数字信号的频带传输详解
合集下载
第5章-数字信号的频带传输系统说课讲解

第波5形章 数字信号频带传输系统
相对码与绝对码的关系:
an表示绝对码、 bn表示相对码
bn anbn1
第5章 数字信号频带传输系统
cos ct
开关电路
0° e2DPSK (t)
180°移 相
码 变 换 s(t)
bn anbn1
2DPSK信号产生原理图
第5章 数字信号频带传输系统
e2D PS K (t)
在二进制情况下,1对应于载波频率f1, 0对应于载波频率f2。
第5章 数字信号频带传输系统
2FSK信号在形式上如同两个不同频率交替发送的
2ASK信号相叠加,因此已调信号的时域表达式为:
e 2 F S K ( t) [ a n g ( t n T s ) ] c o s1 t [ a n g ( t n T s ) ] c o s2 t
(2) 2ASK信号的解调 方法有两种: 相干解调(同步检测法) 非相干解调(包络检波法)
第5章 数字信号频带传输系统
e2Ask(t)
sAM (t)
2ASK信号的非相干解
调
线性包络检波器
BPF
LED
LPF m0 (t)
AM信号的非相干解调
第5章 数字信号频带传输系统
a
b
e2Ask(t)
c
d
1
1
0
在2ASK中,载波幅度随着调制信号1和0的 取值而在两个状态之间变化。
第5章 数字信号频带传输系统
令二进制数字基带信号为:
s(t)
ang(tnT s),an1 0
概率为P 概率为1-P
n
则 e2ASK(t)s(t)cosct
为双边带调幅信号的时域表达式
频带传输技术

频带传输技术
频带传输的定义
频带传输,有时也称宽带传输,是指将数字信号调制成音频信号后再发送和传输,到达接收端时再把音频信号解调成原来的数字信号。
我们将这种利用模拟信道传输数字信号的方法称为频带传输技术。
是利用模拟信号进行数据传输是一种比较普遍的通信方式。
频带传输将代表二进制数据的“1”和“0”信号,通过调制解调器变成具有一定频带范围的模拟信号进行传输。
典型的例子就是电话电路,其特性是带通型,一般频率范围为300~3400Hz,基带信号不能通过,所以要采取措施把基带信号调制解调到电话电路的频带范围内传输,频带传输可实现远距离的数据通信。
在实现远距离通信时,经常借助于电话线路,此时就需要利用频带传输方式。
采用频带传输时,调制解调器 Modem)是最典型的通信设备,要求在发送和接收端都要安装调制解调器。
《数字频带传输系统》课件

数字频带传输系统的软件实现技术
数字信号处理算法
包括调制解调、信道编码解码、同步算法等,这些算法通过编程实 现,是数字频带传输系统的软件基础。
实时操作系统
为了实现软件的实时性,需要采用实时操作系统(RTOS),它能 够提供多任务管理和任务调度等功能,保证软件的实时性和稳定性 。
软件测试与验证
为了保证软件的正确性和可靠性,需要进行软件测试和验证,包括单 元测试、集成测试和系统测试等。
降低误码率的方法
采用信道编码、差错控制编码等技术来降低误码率, 提高传输的可靠性。
数字频带传输系统的频谱效率分析
01
频谱效率定义
频谱效率是指在一定的带宽内传 输一定速率的数据所需的调制样 值数目。
02
频谱效率与调制方 式的关系
不同的调制方式具有不同的频谱 效率,例如QPSK的频谱效率较 低,而16QAM的频谱效率较高 。
信号的编码与解码
编码
将原始信息转换为二进制代码,以便在数字频带传输系统中传输。常见的编码方 式包括曼彻斯特编码和差分曼彻斯特编码。
解码
将经过编码的二进制代码还原为原始信息,以便在接收端显示或处理。解码过程 与编码过程相反。
