九年级模拟考试题
2024年4月厦门市九年级语文中考模拟考试卷附答案解析

2024年4月厦门市九年级语文中考模拟考试卷(试卷满分:150分考试时间:120分钟)2.答案一律写在答题卡上,否则不能得分。
一、积累与运用(23分)1.补写出以下古代诗文名句。
(10分)(1)几处早莺争暖树,_______________。
(白居易《钱塘湖春行》)(2)大漠孤烟直,_______________。
(王维《使至塞上》)(3)鹏之背,_______________;怒而飞,_______________。
(庄子《北冥有鱼》)(4)非独贤者有是心也,_______________,_______________。
(孟子《鱼我所欲也》)(5)《望岳》中,“_______________,_______________”表达了杜甫勇攀高峰的雄心壮志。
(6)《过零丁洋》中,表现文天祥誓死报国、大义凛然的民族气节的名句是:_______________?_______________。
2.阅读下面的文字,按要求作答。
(7分)甲辰龙年到来之际,不少网友发现了一个有趣的现象,“龙”不再翻译为dragon而是loong。
从“西方龙”到“中国龙”,这背后到底意味着什么?中国龙无论是外部形象还是文化内涵,和西方龙都有天壤甲(A.rǎng B.rǎn)之别。
中国龙,①(téng)云驾雾,飘逸洒脱。
几千年来,它的体态变化无穷,体现了华夏儿女无穷的创造力和无限的生命力,承载了中华民族②(yuán)远流长、璀璨多元的文化。
中国龙,既象征着五千年来中华民族自强不息、奋斗进取的精神血脉,也承载着新时代亿万中华儿女推进强国建设、民族复兴伟业的坚定意志和美好愿望。
今天,“枭龙”号战斗机一飞冲天,“蛟龙”号载乙(A.zǎi B.zài)人潜水器探索深海,“雪龙”号极地考察船南极凯旋。
中国龙在新的时代焕发着新的光彩。
loong的使用,有利于增进世界各国对中国文化的了解,塑造可信可爱可敬的中国形象。
河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。
2024年吉林省松原市吉林油田第十二中学九年级第三次中考模拟考试数学试题(含答案)

吉林油田第十二中学初三第三次模拟考试数学试卷*试卷满分120分,时间120分钟*一、选择题(每题2分,共12分)1. 在3,0,-2,四个数中,最小的数是()A. 3 B. 0C. -2D. 2. 下列计算正确的是()A. B. C. D. 3. 某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A. B. C. D.4. 关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点;乙:函数图像经过第四象限;丙:当时,y 随x 的增大而增大.则这个函数表达式可能是()A. B. C. D. 5. 如图,PA ,PB 是切线,A ,B 为切点,点C 在优弧ACB 上,且,则等于( )(第5题图)A. B. C. D. 6. 如图,平行四边形ABCD 中,分别以点B ,D为圆心,大于的长为半径画弧,两弧交于点M ,223a a a +=()236a a -=()222a b a b =--3=±()1,1-0x >y x =-1y x =2y x =1y x=-O 70APB ∠=︒ACB ∠55︒110︒70︒125︒12BDN ,直线MN 分别交AD ,BC 于点E ,F ,连接BD 、EF ,若,,,则线段BF 的长是( )(第6题图)A. B. C. 3 D. 二、填空题(每题3分,共24分)7. 分解因式:______.8. 原子很小,1个氧原子的直径大约为0.000000000148m ,将0.000000000148用科学记数法表示为______.9. 如图所示,第四套人民币中菊花1角硬币.则该硬币边缘镌刻的正九边形的一个外角的度数为______.(第9题图)10. 已知一元二次方程有两个相等的实数根,则m 的值为______.11. 综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量米,若小宇的身高是1.6米,则假山AC 的高度为______米.(结果保留整数)(第11题图)12. 若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是______.13. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,,,则线段OH 的长为______.(第13题图)120BAD ∠=︒1AE =2AB=1++3222a a b ab -+=260x x m ++= 2.4BE =︒3AC =4BD =14. 如图,在扇形AOB 中,,半径.将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点C 处,折痕交OA 于点D ,则图中阴影部分的面积为______.(第14题图)三、解答题(每题5分,共20分)15. 先化简,再求值:,其中16. 如图,小妍同学做了一个可以自由转动的均匀转盘,转盘均分为三等份,分别标有1,2,3三个数字,她邀请小嘉同学一起玩游戏,规则如下:转动转盘,转盘停止后,指针指向一个数字所在的扇形得到对应的数字(若指针恰好指在分隔线上,则重转一次,直到指针指向某一个数字为止).(1)小妍转动一次转盘转到数字2的概率是______;(2)小妍同学先转动一次,然后小嘉同学同样转动转盘,再将两人转动的数字相加,如果两个数字的和是奇数则小妍同学胜,否则小嘉同学胜.请利用画树状图或者列表格的方法判断这个游戏对两人公平么?17. 《九章算术》是我国古代经典数学著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大、小器各容几何?”译文“今有大容器5个,小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛,问大、小容器的容积各是多少斛?”18. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:.四、解答题(每题7分,共28分)19. 如图,在的方格纸中,线段AB 的端点在格点上,请按要求画图.图① 图② 图③90AOB ∠=︒4OA =22424412x x x x x x x -+-÷+-++-2x =OE OF =55⨯(1)如图①,画出一条线段AC ,使,C 在格点上;(2)如图②,画出一条线段EF 使EF 、AB 互相平分,E 、F 均在格点上;(3)如图③,以A 、B 为顶点画出一个四边形,使其是中心对称图形而不是轴对称图形,且顶点均在格点上.20. 2024年3月22日是第32届世界水日,学校开展了节约和保护水资源的知识竞赛,从全校2000名学生中随机抽取部分学生的竞赛成绩进行调查分析,并将成绩(满分:100分)制成如图所示的扇形统计图和条形统计图.请根据统计图回答下列问题:(1)本次调查共抽取了______名学生,这些学生成绩的中位数是______;(2)补全上面不完整的条形统计图;(3)根据比赛规则,98分及以上(含98分)的学生有资格进入第二轮知识竞赛环节,请你估计全校2000名学生进入第二轮知识竞赛环节的人数.21. 在一次课外活动中,某数学兴趣小组测量一棵树CD 的高度.如图所示,测得斜坡BE 的坡度,坡底AE 的长为8米,在B 处测得树CD 顶部D 的仰角为,在E 处测得树CD 顶部D 的仰角为,求树高CD .(结果保留根号)22. 如图,在平面直角坐标系xOy 中,正比例函数与反比例函数的图象交于A ,B 两点,A 点的横坐标为2,轴于点C ,连接BC .(1)求反比例函数的解析式;(2)结合图象,直接写出时x 的取值范围;AC AB =1:4i =30︒60︒2y x =k y x=AC x ⊥2k x x>(3)若点P 是反比例函数图象上的一点,且满足与的面积相等,求出点P 的坐标.五、解答题(每题8分,共16分)23. 已知A 、B 两地之间有一条长300千米的公路,甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地两车行驶的路程之和y (千米)与甲车行驶的时间x (小时)之间的函数关系如图所示.(1)a 的值为______;(2)求乙车出发后,y 与x 之间的函数关系式;(3)当甲、乙两车相距150千米时,直接写出甲车行驶的时间.24.【推理】如图1,在边长为10的正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连接BE ,CF ,延长CF 交AD 于点G ,BE 与CG 交于点M .图1图2 图3(1)求证:.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H ,若,求线段DH 的长.【拓展】(3)如图3,在【推理】条件下,连接AM ,则线段AM 的最小值为______.六、解答题(每题10分,共20分)25. 如图,在中,,,动点P 从点A的速度沿AB 向终点B 运动,过点P 作交折线于点Q ,将点P 绕点Q 顺时针旋转至点D ,连结DQ 、PD .设点P 运动的时间为x (s ),与重叠部分图形的面积为.(1)AQ 长为______cm (用含x 的代数式表示);k y x=OPC △ABC △CE DG =6CE =ABC △90ACB ∠=︒4cm AC BC ==PQ AB ⊥AC CB -90︒PQD △ABC △()2cm y(2)当点D落在边BC上时,求x的值;(3)求y关于x的解析式,并写出自变量x的取值范围.26. 在平面直角坐标系xOy中,已知抛物线与x轴交于点,.(1)求抛物线的表达式.(2)若抛物线,当时,y有最大值12,求m的值.(3)若将抛物线平移得到新抛物线,当时,新抛物线与直线有且只有一个公共点,直接写出n的取值范围.参考答案1. C2. B3. C4. D5. A6. D7. 8. 1.48×10−109. 40° 10. 911. 14 12. 120 13. 14.15.解:原式=﹣=﹣+=……………………………………………………………………3分当x=2分16.解:(1);……………………………………………………………………1分(2)根据题意画树状图如下:……………………………………………………………………3分共有9种等可能的情况数,两个数字和是奇数的有4种,则小妍同学胜的概率是;∴小嘉同学胜的概率是,2y x bx c=++()1,0A-()5,0B22y x bx c mx=++-2123m x m-≤≤+2y x bx c=++2y x bx c n=+++23x-<< 1y=()2a a b-544π-2(2)(2)1(2)22x x x xx x x+-+⋅+-+-12xx+-2xx-12x--134959∵,∴这个游戏对两人不公平.……………………………………………………………………5分17.解:设大容器的容积是斛,小容器的容积是斛…………………………………………………1分依题意,得:……………………………………………………………………3分解得:,答:大容器的容积是斛,小容器的容积是斛.