润反而比原来多100元。
问:这种商品的成本是多少元?4、某商店到苹果产地去收购苹果,收购价为每千克1.20元。
从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。
如果在运输及销售过程中的损耗是10%,商店要想实现25%的利润率,零售价应是每千克多少元?5、小明到商店买了相同数量的红球和白球,红球原价2元3个,白球原价3元5个。
新年优惠,两种球都按1元2个卖,结果小明少花了8元钱。
问:小明共买了多少个球?6、某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。
甲种贷款年利率为12%,乙种贷款年利率为14%。
该厂申请甲、乙两种贷款的金额各是多少?7、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出1 5支的利润相同。
这批钢笔的进货价每支多少元?8、某种蜜瓜大量上市,这几天的价格每天都是前一天的80%。
妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。
若这10个蜜瓜都在第三天买,则能少花多少钱?9、商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。
问:这批凉鞋共多少双?10、体育用品商店用3000元购进50个足球和40个篮球。
零售时足球加价9%,篮球加价11%,全部卖出后获利润298元。
六年级利润折扣问题(2021年整理)

(完整word版)六年级利润折扣问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)六年级利润折扣问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)六年级利润折扣问题(word版可编辑修改)的全部内容。
百分数应用题五种基本题型:方法:1、找准单位“1",作除数;2、求出比较量与标准量间的差,作被除数;3、结果要化成百分数.①a 是b 的百分之几?a ÷b ×100% 方法:标准量(单位“1”)是除数。
注意“是" ②a 的x %是多少? a ·x % ;③某数的x%是a,求这个数?a ÷x% 方法:标准量已知用乘法;标准量未知用除法。
④a 比b 多百分之几? 提示:A 。
补充完整“a比b多了的数量是b 的百分之几”。
B 。
分两步算:先算多(或少)的部分,用多(或少)出来的部分除以单位“1”。
或者先求出一个数是另一个数的百分之几,然后再跟单位“1”(即另一个数)比较大小。
(a-b )÷b ×100%; a 比b 少百分之几?(b — a)÷b ×100% 点睛之笔:a 比b 多n1,就是b 比a 少11 n⑤a增加x%后是多少?a×(1+x%);a减少x%后是多少?a×(1—x%)某数增加x%后是a,求这个数?a÷(1+x%);某数减少x%后是a,求这个数?a÷(1-x%)方法:1、找准单位“1”,2、找好“量”与“率”对应关系,3、单位“1”已知用乘法,未知用除法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百分数应用题
方法:1、找准单位“1”,作除数;2、求出比较量与标准量间的差,作被除数;3、结果要化成百分数。
①a 是b 的百分之几?a ÷b ×100% 方法:标准量(单位“1”)是除数。
注意“是”
②a 的x%是多少? a ·
x% ;
③某数的x%是
a ,求这个数?a ÷x% 方法:标准量已知用乘法;标准量未知用除法。
④a 比b 多百分之几? 提示:
A.补充完整“a 比b 多了的数量是b 的百分之几”.
B.分两步算:先算多(或少)的部分,用多(或少)出来的部分除以单位“1”。
或者先求出一个数是另一个数的百分之几,然后再跟单位“1”(即另一个数)比较大小。
(a-b )÷b ×100%; a 比b 少百分之几?(b - a )÷b ×100%
点睛之笔:a 比b 多n 1,就是b 比a 少1
1
n
⑤a 增加x%后是多少?a ×(1+x%);
a减少x%后是多少?a×(1-x%)
某数增加x%后是a,求这个数?a÷(1+x%);
某数减少x%后是a,求这个数?a÷(1-x%)
方法:1、找准单位“1”,2、找好“量”与“率”对应关系,3、单位“1”已知用乘法,未知用除法。
1加工一种零件,现在每天加工1500个,比过去每天多加工300个,现在每天加工的零件个数比过去增加百分之几?
2.某小学今年计划用水250吨,比去年节约用水30吨,今年计划用水相当于去年用水的百分之几?
3.学校图书室原有图书1400册,今年图书册数增加了12%。
现在图书室有多少册图书?
4、一辆汽车从甲地开往乙地,已经行了全程的40%,再行20千米,就正好行了
全程的一半。
甲乙两地相距多少千米?
2.求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率3、折扣折扣、打折的意义:就是求原价的百分之几是多少。
几折就是十分之几也就是百分之几十
九五折=95% 九折=90% 八五折=85% 八折=80% 七折=70%
原价×折扣=现价现价÷折扣=原价现价÷原价=折扣
先提价a%,再降价a%(降价时单位1变大),现价比原价低; 先降价a%,再提价a%(提价时单位1变小),现价比原价低。
商品的出售
①利润率=(卖价-成本)÷成本×100%; ②卖价=成本×(1+利润率); ③成本=卖价÷(1+利润率).
④定价=成本×(1+期望的利润率) ⑤卖价=定价×折扣的百分数.; ⑥
利润率成本
成本
折数标价=⨯-⨯%100
1.生产厂家为感谢广大顾客对产品的厚爱,特开展“买四赠一”大酬宾活动,生产厂家的做法优惠了百分之几?
2、某商店同时卖出两件商品,每件各得30元,其中一件盈利20%,另一件亏本20%。
这个商店卖出这两件商品总体上是盈利还是亏本?具体是多少?
3、商场做饮料促销活动,只要搜集到这种3个饮料瓶盖就可以换1瓶饮料。
小红收集了18个瓶盖,最多可以换 瓶饮料。
(灵活处理)
5、某种商品的价格为1000元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种商品的价格是多少?
6、十一黄金周,各大超市都有促销活动。
甲超市以“打八五折”的方式促销,乙超市以满100元送15元购物劵的方式促销,王叔叔计划花掉300元,请你帮助参考一下,在哪家超市购物合算些?
6、 纳税 缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率) (应纳税额)=(总收入)×(税率)
7、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
①利息=本金×利率×时间;
②税后利息=本金×利率×时间×(1-税率)
③本息和=本金+利息;
④利率=利息÷(本金×时间)
注:国债和教育储蓄的利息不纳税
国民纳税问题:
纳税额=应纳税工资(超过1600元的部分)×纳税率
国民保险问题:
应交险费(个人)=保险金额(保险公司)×险率(不同险种险率不同)×时间。