信号的同步与去同步
同步
使发送端和接收端的时钟频率保持一致,以确保信号在传输 过程中不会出现失真或错位。同步通常通过提取时钟信号或 使用同步协议实现。
云计算与大数据
数字频带传输系统将为云计算和大数据提供稳定 、高效的数据传输服务,支持大规模数据处理和 分析。
数字频带传输系统的标准化与互通性
01
02
03
国际标准组织
数字频带传输系统将积极 参与国际标准组织的工作 ,推动数字频带传输技术 的标准化和互通性。
数字传输技术

数字信号载波传输
载波S(t) S(t)=Asin(ω t+Φ) S(t)的参量包括:
A:振幅 ω :角频率 Φ:相位
数字调制就是使上述三个参量随数字基带 信号的变化而变化。
最基本的数字数据→模拟信号调制方式有 以下三种(如图2-5所示)。
(1)幅移键控方式(ASK,Amplitude-Shift Keying) (2)频移键控方式(FSK,Frequency-Shift Keying) (3)相移键控方式(PSK,Phase-Shift Keying)
.宽带传输
宽带是指比音频带宽更宽的频带,它包括大部 分电磁波频谱。利用宽带进行的传输称为宽带传 输,这样的系统称为宽带传输系统。宽带传输系 统属于模拟信号传输系统,它能够在同一信道上 进行数字信息或模拟信息服务,宽带传输系统可 以容纳全部广播信号,并可进行高速数据传输。
局域网中,传输方式分基带传输和宽带传输。它们 的区别在于:基带传输的信号主要是数字信号, 宽带传输的是模拟信号;基带传输的数据传输速 率范围为0~10Mb/s,其典型的数据传输速率范 围为1~2.5Mb/s;宽带传输的数据传输速率范围 为0~400Mb/s,通常使用的传输速率是5~ 10Mb/s。一个宽带信道还可以被划分为多个逻辑 基带信道。宽带传输能把声音、图像和数据等信 息综合到一个物理信道上进行传输。宽带传输采 用的是频带传输技术,但频带传输不一定是宽带 传输。
简单说来,就是将数字信号1或0直接用两种 不同的电压来表示,然后送到线路上去传输。 如短距离的脉冲编码调制(PCM)局间中继、 局域网计算机间的数据传送常采用基带传输 方式。
数字信号载波传输
数字信号的频带传输

2、2ASK调制与解调
(a)
开关
载波 发生器
S
e(t)
s(t)
(b()a)
1 图 40-4 AS1K波形1产生器0 框图0
(1) 产生 二进制振幅键控信号的产生方
法(调制方法)有两种,如图4-4所示。 其中,图(a)采用模拟调制方式的 ASK调制方法。相乘器将数字基带信 号(单极性NRZ码)和高频载波相 乘,得到ASK信号;图(b)采用数 字键控方法,由数字基带信号去控制 一个开关电路。当出现1码时开关S闭 合,有高频载波输出;出现0码时开 关S断开,无高频载波输出。
相乘。我们知道二进制NRZ波形的频谱如书上P58图4-6(a)所 示,乘法器可以使信号的频谱搬移到载波的两边,因此可得到 ASK信号的频谱如图4-6(b)所示,从中可以得到一个重要的结 论:ASK信号的频带宽度是基带信号的2倍。
2020/1/4
常州信息职业技术学院 电子系 张立中
12
4.1.1 二进制振幅键控(2ASK)
力较差,它的功率利用率和频带利用率都不高,故在数字通信
中应用得不多,一般都是与具他种调制方式合用。
2020/1/4
常州信息职业技术学院 电子系 张立中
14
4.1.1 二进制振幅键控(2ASK)
书上P58例4-1:假设电话信道具有理想的带通特性,频率范 围为300-3400Hz,试问该信道在单向传输ASK信号时最大的传输 码率为多少?