……………………………………………………5分18.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ……………………………………………………………………1分∴∠BAO =∠ACD ,即∠EAO =∠FCO ………………………………………………………2分又∵∠AOE =∠COF ,∴△AOE ≌△COF (ASA )……………………………………………………………………4分∴OE =OF .……………………………………………………………………5分19.【答案】如图所示:图① 图② 图③20.(1)故答案为:60,96分;……………………………………………………………………2分(2)解:补全统计图:;………………………………………………5分(3)解:2000×=900(名).答:估计全校2000名学生进入第二轮知识竞赛环节的人数是900名.……………………7分21.解:作于点,设米………………………………………………1分4599<x y 5352x y x y +=⎧⎨+=⎩1324724x y ⎧=⎪⎪⎨⎪=⎪⎩132472418960+BF CD ⊥F DF x =在中,,则(米………………………………………………2分∵,且AE =8∴∴………………………………………………3分在直角中,米,在直角中,,米.………………………………………………4分.解得:, (5)分则米.答:的高度是米.………………………………………………7分22.(1)………………………………………………2分(2)或………………………………………………4分(3)或……………………………………………7分23.(1)600;………………………………………………2分(2)设与之间的函数关系式为,………………………………………………3分由图可知,函数图象经过,,,解得,………………………………………………5分与之间的函数关系式为;………………………………………………6分Rt DBF ∆tan DF DBF BF ∠=tan 30DF BF ==︒)14AB AE =2AB =2CF AB ==DCE ∆(2)DC x CF x =+=+DCE ∆tan DC DEC EC ∠=22)tan 60x EC x +∴==+︒BF CE AE -= 2)8x +=1x =+123)CD =+=CD 3)+8y x=20x -<<2x >()1,8()1,8--y x y kx b =+(2,100)(6,600)∴21006600k b k b +=⎧⎨+=⎩125150k b =⎧⎨=-⎩y ∴x 125150(26)y x x =-≤≤(3)小时或小时.………………………………………………8分24.(1)………………………………………………3分(2)………………………………………………6分(3)………………………………………………7分25.(1)∵AC =BC ,∠ACB =90°∴∠A =45°∵PQ ⊥AB ,∴,∴,故答案为(2)当点D 落在BC 上时,如图①AP =QD =,AQ =,∵AB ⊥PQ ,DQ ⊥PQ ,∴PA ∥DQ ,∴∠DQC =∠BAC =45°,∴△DCQ 为等腰直角三角形∴,QC =x ∵AQ +QC =AC ∴∴图①(3)当时,如图②,PQ =DQ =∴即图②当时,如图③,∵PA =DQ ,PA ∥DQ ,∴四边形PAQD 是平行四边形,1252451435AP =cos AP A AQ ∠=2cos AQ AQ x A ===∠x2x 2x 222)2(2x QC =42=+x x 34=x 403x <≤x 22222121x x x DQ PQ y =⋅=⋅=2x y =234≤<x∴PE ∥AC ,PD =AQ =∴∵∴,∴∴整理得:图③当时,如图④,PB =PQ =∴sin ∠EPQ =,∴∴即图④26.(1)解:把点,代入抛物线得,,解得,x2ABBP AC PE =24442222=+=+=BC AC AB 242244x PE -=x PE -=443)4(2-=--==x x x EF ED 22)43(212121--=⋅-⋅=-=∆∆x x EF ED DQ PQ S S y DEF PQD 81242-+-=x x y 42≤<x x224-PQEQ x x EQ -=-⨯=4)224(45sin 08421)4(212122+-=-=⋅=x x x EP EQ y 84212+-=x x y ()1,0A -()5,0B y 2x bx c =++102550b c b c -+=⎧⎨++=⎩45b c =-⎧⎨=-⎩抛物线表达式为;(2)解:由()知,抛物线,∴抛物线的对称轴为直线,开口向上,∵时,有最大值,最大值只能在或时取得,当时,即,此时,有最大值,即,解得,符合题意;当时,即,此时,有最大值,即,解得,不合,舍去;当,即,当时,有最大值,即,解得,不合,舍去;当,有最大值,即,解得,不合,舍去;综上,的值为;(3)解:由题意得,新抛物线为是把抛物线平移个单位得到的,如图所示:当时,新抛物线与直线相交且有一个交点时,则∴245y x x =--1()22452425y x x mx x m x =---=-+-2x m =+2123m x m -≤≤+y 12∴21x m =-23x m =+232m m +≤+1m ≤-21x m =-y 12()()()2122142215m m m =--+--65m =-221m m +<-3m >23x m =+y 12()()()2122342235m m m =+-++-10m =-21223m m m -≤+≤+13m -≤≤21x m =-y 12()()()2122142215m m m =--+--65m =-23x m =+y 12()()()2122342235m m m =+-++-10m =-m 65-245y x x n =--+245y x x =--||n ①23x -<<1y =485191251n n +-+≥⎧⎨--+≤⎩解得;当抛物线与直线相切时,就是把抛物线,向上平移10个单位,即,的取值范围为或.69n -≤≤②245y x x =--1y =2245(2)9y x x x =--=--10n =n ∴69n -≤≤10n =。
九年级语文模拟试题

九年级语文模拟试题一、选择题1.下列哪个成语形容人冷静自持?A.横眉冷对千夫指B.半推半就C.无事生非D.泰然自若2.下列词语中,哪一项与其他三项意义相近?A.热辣辣B.鸿雁在天C.爱河蜜月D.荣华富贵3.词语的拼音如下,其中哪一个意思与其他三项不同?A.刺激B.离开C.承认D.控制4.“攀登者嘴唇冻裂"这句话的主语是:A.攀登者B.嘴唇C.冻裂D.句话5.“苟利国家生死以,岂因福祸避趋之"的作者是谁?A.毛泽东B.周恩来C.邓小平D.伍子胥6.下面哪个成语与其他三个意思相反?A.脱颖而出B.孑然一身C.众口一词D.平白无故7.“梦里不知身是客,一晌贪欢"中的“贪欢"意味着:A.惊喜B.悲伤C.激动D.沉醉8.下列哪一项是成语的释义?A.原璧归趙B.不知所措C.留得青山在,不怕没柴烧D.假公济私A.原璧归趙——传说中赵国失去的“璧"被送回;B.不知所措——不知道该怎么办;C.留得青山在,不怕没柴烧——失去一点不要紧;D.假公济私——假装公正,违法违规谋取私利。
9.“言与心违"的意思是:A.不说是非B.言不由衷C.说一不二D.相反无常10.下面选项中,不是常用语的一个是:A.吵吵闹闹B.杀一儆百C.展开思路D.小巧玲珑二、填空题1.补全成语:贵____深____、昂然____头、言____意合2.“世界上最遥远的距离,不是生和死的距离,而是我站在你面前,你却不知道我爱你"。
请用恰当的词语填空。
世界上最遥远的距离,是___________(两个词)?3.请将下列句子中的主语、谓语、宾语分别标出。
“我们在青春期有许多疑惑,我们在这个年纪就应该尽力把疑惑解决掉。
"主语:____________谓语:____________宾语:____________三、简答题1.简述你的学习方法,目前你认为存在哪些问题?如何改进?2.为什么每个人的理解不同?部分原因是因为文化背景和个人经验的差异,请举例说明。
3.请从社会意义和个人价值两个方面简要阐述阅读的重要性。
广东省深圳市光明区实验学校2023-2024学年第二学期九年级模拟考试数学试卷(三模)

光明区实验学校2023-2024学年第二学期九年级模拟考试数学试卷(三模)一.选择题(每题3分,共30分)1.实数3-的相反数是()A .13-B .13C .3D .3-2.下列计算正确的是()A .246()a a =B .336()ab a b =C .235a a a ⋅=D .224325a a a +=3.2024年春节档电影《热辣滚烫》引发热议,其中的台词“一切来得及,记得爱自己”“如果没有特别幸运,那就请特别努力”鼓舞着每一位心中有梦想的人勇敢逐梦,据统计,截至2024年3月14日,电影《热辣滚烫》票房高达34.45亿元.数据34.45亿用科学记数法表示为()A .834.4510⨯B .93.44510⨯C .103.44510⨯D .100.344510⨯4.某个几何体的三视图如图所示,该几何体是()A .B .C .D .5.如图,ABC ∆与DEF ∆是位似图形,点O 为位似中心,且:1:2OA OD =,若ABC ∆的周长为8,则DEF ∆的周长为()A .4B .22C .16D .326.一元一次不等式组71143x x +>⎧⎪-⎨⎪⎩解集为()A .B .C .D .7.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为12cm ,双翼的边缘64AC BD cm ==,且与闸机侧立面夹角30PCA BDQ ∠=∠=︒.当双翼收起时,可以通过闸机的物体的最大宽度为()A .76cmB .(64212)cm +C .(64312)cm +D .64cm8.数学家斐波那契编写的《算经》中有如下分钱问题:第一次由一组人平分10元钱,每人分得若干,第二次比第一次增加6人,平分40元钱,则第二次每人分得的钱与第一次相同,设第一次分钱的人数为x 人,则可列方程为()A .1040(6)x x =+B .10(6)40x x -=C .10406x x =+D .10406x x=-9.如图,在菱形ABCD 中,过顶点D 作DE AB ⊥,DF BC ⊥,垂足分别为E ,F ,连结EF .若2cos 3A =,BEF ∆的面积为2,则菱形ABCD 的面积为()A .18B .24C .30D .3610.如图,在Rt ABC ∆中,90C ∠=︒,12AC =,8BC =,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A C B →→方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设DMN ∆的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为()A .B .C .D .二.填空题(每题3分,共15分)11.因式分解:2328x y y -=.12.若分式21x x +有意义,则x 的取值范围是.13.