2020/1/4
常州信息职业技术学院 电子系 张立中
6
4.1.1 二进制振幅键控(2ASK)
4.1.1 二进制振幅键控(2ASK)
4 1、信.号波形
图 4-3 所示是一个ASK
信号波形的例子。正弦载
通信原理第5章数字基带传输系统

s(t)的短截。即
N
sT (t) sn (t)
n N
为了使频谱分析的物理概念清楚,推导过程简 化,将sT(t)分解成稳态波vT(t)和交变波uT(t)。
24
稳态波:是随机序列s(t)的统计平均分量,
取决于每个码元内出现g1(t)、 g2(t)的概率加 权平均,且每个码元统计平均波形相同,因
此可表示成:
13
2. 双极性不归零码波形(BNRZ)
脉冲的正、负电平分别对应于二进制代码1、0。
特点:当0、 1符号等概出现时无直流分量(幅度相 等、极性相反的双极性波形) 。 接收端判决电平为 0,不受信道特性变化的影响,抗干扰能力较强。双 极性波形有利于在信道中传输。
E
10
-E
14
3. 单极性归零波形(RZ)
f
s
Pg1(t) (1 P)g2 (t) e jms d
f s PG1(m s ) (1 P)G2 (ms )
28
式中
G1(ms ) g1(t)e jmstdt
G2 (ms ) g2 (t)e jmstdt
29
把得到的Cm代回v(t)表达式得
v(t) f s PG1(m s ) (1 P)G2 (m s )e jmst
代码
10
0
Ts
12
此波型不宜传输。因为:
1)有直流分量,一般信道难于传输零频附近的 频率分量。 2)收端判决门限电平与信号功率有关,受信道特 性变化影响,不方便。 3)不能直接用来提取位同步信号,因NRZ连0序 列中不含有位同步信号频率成分。 4)要求传输线路有直流传输能力,即有一根需要 接地。
此波形只适用于计算机内部或极近传输。
信道匹配, 便于传输,减小码间串扰,利于同步提取
N
sT (t) sn (t)
n N
为了使频谱分析的物理概念清楚,推导过程简 化,将sT(t)分解成稳态波vT(t)和交变波uT(t)。
24
稳态波:是随机序列s(t)的统计平均分量,
取决于每个码元内出现g1(t)、 g2(t)的概率加 权平均,且每个码元统计平均波形相同,因
此可表示成:
13
2. 双极性不归零码波形(BNRZ)
脉冲的正、负电平分别对应于二进制代码1、0。
特点:当0、 1符号等概出现时无直流分量(幅度相 等、极性相反的双极性波形) 。 接收端判决电平为 0,不受信道特性变化的影响,抗干扰能力较强。双 极性波形有利于在信道中传输。
E
10
-E
14
3. 单极性归零波形(RZ)
f
s
Pg1(t) (1 P)g2 (t) e jms d
f s PG1(m s ) (1 P)G2 (ms )
28
式中
G1(ms ) g1(t)e jmstdt
G2 (ms ) g2 (t)e jmstdt
29
把得到的Cm代回v(t)表达式得
v(t) f s PG1(m s ) (1 P)G2 (m s )e jmst
代码
10
0
Ts
12
此波型不宜传输。因为:
1)有直流分量,一般信道难于传输零频附近的 频率分量。 2)收端判决门限电平与信号功率有关,受信道特 性变化影响,不方便。 3)不能直接用来提取位同步信号,因NRZ连0序 列中不含有位同步信号频率成分。 4)要求传输线路有直流传输能力,即有一根需要 接地。
此波形只适用于计算机内部或极近传输。
信道匹配, 便于传输,减小码间串扰,利于同步提取
数字频带传输的功率谱和带宽总结

(1)当基带信号为矩形波时:
2 PSk f
传输带宽:
B2 PSK 2B基带 2 Bnull 2 RB
(2)当对基带信号作无 ISI 滤波时 :
Hf
f
0 fN
2 PSK f
B f N 1
f
0
fc B
fc
fc B
传输带宽: B2 PSK 2B基带 2 f N 1 RB 1
1. OOK信号的功率谱和带宽
sOOK t s t cos 2 fct
- s t 为单极性信号
(1)当基带信号为矩形波时:
ook f
0
传输带宽: BOOK 2B基带 2 Bnull 2 RB
(2)当对基带信号作无 ISI 滤波时 :
Hf
f
0 fN
QPSK f
f N 1
f
0
ff c f N 1
传输带宽: BQPSK 2 f N 1 RB 1
4. DQPSK、OQPSK、 DQPSK 信号的功率谱和带宽 4
与QPSK的完全一样。 5. MPSK、MDPSK信号的功率谱和带宽
f
0 fN
OOK f
B f N 1
f
0
fc B
fc
fc B
传输带宽: BOOK 2B基带 2 f N 1 RB 1
2. BPSK信号的功率谱和带宽
s2 PSK t s t cos 2 fct
- s t 为双极性信号
与BPSK的完全一样。
总结: OOK、MPSK 、MDPSK的功率谱和带宽完全一样。
数字信号频带传输

第17页/共47页
第5章 数字信号频带传输
5.3.4 相对相移键控2DPSK 的解调
由2DPSK信号的产生过程可以看出,2DPSK信号也可采用相干解调的方法恢复基带 信号。这时判决输出的是相对码,必须再经过差分解码把相对码序列变为绝对码序 列。如图5-16所示。
2DPSK信号还可采用相位比较法, 也叫差分相干解调法。这种方法不需 要恢复相干载波,通过比较前后码元 的载波相位来完成解调,其原理框图 及各点波形如图5-17所示。
数字信号的载波调制也有三种方式: 1)数字信号对载波振幅的调制即幅移键控(ASK); 2)数字信号对载波频率的调制即频移键控(FSK); 3)数字信号对载波相位的调制即相移键控(PSK)。
第3页/共47页
第5章 数字信号频带传输
5.1 二进制幅移键控ASK系统
幅移键控是研究数字调制的基础,记作ASK(Amplitude Shift Keying)。幅移键控是 数字信号幅度调制中的一种典型调制方式,就是用数字基带信号去控制载波的幅度 变化。
图5-16 2DPSK信号的相干解调
第18页/共47页
第5章 数字信号频带传输
a
b
c
d
0 01
01
01
01
e
图5-17 2DPSK信号的相位比较法解调
第19页/共47页
第5章 数字信号频带传输
5.4 多进制数字调制系统
通常把状态数大于2的信号称为多进制信号。将多进制数字信号(也可由基带二进 制信号变换而成)对载波进行调制,在接收端进行相反的变换,这种过程就叫多进 制数字调制与解调,或简称为多进制数字调制。
在实际通信系统中,为克服相位模糊对相干 解调的影响,最常用的办法是对调制器输入端 的数字基带信号进行差分编码后再进行绝对调 相,我们把这种调相称为相对调相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为数字调幅,又称幅移键控,简写为ASK。
Amplitude Shift Keying
一、数字幅度调制
二进制幅移键控(2ASK) OOK
基本思想:利用数字基带信号键控载波幅度的变化,即传
送“1;φc),传送“0”信号 无载波输出。
以概率 P 发送“ 1”时 Acos(c t c ), 2 ASK信号波形:eOOK (t ) 0, 以概率1 P 发送“0”时
t
(c) s2 t cos 2t
1
t
2FSK实现方法(一)
相位连续的2FSK信号
压控振 荡器
21
2FSK实现方法(二)
22
相位连续性
23
三、数字调相
概念 —— 以基带数据信号控制载波的相位,称为数
字调相,又称相移键控,简写为PSK。
Phase Shift Keying
基本思想:
利用基带数字信号控制载波相位的变化来传输数字信息“1”和“0”
数字基带调制信号 以2ωc为载波频率 的高频信号
将此信号通过低通滤波器就可以滤除第二项,只输出第一项,从 而得到原调制信号。
二、数字调频
概念 —— 以基带数据信号控制载波的频率,称为数
字调频,又称频移键控,简写为FSK。 Frequency Shift Keying
二进制频移键控(2FSK)
基本原理
数字信号的频带传输
1
基带和频带传输模型
数字信号 码型生成器 数字信道 接收 滤波器 抽样判决器
噪声
数字基带传输模型
数字基带 信号 调 制 器 信道 接收 滤波器 解 调 器 抽 样 判 决 器
噪声
频带传输模型
2
基本概念
调制-- 把信号转换成适合在信道中传输的形式的一种过程。
调制信号---- 指来自信源的基带信号 用基带信号对载波波形的某些参数进行控制, 载波调制 -- 用调制信号去控制载波的参数的过程。 使载波的这些参量随基带信号的变化而变化,即 载波---- 未受调制的周期性振荡信号,它可以是正弦波, 所谓调制。 也可以是非正弦波。
故其表达式为:
Acosc t e2PSK (t ) - Acosc t
传输带宽: B2ASK=2B
单极性NRZ码功率谱 B2ASK
2ASK已调信号功率谱
13
双极性NRZ码功率谱
DSB-SC
抑制载频的2ASK已调信号功率谱
ASK信号波形形成
2ASK信号解调方法
-- 非相干解调(包络检波法) -- 相干解调(同步检测法)
2ASK信号解调方法
-- 非相干解调(包络检波法)
已调信号-- 载波受调制后称为已调信号。 解调-- 调制的逆过程,其作用是将已调信号中的调制信号 (检波) 恢复出来。
3
调制的基本特征和分类
模拟调制 连续变化的模拟量:
m (t )
离散的数字量: 二进制数字脉冲
调制器
sm (t )
脉冲波形 脉冲载波调制