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为3m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是2m .14.如图,A 、B 两点在反比例函数ky x=的图象上,过点A 作AC x ⊥轴于点C ,交OB 于点D ,若2BD DO =,AOD ∆的面积为1,则k 的值为.15.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ∠=︒,2AP =,则PE 的长等于.三.解答题(共55分)16.(5分)计算:011|2|(2)()4tan 453π----+-︒.17.(7分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动,首先将成绩分为以下六组(满分100分,实际得分用x 表示)::7075A x <,:7580B x <,:8085C x <,:8590D x <,:9095E x <,:95100F x <随机抽取n 名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D 组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E 组”所对应的扇形的圆心角是︒;(2)n =,并补全图2中的频数分布直方图;(3)在笔试阶段中,n 名学生成绩的中位数是分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.笔试展演甲9289乙909518.(7分)如图,已知APB ∠,点M 是PB 上的一个定点.(1)尺规作图:请在图1中作O ,使得O 与射线PB 相切于点M ,同时与PA 相切,切点记为N ;(2)在(1)的条件下,若60APB ∠=︒,3PM =,则所作的O 的劣弧 MN与PM 、PN 所围成图形的面积是.19.(8分)如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线交BA 的延长线于点D ,过点A 作AE CD ⊥于点E ,延长EA 交O 于点F ,连接BF .(1)求证:AC 平分BAE ∠;(2)若12DE BF =,求tan ADE ∠的值.20.(8分)“直播带货”已经成为信息社会中商家的一种新型促销手段,2024年是中国农历甲辰龙年,某主播用3000元购进了一批“小金龙”布偶玩具在直播间销售,由于销售火爆,又用9900元购进了第二批这种玩具,所购数量是第一批购进数量的3倍,但每件的进价贵了3元.(1)求商场购进第一批“小金龙”每件的进价.(2)直播间在第二批“小金龙”布偶销售过程中发现,“小金龙”布偶每分钟的销量y (件)与销售单价x (元)满足一次函数关系10410y x =-+,设每分钟的销售利润为w 元,求w 与x 之间的函数关系式,并求w 最大值.21.(10分)综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为a m .【问题提出】小组同学提出这样一个问题:若10a =,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为x m ,BC 为y m .由矩形地块面积为28m ,得到8xy =,满足条件的(,)x y 可看成是反比例函数8y x=的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y +=,满足条件的(,)x y 可看成一次函数210y x =-+的图象在第一象限内点的坐标,同时满足这两个条件的(,)x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数8(0)y x x=>的图象与直线1:210l y x =-+的交点坐标为(1,8)和,因此,木栏总长为10m 时,能围出矩形地块,分别为:1AB m =,8BC m =;或AB =m ,BC =m .(1)根据小颖的分析思路,完成上面的填空;【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由;【问题延伸】当木栏总长为a m 时,小颖建立了一次函数2y x a =-+.发现直线2y x a =-+可以看成是直线2y x =-通过平移得到的,在平移过程中,当过点(2,4)时,直线2y x a =-+与反比例函数8(0)y x x=>的图象有唯一交点.(3)请在图2中画出直线2y x a =-+过点(2,4)时的图象,并求出a 的值;【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a =-+与8y x=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围.22.(10分)(1)观察猜想:如图1,在Rt ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AB ,AC 上,45BAC DAE ∠=∠=︒,DE AE =,将ADE ∆绕点A 逆时针旋转到如图2所示的位置,连接BD ,交AC 于点C ,连接CE 交BD 于点F ,则BDCE的值为,BFC∠的度数为.(2)类比探究:如图3,当90ACB AED ∠=∠=︒,30BAC DAE ∠=∠=︒时,请求出BDCE的值及BFC ∠的度数.(3)拓展应用:如图4,在四边形ABDC 中,AC BC =,90ACB ∠=︒,45BDC ∠=︒.若8CD =,6BD =,请直接写出A ,D 两点之间的距离.光明区实验学校2023-2024学年第二学期九年级模拟考试数学试卷(三模)参考答案与试题解析一.选择题(共10小题)1.实数3-的相反数是()A .13-B .13C .3D .3-【解答】解:3-的相反数是3,故选:C .2.下列计算正确的是()A .246()a a =B .336()ab a b =C .235a a a ⋅=D .224325a a a +=【解答】解:248()a a = ,∴选项A 不符合题意;333()ab a b = ,∴选项B 不符合题意;235a a a ⋅= ,∴选项C 符合题意;222325a a a += ,∴选项D 不符合题意,故选:C .3.2024年春节档电影《热辣滚烫》引发热议,其中的台词“一切来得及,记得爱自己”“如果没有特别幸运,那就请特别努力”鼓舞着每一位心中有梦想的人勇敢逐梦,据统计,截至2024年3月14日,电影《热辣滚烫》票房高达34.45亿元.数据34.45亿用科学记数法表示为()A .834.4510⨯B .93.44510⨯C .103.44510⨯D .100.344510⨯【解答】解:34.45亿93445000000 3.44510==⨯,故选:B .4.某个几何体的三视图如图所示,该几何体是()A .B .C.D.【解答】解:由三视图可知这个几何体是:故选:A .5.如图,ABC ∆与DEF ∆是位似图形,点O 为位似中心,且:1:2OA OD =,若ABC ∆的周长为8,则DEF ∆的周长为()A .4B .22C .16D .32【解答】解:ABC ∆ 与DEF ∆是位似图形,ABC DEF ∴∆∆∽,//AB DE ,AOB DOE ∴∆∆∽,∴12AB OA DE OD ==,ABC ∴∆的周长:DEF ∆的周长1:2=,ABC ∆ 的周长为8,DEF ∴∆的周长为16,故选:C .6.一元一次不等式组71143x x +>⎧⎪-⎨⎪⎩解集为()A .B.C .D .【解答】解:解不等式71x +>得:6x >-,解不等式143x -得:13x ,∴不等式组的解集为613x -<,在数轴上表示为:,故选:B .7.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为12cm ,双翼的边缘64AC BD cm ==,且与闸机侧立面夹角30PCA BDQ ∠=∠=︒.当双翼收起时,可以通过闸机的物体的最大宽度为()A .76cmB .(64212)cm +C .312)cmD .64cm【解答】解:如图所示,过A 作AE CP ⊥于E ,过B 作BF DQ ⊥于F ,则Rt ACE ∆中,116432()22AE AC cm ==⨯=,同理可得,32BF cm =,又 点A 与B 之间的距离为12cm ,∴通过闸机的物体的最大宽度为32123276()cm ++=,故选:A .8.数学家斐波那契编写的《算经》中有如下分钱问题:第一次由一组人平分10元钱,每人分得若干,第二次比第一次增加6人,平分40元钱,则第二次每人分得的钱与第一次相同,设第一次分钱的人数为x 人,则可列方程为()A .1040(6)x x =+B .10(6)40x x -=C .10406x x =+D .10406x x=-【解答】解:设第二次分钱的人数为x 人,则第一次分钱的人数为(6)x -人.依题意得:10406x x=-.故选:D .9.如图,在菱形ABCD 中,过顶点D 作DE AB ⊥,DF BC ⊥,垂足分别为E ,F ,连结EF .若2cos 3A =,BEF ∆的面积为2,则菱形ABCD 的面积为()A .18B .24C .30D .36【解答】解:如图,过点F 作FG AB ⊥于点G ,DE AB ⊥ ,DF BC ⊥,90DEA DFG ∴∠=∠=︒, 四边形ABCD 是菱形,AB BC AD CD ∴===,A C ∠=∠,//AD BC ,在ADE ∆和CDF ∆中,DEA DFC A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CDF AAS ∴∆≅∆,AE CF ∴=,AB AE BC CF ∴-=-,即BE BF =,设3BE BF a ==,//AD BC ,FBG A ∴∠=∠,2cos cos 3BG FBG A BF ∴∠===,223BG BF a ∴==,2222(3)(2)5FG BF BG a a a ∴=-=-=,1135222BEF S BE FG a a ∆=⋅=⋅⋅= ,2354a ∴=,2cos 3AE AEA AD AB===,13BE AB ∴=,39AB BE a ∴==,263AE AB a ∴==,2222(9)(6)35DE AD AE a a a ∴=-=-=,29359359436ABCD S AB DE a a a ∴=⋅=⋅=⨯=⨯=菱形,故选:D .10.如图,在Rt ABC ∆中,90C ∠=︒,12AC =,8BC =,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A C B →→方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设DMN ∆的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为()A .B .C .D .