C (t )
连续波形
数字调制
矩形周期脉冲 单频正弦波 连续载波调制
基带信号
0
1
0
0
1
1
1
0
0
调幅
2ASK信号的一般表达式:
e2ASK (t ) st cosc t
其中
s(t ) an g (t nTs )
n
Ts - 码元持续时间;
g(t) - 持续时间为Ts的基带脉冲波形,通常假设是高度为1,
宽度等于Ts的矩形脉冲;
an - 第N个符号的电平取值,若取
是利用包络检波器或波形整流器对幅度键控信号进行检 波以恢复基带信号的方法
2ASK信号解调方法
-- 非相干解调(包络检波法) -- 相干解调(同步检测法)
地 载 波 ( 称 为 相 干 载 波 ) 同 步 ( 同 频 同 相 ) 的 本
与 接 收 的 已 调 载 波 严 格
sm ( t ) cosct s( t ) cos2 ct s( t ) / 2 (cos2ct ) / 2
在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点 间变化。故其表达式为:
A cos(1t n ), e2FSK (t ) A cos( 2 t n ), 发送“ 1 ”时 发送“ 0”时
2FSK典型波形
1
(a )2FSK信号
0
1
0
t
(b) s1 t cos 1t
4
调制的基本特征和分类
sm (f ) m (f )
频谱之间呈线性搬移关系: AM、ASK 频谱之间没有线性对应关系: FM、PM、FSK
线性调制
sm (f )
非线性调制
m (t )
sm (t )
调制器
C (t )
m(t)改变载波信号C(t)的不同参数
幅度调制:AM、PAM、ASK 频率调制:FM、FSK 相位调制:PPM、PSK
an 1, 0, 概率为 P 概率为1 P
则相应的2ASK信号就是OOK信号。
10
2ASK实现方法
-- 模拟调制法(相乘器法) -- 键控法
二进制 不归零信号
e2 ASK (t )
乘法器
s (t )
cos ct
开关电路
cos ct
e2 ASK (t )
s (t )
2ASK实现原理
基带信号
0
1
0
0
1
1
1
0
0
调相
三、数字调相
概念 —— 以基带数据信号控制载波的相位,称为数
字调相,又称相移键控,简写为PSK。
Phase Shift Keying
1、二进制绝对相移键控 2PSK 2、二进制差分相移键控 2DPSK
利用两种相位来传输二元符号。
1、2PSK
在2PSK中,通常用初始相位 0 和π分别表示二进制”1”和”0”,
5
数字调制基本方法
ASK、PSK、FSK
1 0 0 1
m (t )
数字基带 信号
sm (t )
调制器
s (t )
C (t )
正弦载波
2 PSK
t
2 FSK
t
2 ASK
t
主要内容
一、数字调幅ASK
2ASK 2FSK 2PSK
二、数字调频FSK 三、数字调相PSK
7
一、数字幅度调制
概念 —— 以基带数据信号控制一个载波的幅度,称
e2ASK (t ) st cos c t
设: Ps (f ) - s(t)的功率谱密度
P2ASK (f ) - 2ASK信号的功率谱密度 则已调信号的功率谱可表示为:
1 P2ASK ( f ) Ps ( f f c ) Ps ( f f c ) 4
由上式可见,2ASK信号的功率谱是基带信号功率谱 Ps (f )的线性搬移(属线性调制)。
Amplitude Shift Keying
一、数字幅度调制
二进制幅移键控(2ASK) OOK
基本思想:利用数字基带信号键控载波幅度的变化,即传
送“1;φc),传送“0”信号 无载波输出。
以概率 P 发送“ 1”时 Acos(c t c ), 2 ASK信号波形:eOOK (t ) 0, 以概率1 P 发送“0”时
t
(c) s2 t cos 2t
1
t
2FSK实现方法(一)
相位连续的2FSK信号
压控振 荡器
21
2FSK实现方法(二)
22
相位连续性
23
三、数字调相
概念 —— 以基带数据信号控制载波的相位,称为数
字调相,又称相移键控,简写为PSK。
Phase Shift Keying
基本思想:
利用基带数字信号控制载波相位的变化来传输数字信息“1”和“0”
数字基带调制信号 以2ωc为载波频率 的高频信号
将此信号通过低通滤波器就可以滤除第二项,只输出第一项,从 而得到原调制信号。
二、数字调频
概念 —— 以基带数据信号控制载波的频率,称为数
字调频,又称频移键控,简写为FSK。 Frequency Shift Keying
二进制频移键控(2FSK)
基本原理
数字信号的频带传输
1
基带和频带传输模型
数字信号 码型生成器 数字信道 接收 滤波器 抽样判决器