【解答】解:如图,连接DE ,作DF BC ⊥,//DF AC ∴, 点D 、E 是中点,162DF AC ∴==,142DE BC ==,当06t <时,点M 在AE 上,点N 在EC 上,6MN AE ==,11641222S MN DE ∴=⋅=⨯⨯=;如图,当612t <时,点M 在EC 上,点N 在BC 上,AM EC CN t =+= ,12MC t ∴=-,6CN t =-,14BN t =-,ABC ADM BDN CMN S S S S S ∆∆∆∆∴=---111181246(14)(12)(6)2222t t t t =⨯⨯-⨯-⨯----218422t t =-+;如图,当1214t <时,点M 、N 都在BC 上,11661822S MN DF ∴=⋅=⨯⨯=,综上判断选项A 的图象符合题意.故选:A .二.填空题(共5小题)11.因式分解:2328x y y -=2(2)(2)y x y x y +-.【解答】解:2322282(4)2(2)(2)x y y y x y y x y x y -=-=+-,故答案为:2(2)(2)y x y x y +-12.若分式21x x +有意义,则x 的取值范围是1x ≠-.【解答】解: 分式21x x +有意义,10x ∴+≠,1x ∴≠-.故答案为:1x ≠-.13.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为3m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是942m .【解答】解:根据题意可估计不规则区域的面积是29330.25()4m ⨯⨯=,故答案为:94.14.如图,A 、B 两点在反比例函数ky x=的图象上,过点A 作AC x ⊥轴于点C ,交OB 于点D ,若2BD DO =,AOD ∆的面积为1,则k 的值为94.【解答】解:过点B 作BE x ⊥轴于点E ,如图所示:设OC a =,点A 在反比例函数ky x=的图象上,且AC x ⊥轴于点C ,∴点A 的坐标为(,)ka a ,k AC a∴=,2BD DO = ,3OB DO BD DO ∴=+=,AC x ⊥ 轴,BE x ⊥轴,//AC BE ∴,ODC OBE ∴∆∆∽,∴13OC CD DO OE BE OB ===,33OE OC a ∴==,13CD BE =,点B 在反比例函数ky x=的图象上,且BE x ⊥轴于点E ,∴点B 的坐标为(3,)3k a a,3k BE a∴=,139kCD BE a ∴==,899k k kAD AC CD a a a∴=-=-=,AOD ∆ 的面积为1,∴112AD OC ⋅=,即18129ka a⋅⋅=,解得:94k =.故答案为:94.15.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ∠=︒,2AP =,则PE的长等于+【解答】解:过点A 作AF PE ⊥于点F , 四边形ABCD 是菱形,30D ABC ∴∠=∠=︒,AD CD =,180752DDAC ︒-∠∴∠==︒,由折叠可知:30E D ∠=∠=︒,45APE DAC AEP ∴∠=∠-∠=︒,在Rt APF ∆中,cos PF AP APE =⋅∠,2cos 45PF AF ∴==⨯︒=,在Rt AEF ∆中,tan AFAEP EF∠=,tan 3033AFEF ∴===︒,PE PF EF ∴=+=+,+.三.解答题(共7小题)16.计算:011|2|(2)()4tan 453π----+-︒.【解答】解:原式21341=-+-⨯2134=-+-0=.17.为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动,首先将成绩分为以下六组(满分100分,实际得分用x 表示)::7075A x <,:7580B x <,:8085C x <,:8590D x <,:9095E x <,:95100F x <随机抽取n 名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D 组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E 组”所对应的扇形的圆心角是54︒;(2)n =,并补全图2中的频数分布直方图;(3)在笔试阶段中,n 名学生成绩的中位数是分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.【解答】解:(1)在扇形统计图中,“E 组”所对应的扇形的圆心角是360(15%5%20%45%10%)54︒⨯-----=︒,故答案为:54;(2)945%20n =÷=,展演成绩中:7580B x <的人数为20264314-----=,补全图2中的频数分布直方图:故答案为:20;(2)将抽取的20名学生的笔试成绩从小到大排列,处在中间位置的两个数的平均数为858685.5 2+=,故答案为:85.5;(3)乙同学能获得“环保之星”称号,理由如下:甲同学的总成绩为92289390.223⨯+⨯=+(分),乙同学的总成绩为9029539323⨯+⨯=+(分),9390.2>,∴乙同学能获得“环保之星”称号.18.如图,已知APB∠,点M是PB上的一个定点.(1)尺规作图:请在图1中作O,使得O与射线PB相切于点M,同时与PA相切,切点记为N;(2)在(1)的条件下,若60APB∠=︒,3PM=,则所作的O的劣弧MN与PM、PN所围成图形的面积是33π.【解答】解:(1)如图,O为所作;(2)PM 和PN 为O 的切线,OM PB ∴⊥,ON PN ⊥,1302MPO NPO APB ∠=∠=∠=︒,90OMP ONP ∴∠=∠=︒,180120MON APB ∴∠=︒-∠=︒,在Rt POM ∆中,30MPO ∠=︒ ,333333OM ∴===O ∴ 的劣弧 MN与PM 、PN 所围成图形的面积PMON MONS S =-四边形扇形21120(3)2332π⨯⨯=⨯⨯⨯33π=.故答案为:33π-.19.如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线交BA 的延长线于点D ,过点A 作AE CD ⊥于点E ,延长EA 交O 于点F ,连接BF .(1)求证:AC 平分BAE ∠;(2)若12DE BF =,求tan ADE ∠的值.【解答】(1)证明:连接OC ,如图,CD 为O 的切线,OC CD ∴⊥,AE CD ⊥ ,//OC AE ∴,CAE OCA ∴∠=∠,AC AO = ,OAC OCA ∴∠=∠,OAC CAE ∴∠=∠,AC ∴平分BAE ∠;(2)解:AB 是O 的直径,90AFB ∴∠=︒,DAE BAF ∠=∠ ,AED F ∠=∠,ADE ABF ∴∆∆∽,∴12AD DE AB BF ==,AD AO ∴=,在Rt OCD ∆中,1sin 2OC D OD == ,30D ∴∠=︒,tan tan 303ADE ∴∠=︒=.20.“直播带货”已经成为信息社会中商家的一种新型促销手段,2024年是中国农历甲辰龙年,某主播用3000元购进了一批“小金龙”布偶玩具在直播间销售,由于销售火爆,又用9900元购进了第二批这种玩具,所购数量是第一批购进数量的3倍,但每件的进价贵了3元.(1)求商场购进第一批“小金龙”每件的进价.(2)直播间在第二批“小金龙”布偶销售过程中发现,“小金龙”布偶每分钟的销量y (件)与销售单价x (元)满足一次函数关系10410y x =-+,设每分钟的销售利润为w 元,求w 与x 之间的函数关系式,并求w 最大值.【解答】解:(1)解:设购进第一批“”每件的进价为x 元,则购进第二批“小金龙”每件的进价为(3)x +元,由题意得:3000990033x x ⨯=+,解得:30x =,经检验,30x =是原分式方程的根,且符合题意,答:购进第一批“小金龙”每件的进价为30元.(2)由题意, 第一批每件的进价为30元,∴第二批每件的进价为33元.∴每分钟的销售利润(33)(10410)w x x =--+21074013530x x =-+-210(37)160x =--+.100-< ,∴当37x =时,w 取最大值,最大值为160.21.综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为a m .【问题提出】小组同学提出这样一个问题:若10a =,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为x m ,BC 为y m .由矩形地块面积为28m ,得到8xy =,满足条件的(,)x y 可看成是反比例函数8y x=的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y +=,满足条件的(,)x y 可看成一次函数210y x =-+的图象在第一象限内点的坐标,同时满足这两个条件的(,)x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数8(0)y x x=>的图象与直线1:210l y x =-+的交点坐标为(1,8)和(4,2),因此,木栏总长为10m 时,能围出矩形地块,分别为:1AB m =,8BC m =;或AB =m ,BC =m .(1)根据小颖的分析思路,完成上面的填空;【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由;【问题延伸】当木栏总长为a m 时,小颖建立了一次函数2y x a =-+.发现直线2y x a =-+可以看成是直线2y x =-通过平移得到的,在平移过程中,当过点(2,4)时,直线2y x a =-+与反比例函数8(0)y x x=>的图象有唯一交点.(3)请在图2中画出直线2y x a =-+过点(2,4)时的图象,并求出a 的值;【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a =-+与8y x=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围.【解答】解:(1)将反比例函数8y x=与直线1:210l y x =-+联立得8210y x y x ⎧=⎪⎨⎪=-+⎩,∴8210x x=-+,2540x x ∴-+=,11x ∴=,24x =,∴另一个交点坐标为(4,2),AB 为x m ,BC 为y m ,4AB ∴=,2BC =.故答案为:(4,2);4;2;(2)不能围出;26y x =-+的图象,如答案图中2l 所示:2l 与函数8y x =图象没有交点,∴不能围出面积为28m 的矩形.(3)如答案图中直线3l 所示:将点(2,4)代入2y x a =-+,解得8a =.(4)AB 和BC 的长均不小于1m ,1x ∴,1y ,∴81y x=,8x ∴,18x ∴,如图所示,直线2y x a =-+在3l 、4l 上面或之间移动,把(8,1)代入2y x a =-+得17a =,817a ∴.22.(1)观察猜想:如图1,在Rt ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AB ,AC 上,45BAC DAE ∠=∠=︒,DE AE =,将ADE ∆绕点A 逆时针旋转到如图2所示的位置,连接BD ,交AC 于点C ,连接CE 交BD 于点F ,则BD CE 的值为2BFC ∠的度数为.(2)类比探究:如图3,当90ACB AED ∠=∠=︒,30BAC DAE ∠=∠=︒时,请求出BD CE的值及BFC ∠的度数.(3)拓展应用:如图4,在四边形ABDC 中,AC BC =,90ACB ∠=︒,45BDC ∠=︒.若8CD =,6BD =,请直接写出A ,D 两点之间的距离.【解答】解:(1)90ACB ∠=︒ ,45BAC DAE ∠=∠=︒,DE AE =,ABC ∴∆和ADE ∆为等腰直角三角形,∴AD AB AE AC==BAD BAC CAD ∠=∠+∠ ,CAE DAE CAD ∠=∠+∠,BAD CAE ∴∠=∠,BAD CAE ∴∆∆∽,∴BD AD CE AE==,ABD ACE ∠=∠,又AGB FGC ∠=∠ ,45BFC BAC ∴∠=∠=︒;,45︒;(2)90ACB AED ∠=∠=︒ ,30DAE ∠=∠=︒,12DE AD ∴=,12BC AB =,AE =,AC =,∴233AD AB AE AC ==,BAD BAC CAD ∠=∠+∠ ,CAE DAE CAD ∠=∠+∠,BAD CAE ∴∠=∠,BAD CAE ∴∆∆∽,∴233BD AD CE AE ==,ABD ACE ∠=∠,又AGB FGC ∠=∠ ,30BFC BAC ∴∠=∠=︒;(3)以AD 为斜边在AD 右侧作等腰直角三角形ADM ,连接CM ,如图4所示:AC BC = ,90ACB ∠=︒,ABC ∴∆为等腰直角三角形,45BAC DAM ∴∠=∠=︒,AB AD AC AM==,BAC DAC DAM DAC ∴∠-∠=∠-∠,即BAD CAM ∠=∠,BAD CAM ∴∆∆∽,ABD ACM ∴∠=∠,BD AB CM AC==,又6BD = ,CM ∴== 四边形ABDC 的内角和为360︒,45BDC ∠=︒,45BAC ∠=︒,90ACB ∠=︒,180ABD BCD ∴∠+∠=︒,180ACM BCD ∴∠+∠=︒,90DCM ∴∠=︒,DM ∴=,AD ∴==即A ,D 两点之间的距离为.。
2024年河南省开封市九年级中招第二次模拟考试数学试题(解析版)

2024 年中招第二次模拟考试数 学 试 题注意事项:1.本试题卷共6页,三个大题,满分 120分,考试时间 100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分)下列各题均有四个答案,其中只有一个是正确的.1.下列各数中,与相加等于0的数是( )A. 2 B. C.D. 【答案】B 【解析】【分析】此题考查了绝对值,有理数的加法,正确掌握绝对值的性质是解题关键.直接利用绝对值的性质化简,再利用有理数的加法得出答案.【详解】解:∵,∴与相加等于0的数是.故选:B .2. 如图所示是一个物体的三视图,则这个物体可以是( )A. B.2-2-1212-22-=2-2-C. D.【答案】C 【解析】【分析】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 根据三视图的定义逐项分析即可.【详解】A .左视图不符合题意,故不正确;B .俯视图与左视图与题意不符,故不正确;C .符合题意,正确;D .俯视图不符合题意,故不正确.故选C .3. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量仅有克,数据用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:,故选:C .4. 将一副三角尺如图摆放,点 D 在 上,延长交的延长线于点F ,,则的度数是()0.0000000760.00000007670.7610-⨯77.610-⨯87.610-⨯97610-⨯10n a ⨯110a ≤<80.0000000767.610-⨯=AC EA CB 903045ABC ADE C E ∠=∠=︒∠=︒∠=︒,,F ∠A. B. C. D. 【答案】B 【解析】【分析】本题考查三角板中的角度计算,直角三角形的性质等知识,根据直角三角形互余及平角的定义即可求解.【详解】解:如图,,,,,,,,.故选:B .5. 数形结合是我们解决数学问题常用的思想方法.如图,一次函数与 (m ,n 为常数,)的图象相交于点,则不等式的解集在数轴上表示正确的是( )10︒15︒20︒25︒30,90C ABC ∠=︒∠=︒ 60BAC ∴∠=︒45,90E ABC ∠=︒∠=︒ 45EAD ∴∠=︒180FAB BAC EAD ∠+∠+∠=︒ 180604575FAB ∴∠=︒-︒-︒=︒90,90ABF F FAB ∠=︒∠+∠=︒ 907515F ∠=︒-︒=︒=1y x --y mx n =+0m ≠(1)2-,1x mx n --<+A. B. C.D.【答案】A 【解析】【分析】本题考查的是一次函数与一元一次不等式,在数轴上表示不等式的解集,能利用数形结合求出不等式的解集是解题的关键.直接根据一次函数的图象即可得出结论.【详解】解:由一次函数的图象可知,当时,一次函数的图象在一次函数的图象的下方,关于的不等式的解集是.在数轴上表示的解集,只有选项A 符合,故选:A6. 如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有 ( )A. 1种B. 2种C. 4种D. 无数种【答案】D 【解析】【分析】根据正方形的性质即可解答.【详解】解:由正方形的对称性可知,只要将十字架交点放在正方形的中心,转动任意角度,都能将正方形分成面积相等的四部分,则修路的方法有无数种,故选:D .【点睛】本题考查了正方形的性质,解题关键在于理解正方形的性质.7. 若关于x 的一元二次方程 有两个不相等的实数根,则a 的值可以是( )A.B. 0C.D. 【答案】A 【解析】【分析】本题考查了一元二次方程根的情况,根据一元二次方程根的情况,可得,解出的1x >=1y x --y mx n =+∴x 1x mx n --<+1x >1x >²210ax x --=1-2-440a ∆=+>a取值范围,即可进行判断.【详解】解:根据题意,得,解得,,,故选:A .8. 小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A. B.C. D.【答案】A 【解析】【分析】分别对每段时间的路程与时间的变化情况进行分析,画出路程与时间图像,再与选项对比判断即可.【详解】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分钟,路程600米,s 从0增加到600米,t 从0到10分,对应图像为在凉亭休息10分钟,t 从10分到20分,s 保持600米不变,对应图像为()441440a a ∆=-⨯-=+>1a >-0a ≠ a ∴从凉亭到公园,用时间10分钟,路程600米,t 从20分到30分,s 从600米增加到1200米,对应图像为故选:A .【点睛】本题考查了一次折线图像与实际结合的问题,注意正确理解每段时间与路程的变化情况是解题关键.9. 如图,点是反比例函数的图象与的一个交点,图中阴影部分的面积为,则反比例函数的解析式为( )A. B. C. D. 【答案】D 【解析】【分析】本题考查反比例函数图象的对称性的知识点,根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据在反比例函数的图象上,以及在圆上,即可求得的值.【详解】解:设圆的半径是,根据圆的对称性以及反比例函数的对称性可得:阴影部分的面积等于圆的面积的,∴,),Aa ky x=O 4π2y x=y =4y x=y =14A k r 142144r ππ=解得:.∵点是反比例与在第三象限的一个交点,.∴且∴,∴,则反比例函数的解析式是:故选D .10. 如图,在中,,,,点 P 从点A 出发,沿向点C 以的速度运动,同时点 Q 从点C 出发,沿向点B 以的速度运动(当点 Q 运动到点 B 时,点 P ,Q 同时停止运动).在运动过程中,四边形的面积最小为( )A.B.C.D.【答案】C 【解析】【分析】本题考查了二次函数的应用,勾股定理,列函数关系是解题的关键.先根据勾股定理求出的长,再设点 P 运动时间为t ,四边形的面积为y ,根据题意表示出y 与t 的函数关系式,进一步利用二次函数的性质即可求解.【详解】解:由题可知,是直角三角形,∴,设点 P 运动时间为t ,四边形的面积为y ,则,4r =),Aa ky x=O 0a <2k =24OA r a ====2a =-()22k =-=y =ABC 90C ∠=︒4cm BC =5cm AB =AC 1cm/s CB 2cm/s PABQ 215cm 229cm 22154cm 29cm 4AC PABQ ABC 3AC ==PABQ 1122y AC BC CQ CP =⋅⋅-⋅⋅∴,则当时,y 最小为.故选:C .二、填空题(每小题3 分,共15 分)11. 北京冬季里某一天的气温为,的含义是 ________ .【答案】零下【解析】【分析】本题考查了负数的定义,根据温度的定义,联系生活,想想我们看过的天气预报,从而想到含义.【详解】解:含义是零下.故答案为:零下.12. 不等式组 的正整数解的和为 ________.【答案】3【解析】【分析】本题考查了解一元一次不等式组,熟练运用不等式性质解一元一次不等式是解题的关键.先求出不等式组的解集,再确定正整数解,最后进行计算即可.【详解】解:解不等式①,得解不等式②,得∴不等式组的解集为:∴正整数解为1,2即故答案为:3.13. 某校“综合与实践”小组为了解全校2400名学生的读书情况,随机抽取部分学生进行问卷调查,绘制了如图所示的统计图:()21131534232224y t t t ⎛⎫=⨯⨯-⋅⋅-=-+ ⎪⎝⎭32t =1543~3-℃℃3-℃3℃3℃3℃123212x x -≥-⎧⎪⎨+>-⎪⎩123212x x -≥-⎧⎪⎨+>-⎪⎩①②2x ≤4x >-42x -<≤123+=调查内容为:您平均每周阅读课外书的时间大约是(以下四个选项只能单选,每项含最小值,不含最大值)_________A .8小时及以上B .6~8小时C .4~6小时D .0~4 小时估计该校2400名学生中,平均每周阅读课外书时间在“6小时及以上”的人数为 _______________ 名【答案】1152【解析】【分析】本题主要考查了用样本估计总体,扇形统计图,用2400乘以样本中平均每周阅读课外书时间在“6小时及以上”的人数占比即可得到答案.【详解】解:名,∴估计该校2400名学生中,平均每周阅读课外书时间在“6小时及以上”的人数为名故答案为:.14. 我国古代《四元玉鉴》中记载二果问价问题,其内容如下:九百九十九文钱,甜果苦果买千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?其意思为:九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?若设买甜果x 个,买苦果y 个,根据题意所列方程组是______.【答案】【解析】【分析】设买甜果x 个,买苦果y 个,根据“九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果”,列出方程组,即可求解.