噪声
数字基带传输模型
数字基带 信号 调 制 器 信道 接收 滤波器 解 调 器 抽 样 判 决 器
噪声
频带传输模型
2
基本概念
调制-- 把信号转换成适合在信道中传输的形式的一种过程。
调制信号---- 指来自信源的基带信号 用基带信号对载波波形的某些参数进行控制, 载波调制 -- 用调制信号去控制载波的参数的过程。 使载波的这些参量随基带信号的变化而变化,即 载波---- 未受调制的周期性振荡信号,它可以是正弦波, 所谓调制。 也可以是非正弦波。
故其表达式为:
Acosc t e2PSK (t ) - Acosc t
传输带宽: B2ASK=2B
单极性NRZ码功率谱 B2ASK
2ASK已调信号功率谱
13
双极性NRZ码功率谱
DSB-SC
抑制载频的2ASK已调信号功率谱
ASK信号波形形成
2ASK信号解调方法
-- 非相干解调(包络检波法) -- 相干解调(同步检测法)
2ASK信号解调方法
-- 非相干解调(包络检波法)
已调信号-- 载波受调制后称为已调信号。 解调-- 调制的逆过程,其作用是将已调信号中的调制信号 (检波) 恢复出来。
3
调制的基本特征和分类
模拟调制 连续变化的模拟量:
m (t )
离散的数字量: 二进制数字脉冲
调制器
sm (t )
脉冲波形 脉冲载波调制
C (t )
连续波形
数字调制
矩形周期脉冲 单频正弦波 连续载波调制
基带信号
0
1
0
0
1
1
1
0
0
调幅
2ASK信号的一般表达式:
e2ASK (t ) st cosc t
其中
s(t ) an g (t nTs )
n
Ts - 码元持续时间;
g(t) - 持续时间为Ts的基带脉冲波形,通常假设是高度为1,
宽度等于Ts的矩形脉冲;
an - 第N个符号的电平取值,若取
是利用包络检波器或波形整流器对幅度键控信号进行检 波以恢复基带信号的方法
2ASK信号解调方法
-- 非相干解调(包络检波法) -- 相干解调(同步检测法)
地 载 波 ( 称 为 相 干 载 波 ) 同 步 ( 同 频 同 相 ) 的 本
与 接 收 的 已 调 载 波 严 格
sm ( t ) cosct s( t ) cos2 ct s( t ) / 2 (cos2ct ) / 2
在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点 间变化。故其表达式为:
A cos(1t n ), e2FSK (t ) A cos( 2 t n ), 发送“ 1 ”时 发送“ 0”时
2FSK典型波形
1
(a )2FSK信号
0
1
0
t
(b) s1 t cos 1t
4
调制的基本特征和分类
sm (f ) m (f )
频谱之间呈线性搬移关系: AM、ASK 频谱之间没有线性对应关系: FM、PM、FSK
线性调制
sm (f )
非线性调制
m (t )
sm (t )
调制器
C (t )
m(t)改变载波信号C(t)的不同参数
幅度调制:AM、PAM、ASK 频率调制:FM、FSK 相位调制:PPM、PSK
an 1, 0, 概率为 P 概率为1 P
则相应的2ASK信号就是OOK信号。
10
2ASK实现方法
-- 模拟调制法(相乘器法) -- 键控法
二进制 不归零信号
e2 ASK (t )
乘法器
s (t )
cos ct
开关电路
cos ct
e2 ASK (t )
s (t )
2ASK实现原理
基带信号
0
1
0
0
1
1
1
0
0
调相
三、数字调相
概念 —— 以基带数据信号控制载波的相位,称为数
字调相,又称相移键控,简写为PSK。
Phase Shift Keying
1、二进制绝对相移键控 2PSK 2、二进制差分相移键控 2DPSK
利用两种相位来传输二元符号。
1、2PSK
在2PSK中,通常用初始相位 0 和π分别表示二进制”1”和”0”,
5
数字调制基本方法
ASK、PSK、FSK
1 0 0 1
m (t )
数字基带 信号
sm (t )
调制器
s (t )
C (t )
正弦载波
2 PSK
t
2 FSK
t
2 ASK
t
主要内容
一、数字调幅ASK
2ASK 2FSK 2PSK
二、数字调频FSK 三、数字调相PSK
7
一、数字幅度调制
概念 —— 以基带数据信号控制一个载波的幅度,称
e2ASK (t ) st cos c t
设: Ps (f ) - s(t)的功率谱密度
P2ASK (f ) - 2ASK信号的功率谱密度 则已调信号的功率谱可表示为:
1 P2ASK ( f ) Ps ( f f c ) Ps ( f f c ) 4
由上式可见,2ASK信号的功率谱是基带信号功率谱 Ps (f )的线性搬移(属线性调制)。