【详解】解:设买甜果x 个,买苦果y个,根据题意得:()240016%32%1152⨯+=11521152100011499997x y x y +=⎧⎪⎨+=⎪⎩.故答案为:【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确列出方程组是解题的关键.15. 如图所示,在中,,,是的中位线,是边上一点,,是线段上的一个动点,连接,相交于点.若是直角三角形,则的长是__________ .【答案】或【解析】【分析】由图可知,在中,的度数是一个定值,且不为直角.故当或时,是直角三角形.因此,本题需要按以下两种情况分别求解.当和当两种情况求解即可.【详解】∵,∴,,当时,则.过点作,垂足为.如图100011499997x y x y +=⎧⎪⎨+=⎪⎩100011499997x y x y +=⎧⎪⎨+=⎪⎩ABC 45A B ∠∠==︒16AB =EF ABC D AB 2AD =P DB EP DF O DOP OE 165ODP ODP ∠ODP ∠90OPD ∠=︒90DOP ∠=︒ODP 90OPD ∠=︒90DOP ∠=︒45A B ∠∠==︒180454590ACB ∠=︒-︒-︒=︒CA CB =①90OPD ∠=︒EP AB ⊥F FN AB ⊥N ()∵在中,,,,,∴在中,∵是中位线,∴∴在中,,∵,,,∴.∵,,∴在中,,∵是的中位线,,∴,,∴,即,∴,∴在中,.当时,则.过点作,垂足为.如图∵,,的Rt CAB 90C ∠=︒CA CB =16AB =45A B ∠∠==︒Rt CAB cos cos 4516AC BC AB A AB ==⋅=⋅︒==EF CAB 1122BF BC ==⨯=Rt BNF sin sin 454BN FN BF B BC ==⋅=⋅︒==2AD =16AB =4NB =162410DN AB AD NB =--=--=4FN =10DN =Rt DNF 42tan 105FN FDN DN ∠===EF CAB 16AB =1116822EF AB ==⨯=EF AB ∥EFD FDN ∠∠=EFO FDN ∠∠=2tan tan 5FDN EFO ∠=∠=Rt OEF 216tan 855OE EF EFO =⋅∠=⨯=②90DOP ∠=︒EP DF ⊥F FN AB ⊥N ()4FN =10DN =∴在中,,∴在中,,∵,∴,∵,∴在中,综上所述,的长是.故答案为:.【点睛】在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.三、解答题(本大题共8个小题,共75分)16. 先化简,再求值∶ 其中.解:原式……解:原式……乙同学(1)甲同学解法的依据是 ,乙同学解法的依据是 ;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.Rt DNF DF ===Rt DNF sin FN NDF DF ∠===EFO FDN ∠∠=5sin sin 13DEO EMF ∠=∠=10EF =Rt EOF sin 8OE EF EFO =⋅∠==EO 16516521,11x x x x x x -⎛⎫+⋅ ⎪-+⎝⎭1.x =()()()()()()21111111x x x x x x x x x x⎡⎤+--=+⋅⎢⎥-++-⎢⎥⎣⎦221111x x x x x x x x--=⋅+⋅--【答案】(1)②,③(2)见解析【解析】【分析】本题考查了分式的混合运算,根据题目的特点,灵活选用合适的解法是解题的关键.(1)甲同学的解法两个分式先通分依据是分式的基本性质,乙同学根据乘法分配律先算乘法,后算加法,这样简化运算,更简便了.(2)选择甲同学的解法,先通分,再约分化简即可;选择乙同学的解法,先因式分解,再约分,最后进行加法运算即可.【小问1详解】甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】选择甲同学的解法.原式 ;或选择乙同学的解法原式当时,原式17. 2024年3月25日,是第29个全国中小学生安全教育日,为切实增强同学们的安全防范意识和避险能力,保障学生安全,提高学生面临突发安全事件自救自护应变能力,某校在 3月份开展了一系列的安全知识讲座以及相应的安全演练,为了解学生对“安全知识”的掌握情况.学校分别从八年级和九年级随机抽取各40名学生进行测试,并收集了这些学生的测试成绩,整理和分析,研究过程中的部分信息如下:信息一:安全知识测试题共10道题目,每题10分;信息二:九年级成绩的频数分布直方图如下:()()()()()()2111.1111x x x x x x x x x x⎡⎤+--=+⎢⎥-++-⎢⎥⎣⎦()()222212211x x x x x x x x x x x ⎡⎤++--=⋅==⎢⎥-+⎢⎥⎣⎦221111x x x x x x x x--=⋅+⋅-+()()()()111111x x x x x x x x x x+-+-=⋅+⋅-+112x x x =++-=1x=-)212=-=-信息三:八年级平均成绩的计算过程如下:(分)信息四:统计量平均数中位数众数方差九年级82.580n 八年级80.5m 70根据以上信息,解答下列问题:(1) , ;(2)你认为哪个年级的成绩更加稳定?请说明理由;(3)在本次测试中,九年级甲同学和八年级乙同学的成绩均为80分,你认为两人在各自年级中谁的成绩排名更靠前?请说明理由.(4)学校安排七年级主办一期安全知识宣传板报,要求从A .交通安全,B .食品安全,C .消防安全,D .网络与信息安全,E .心理健康与安全中选择两个主题,请用列表或画树状图的方法求七年级选择D 和E 的概率.【答案】(1)75;80(2)九年级的成绩更稳定,理由见解析(3)乙同学的成绩在自己年级排名更靠前,理由见解析(4)七年级选择D 和E 的概率为.【解析】【分析】本题考查列表法或树状图法,以及方差的意义、众数和中位数等知识.(1)根据中位数和众数的定义求解即可;6037017803909100880.5317398⨯+⨯+⨯+⨯+⨯=++++118.75174.75m =n =110(2)根据方差的意义求解即可;(3)根据中位数的意义求解即可;(4)先画树状图,再由概率公式解题即可.【小问1详解】解:八年级成绩第20和21个数分别为:70和80,则八年级成绩的中位数,九年级成绩,80分出现了14次数,次数最多,九年级成绩的众数,故答案为:75;80;【小问2详解】解:九年级1班的成绩更稳定,九年级成绩的方差为,八年级成绩的方差为,九年级方差八年级的方差,九年级的成绩更稳定;【小问3详解】解:九年级成绩的中位数为80,八年级成绩的中位数为75,而甲同学成绩小于该班成绩中位数,而乙同学成绩大于该班成绩中位数,乙同学成绩在该班成绩的排名更靠前;【小问4详解】解:画树状图如下:所有等可能的结果数有20种,其中七年级选择D 和E 的结果数有2个,七年级选择D 和E 的概率为.18. 如图,内接于,是的直径,D 是的中点,连接.7080752m +==80n = 118.75174.75∴<∴ ∴212010==ABC O AB O BCAD(1)请用无刻度的直尺和圆规,过点D 作直线l 垂直于直线(保留作图痕迹,不写作法).(2)若(1)中所作的直线l 与直线交于点E ,与的延长线交于点F .①判断直线与的位置关系,并说明理由.②若,的长为 .【答案】(1)见解析(2)①直线与相切,理由见解析;②【解析】【分析】(1)根据垂线的作图方法画图即可;(2)①连接交于点G ,证明四边形是矩形得,可证直线与相切;②证明,结合可求出,,从而,利用锐角三角函数求出,可得半径,然后根据弧长公式求解即可.【小问1详解】如图,直线l 即为所求,【小问2详解】①如图,连接交于点G ,∵是的直径,∴.∵,∴.∵D 是的中点,AC AC AB EF O DF DA =DE =AD EF O 43πOD BC CEDG 90ODE ∠=︒EF O AFD BAD CAD ∠=∠=∠90ADE CAD ∠+∠=︒30AFD BAD CAD ∠=∠=∠=︒60BAC ∠=︒120AOD ∠=︒4AB =OD BC AB O 90ACB ∠=︒EF AC ⊥90CED ∠=︒ BC∴,∴四边形是矩形,∴,.∵是的半径,∴直线与相切;②∵D 是的中点,∴.∵,∴,∵,∴,∴,∴.∵,∴,,∴,∴.∵,∴,∴,∴的长为∶.【点睛】本题考查了尺规作图,矩形的判定与性质,垂径定理,切线的判定,等边三角形的判定与性质,解直角三角形,以及弧长公式,正确作出辅助线是解答本题的关键.19. 水龙头关闭不严会造成滴水,为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表中的一组数据.时间510152025…OD BC ⊥CEDG 90ODE ∠=︒CG DE ==OD O EF O BCBAD CAD ∠=∠OD BC ⊥2BC CG ==DF DA =AFD BAD ∠=∠AFD BAD CAD ∠=∠=∠2ADE BAC BAD ∠=∠=∠90ADE CAD ∠+∠=︒30AFD BAD CAD ∠=∠=∠=︒60BAC ∠=︒260BOD BAD ∠=∠=︒120AOD ∠=︒sin BC BAC AB∠=4AB ==2OA OB == AD 120241803ππ⨯=5min t/min水量173247a 77…(1)探究:根据上表中的数据,请判断和 (,为常数)哪个解析式能准确的反映水量y 与时间t 的函数关系?求出该解析式并写出漏记的a 值;(2)应用:①兴趣小组用量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水,请估算这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用天数.【答案】(1)(2)①的量筒没有装满;②81天【解析】【分析】本题考查了反比例函数的应用,以及一次函数的应用,正确列出函数解析式是解答本题的关键.(1)根据表格中的数据特点分析即可;(2)把代入求出y 的值,与比较即可;②求出30天的漏水量,进而可判断可供一位成年人饮用天数.【小问1详解】∵,∴表中的数据不符合.观察表格, 可发现时间t 每增加5分钟, 水量y 增加15mL , 故可得 能正确反映水量y 与时间t 的函数关系.把和代入得,解得 ,∴水量y 与时间t 函数关系.把代入得【小问2详解】的y/mL ()110k y k t≠=2y k t b =+20k ≠2k 100mL 1600mL 32,62y t a =+=100mL 30t =32y t =+100mL 5171032⨯≠⨯()110k y k t≠=y k t b =+₂5,17t y ==10,32t y ==2y k t b =+225171032k b k b +=⎧⎨+=⎩232k b =⎧⎨=⎩32y t =+20,t y a ==32y t =+320262a =⨯+=①把代入得∵∴的量筒没有装满②∵由函数解析式可知每分钟的滴水量为,∴30天滴水量, (天)答:这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用81天.20. 如图①所示的手机平板支架由托板,支撑板和底座构成,如图所示图②是其侧面结构示意图.已知托板长,支撑板长,,托板固定在支撑板顶端点C 处,可绕C 点旋转,支撑板可绕点D 转动.(结果精确到)(1)若,点A 到底座的距离是;(2)为了观看舒适,在(1)中的调整成.再将绕点D 顺时针旋转,恰好使点B 落在直线上,则顺时针旋转旋转的角度为 ,此时点A 到底座的距离与(1)中相比是增大了还是减小了?增大或减小了多少?【答案】(1)(2)30,此时点到底座的距离与(1)中相比减小了.【解析】【分析】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)过点C 作, 垂足为N , 过点A 作,交的延长线于点M ,过点C 作,垂足为F ,则四边形是矩形,从而可得,先在中, 求出的长, 再在中,求出,然后进行计算即可解答;(2)根据题意先画出图形, 然后在中,利用锐角三角函数求出,然后进行计算30t =32y t =+330292y =⨯+=92100<100mL 3mL ()3024603129600mL ⨯⨯⨯=129600160081÷=150mm AB =m CD =60mm BC =AB CD 0.1mm 2.24≈≈≈7560DCB CDE ∠=︒∠=︒,DE mm 75DCB ∠=︒90︒CD DE CD ︒DE 153.5A DE 23.7 mm CN DE ⊥AM DE ⊥ED CF AM ⊥CFMN ,90FM CN FCN =∠=︒Rt CDN △CN Rt AFC △AF Rt DCB △30CDB ∠=︒即可解答.【小问1详解】解:过点作,垂足为,过点作,交的延长线于点,过点作,垂足为,如图:则四边形是矩形,∴,∵,,∴,在中, ,∴,∵,∴,∵,∴,∴,在中,,,∴点到直线的距离为,故答案为:.【小问2详解】解:如图:过点作于点,C CN DE ⊥N A AM DE ⊥ED M C CF AM ⊥F CFMN ,90FM CN FCN =∠=︒150mm AB =60mm BC =90mm AC AB BC =-=Rt CDN△60CD CDE =∠=︒sin6090mm,CN CD ∴=⋅︒==90mm FM CN ==90CND ∠=︒90906030DCN CDN ∠=︒-∠=︒-︒=︒75DCB ∠=︒45BCN DCB DCN ∠=∠-∠=︒180180904545ACF FCN BCN ∠=︒-∠-∠=︒-︒-︒=︒Rt AFC △90mm AC=sin459063.5mm,AF AC ∴=⋅︒==≈9063.5153.5mm AM AF FM ∴=+=+=A DE 153.5mm 153.5A AM DE ⊥M∵,在中,∴旋转的角度为在,∴,∵在中,,∴,∵,∴此时点到底座的距离与(1)中相比减小了.21. 习近平总书记说,读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,决定购买获得茅盾文学奖的甲、乙两种书.已知每本甲种书比每本乙种书多元,若购买相同数量的甲、乙两种书分别需花费元和元.(1)求甲、乙两种书的单价.(2)如果学校决定再次购买甲、乙两种书共本,总费用不超过元,那么该校最多可以购买甲种书多少本?【答案】(1)甲、乙两种书的单价分别为元、元(2)该校最多购买本甲种书【解析】【分析】本题主要考查了分式方程及不等式的应用,读懂题意,正确找出相等关系和不等关系是解题的关键.90DCB ∠=︒Rt DCB△60mm,DC BC ==tan BC CDB CD ∴∠===30,CDB ∴∠=︒CD 603030,=︒-︒=︒Rt DCB △30,CDB ∠=︒9060ABM CDB ∠=︒-∠=︒Rt AMB △150mm AB=sin6015075 1.73129.8mm AM AB =⨯︒==≈⨯≈153.5129.823.7mm -=A DE 23.7mm 10175012501002800352530设甲种书的单价为元,则乙种书的单价为元,根据购买相同数量的甲、乙两种书分别需花费元和元求解即可;设该校购买了甲种书本,则购买了乙种书本,根据购买甲、乙两种书共本,总费用不超过元,列不等式求解即可.【小问1详解】解:设甲种书的单价为元,则乙种书的单价为元,由题意得解得经检验,是原分式方程的解,且符合实际.∴答:甲、乙两种书的单价分别为元、元.【小问2详解】解:设该校购买了甲种书本,则购买了乙种书本,则,解得∶∴该校最多购买本甲种书.22. 根据以下素材,探索并完成任务.探究汽车刹车性能“道路千万条,安全第一条”.刹车系统是车辆行驶安全重要保障,某学习小组研究了刹车性能的相关问题(反应时间忽略不计).素材1刹车时间:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的时间.刹车距离:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的距离.汽车研发中心设计一款新型汽车,某兴趣小组成员记录了模拟汽车在公路上以某一速度匀速行驶时的刹车性能测试数据,具体如下:刹车后汽车行驶时间1234素材2刹车后汽车行驶距离27486372素材3该兴趣小组成员发现:()1x ()10x -17501250()2m ()100m -1002800x ()10x -1750125010x x =-35x =35x =10351025x -=-=3525m ()100m -()3525 100 2800m m +-≤30m ≤30()s t ()m y①刹车后汽车行驶距离y (单位:)与行驶时间t (单位:)之间具有函数关系(、a 、b 为常数);②刹车后汽车行驶距离y 随行驶时间t 的增大而增大,当汽车刹车后行驶的距离最远时,汽车完全停止.问题解决:请根据以上信息,完成下列任务.任务一:求 y 关于t 函数解析式.任务二:汽车司机发现正前方处有一个障碍物在路面,立刻刹车,判断该车在不变道的情况下是否会撞到障碍物?请说明理由.【答案】任务一 :;任务二:该车在不变道的情况下不会撞到障碍物.理由见解析【解析】【分析】本题考查二次函数的应用,理解题意,掌握待定系数法是解题的关键.(1)利用待定系数法即可求出y 关于t 的函数解析式;(2)求出(1)中函数的最大值,与比较,即可解决问题.【详解】解∶任务一 :将、代入 得 解得 ∴y 关于 t 的函数解析式为任务二:不会∴当时, 汽车停下, 行驶了,∵∴该车在不变道的情况下不会撞到障碍物.23. 综合与实践问题情境:“综合与实践”课上,李老师进行如下操作,将图①中的矩形纸片沿着对角线剪开,得到两个全等的三角形纸片,表示为和,其中,将和按图②所示的方式摆放,其中点B 与点G 重合(标记为点B ),并将绕点B 旋转,直线、相交于的m s ²y at bt =+0a ≠90m 2330y t t =-+90m ()1,27()2,48²y at bt=+27,4842,a b a b =+⎧⎨=+⎩330.a b =-⎧⎨=⎩2330.y t t =-+()223303575y t t t =-+=--+ 5t =75m 7590<ACB △DEG △90ACB DEG ∠=∠=︒A D ∠=∠ACB △DEG △DEG △DE AC点F .初探发现:(1)如图②,猜想,数量关系是 .深入探究:(2)李老师将图②中的绕点B 继续旋转.①“善思”小组提出猜想:旋转过程中,当点E 落在的内部,如图③,线段,,有一定的数量关系,请你写出他们的猜想,并说明理由.②“智慧”小组也提出:在旋转的过程中,当时,过点A 做于点H ,若给出,,可以求出的长.请你思考此问题,直接写出结果.【答案】(1)(2)①,理由见解析;②或3【解析】分析】(1)通过来证明即可求解.(2)①主要利用推出,进行等量变换即可.②Ⅰ.当在上方时,设与交点为M ,过点M 作交于点N ,通过推出,进而得到,利用勾股定理和即可求出,的值,再通过即可求解.Ⅱ.当在下方时,通过,,【CF EF DEG △ACB △AF EF ED DEG △CBE BAC ∠=∠AH DE ⊥3BC =4AC =AH CF EF =AF EF ED +=95ACB DEG △≌△()Rt Rt HL BCF BEF △△≌ACB DEG △≌△AF FC DF EF +=-BE BC AB DE MN DB ⊥BD ACB DEG △≌△DBM D Ð=ÐND NB =cos DN DE D DM DB ∠==AM BM AMH BME △∽△BE BC AB HE ∥AH BE ∥证明四边形是矩形即可求出.小问1详解】解:连接,∵∴,∴∴∴故答案为:.【小问2详解】①由(1)可知∵∴∴∴∴②Ⅰ.当在上方时,设与交点为M ,过点M 作交于点N∵∴,,,【90E H ∠=∠=︒AHEB BF ACB DEG△≌△CB EB =90C DEB ∠=∠=︒90BEF ∠=︒()Rt Rt HL BCF BEF △△≌CF EF=CF EF =CF EF=ACB DEG△≌△AC DE=AF FC DF EF+=-AF EF DF FC DF EF DE+=-=-=AF EF ED+=BE BC AB DE MN DB ⊥BD ACB DEG△≌△CAB D ∠=∠ABC DGE ∠=∠3EG BC ==4DE AC ==∴∴∵∴∴∵∴由勾股定理可得∴∵∴∴∴∵,,∴∴∴Ⅱ.当在下方时,如图:∵∴,, ∴ABC ABE DBE ABE∠-∠=∠-∠CBE DBM∠=∠CBE BAC∠=∠DBM DÐ=ÐMD MB=MN DB⊥ND NB=5AB ==115222ND BD AB ===cos DN DE D DM DB ∠==258DN DB DM DE ⋅==258MD MB ==2515588AM AB BM =-=-=AH DE ⊥BE DE ⊥AMH BME∠=∠AMH BME△∽△AH AM BE DM=153982558AM BE AH BM ⨯⋅===BE BC ACB DEG△≌△CAB EDG ∠=∠ABC DGE ∠=∠ABC DBC DBE DBC∠-∠=∠-∠∴∵∴∴∵,,∴∴∴四边形是矩形∴【点睛】本题考查了全等三角形的性质、相似三角形的性质与判定、勾股定理、三角函数的应用、矩形的性质和判定,适当添加辅助线构造相似三角形是解题的关键.ABD EBC∠=∠CBE BAC∠=∠ABD EDG∠=∠AB HE∥AH DE ⊥BE DE ⊥90E H ∠=∠=︒AH BE∥AHEB 3AH BE ==。
2023年浙江省九年级联合模拟考试英语试题(附答案)

浙江省九年级联合模拟考试英语试题(一)听力部分(共25分)一、听短对话,回答问题(共5小题, 每小题1分,计5分)听下面五段小对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试题相应位置。
每段对话仅读一遍。
1. What subject did the girl fail ?A. Math.B. English.C. Chinese.2. Why do they wear the strange glasses ?A. Because they like them.B. Because they can keep their eyes safe.C. Because they want to be cool .3. What time does the plane take off ?A.8:10.B. 7:45.C.7:55.4. Where does the conversation most probably take place?A. In a shop.B. In a restaurant.C. In a bank.5. What’s the weather like n ow?A. Cold.B. Rainy.C. Cloudy.二、听较长对话,回答问题(共5小题,每小题2分,计10分)听第一段对话,回答6—7小题。
对话读两遍。
6.What day is coming soon?A. Mother’s Day.B. Children’s Day.C. Father’s Day.7.Who will help Frank wash the car?A. His sister.B. His brother.C. His friend.听第二段对话,回答8-10小题。
8.When is Fred going to the United States?A. Next Monday.B. Next Tuesday.C. Next Wednesday.9.How will Fred and Lily communicate with each other?A. By writing letters.B. By making phone calls.C. By sending e-mail.10.What can we learn about Fred?A. Fred and Lily will study together in the United States.B. Fred will study in the United States for a long time.C. Fred’s parents want him to work in the Uni ted States.三、听短文,回答问题(共5小题,每小题2分,计10分)听下面一篇短文。
湖北省武汉市光谷实验中学2023—-2024学年元调模拟九年级理化试题(原卷版)

活动时间:1月12日学科:化学试题
满分:120分时间:120分钟
可能用到的相对原子质量:H-1 C-12 O-16 N-14 Ca-40 Fe-56 Cu-64 Zn-65
一、选择题(共20小题,每小题3分,共60分,请将答案填在答题卡上)
1.中华文明历史悠久。《天工开物》记载的下列工艺过程中,主要发生了化学变化的是
②排列再紧密的分子之间也有间隔
③过程Ⅰ反应属于化合反应,但不是氧化反应
④过程Ⅱ中分子的种类不变,属于物理变化
A.①②B.②④C.①②④D.②③④
4.小明利用12种元素制作了如图所示的钟面。下列说法正确的是
A.钟面上的这些元素最本质的区别是:最外层电子数不同
B.钟面上共包含了三类元素,分别是:金属元素、非金属元素和稀有气体元素
①实验开始前应先点燃酒精喷灯,再通入一氧化碳气体。
②若无A装置,测定 原固体中铁元素质量分数将偏大
③根据实验数据进行计算,可确定原固体中铁和氧的原子的个数比为1:1
④B中反应停止时关闭K1、K2,主要是为了防止B中生成的固体被氧化。
⑤原固体可能是纯净物,也可能是混合物。
⑥原14.4克固体的组成可能有7种情况。以上说法正确的个数有
13.某校实验室有一包潮湿的氧化铜粉末样品(其中还含有少量铜粉)。小轩与小逸同学对该样品中氧化铜的含量进行了测定,他们按如图所示装置进行实验(装置气密性良好,部分固定装置已略去,碱石灰是氧化钙和氢氧化钠的混合物)
实验步骤如下:
I.称取12g锌粒放入装置A的小布袋中,再称取6.0g潮湿的样品装入装置C的玻璃管中
请回答下列问题:
(1)丙、戊的化学性质不同的原因是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荆州市东方红中学2014年初中升学考试英语模拟试卷第I 卷选择题(五大题,共70分)Ⅰ. 对话理解(5分)根据你听到的小对话从每小题的三个选项中选出正确答案,每段对话听两遍。
( )1. How many people are going to climb the mountain tomorrow?A. 6.B. 5C. 4.( )2. When is the woman going to leave for Beijing?A. On Saturday.B. On Sunday.C. On Friday.( )3. Why is Susan worried?A. She can‟t find her child.B. She lost her mobile phone.C. She missed her bus. ( )4. How much is John‟s watch?A. Fifty yuan.B. Fifteen yuan.C. Thirty-five yuan. ( )5. Why doesn‟t the man‟s father like the city?A. He likes to live alone.B. He likes the country life.C. He hates the noise. Ⅱ. 听力篇章理解(15分)听A、B、C三段对话和D篇一段独白,并从每小题的三个选项中选出一个正确答案,对话或独白听两遍。
A听下面一段对话,回答第6至第8三个小题( )6. Why does the woman have to put off the meeting?A. Because she has another important meeting.B. Because she couldn‟t meet her cousin.C. Because her plane is put off by the heavy snow.( )7. What does the woman ask Mr Smith to do?A. To go to her cousin‟s party.B. To send her cousin a message.C. To meet her cousin at the airport.( )8. When will they have the meeting?A. On Thursday.B. On Tuesday.C. On Sunday.B听下面一段对话,回答第9至第12三个小题( )9. Where did Sue stay during the holiday?A. In a hotel.B. In the open air .C. In a farmer‟s house.( )10. What about their meals?A. They had meals at the restaurants.B. They cooked meals at a farmer‟s home.C. They cooked meals all by themselves.( )11. How long did it take them to get back home?A. About two hours.B. About three hours.C. About four hours.( )12. What did the man think of the computer games?A. Difficult.B. Interesting.C. Exciting.C听下面一段对话,回答第13至第16三个小题( )13. When will they get to Beijing?A. At about 10:00.B. At about 7:30.C. At about 8:30.( )14. Where will they have lunch?A. At the theatre.B. At the hotel.C. At the airport.( )15. Why will they have dinner near the theater?A. Because the woman needs to have enough time to dress up.B. Because they need to have enough time to watch the show.C. Because they need to have enough time to go to the theater.( )16. When will the show start?A. At 7:00 pm.B. At 8:00 am.C. At 8:00 pm.D听下面一段短文,回答第17至第20三个小题( ) 17. How old was John when he finished school?A. 17.B. 18.C. 27.( )18. Where did his father want him to work?A. At school.B. in the hospital.C. In the office.( )19. What did the man give him?A. A pen.B. A piece of paper.C. A chair and a desk.( )20. When was John born?A. Every year.B. October 2 nd.C. September 2 nd.VI.听力填空。
(共5分,每小题1分)听短文,并根据短文内容回答问题,每空一词。
(该题为非选择题,请看第II卷第56—60题,并在答题卡上第II卷答题栏中的相应位置答题。
)III.选择填空。
(共10分,每小题1分)21. –Everyone should learn to say “ I love you.” to their parents.–I think so. __________ in life is more important than family.A. SomethingB. AnythingC. NothingD. Everything22. –I will buy you a new bike if you learn how to swim this summer.–Is that a________ ? I‟m sure I‟ll get the bike.A. chanceB. ideaC. promiseD. treat23. –Many boy students think math is _______ English.–I agree. I‟m weak in English.A. much difficult thanB. more difficult thanC. less difficult thanD. so difficult as24. –look!Some people are running through the red lights.–We should wait ________ others are breaking the traffic rule.A. ifB. becauseC. unlessD. although25. –Someone is knocking at the door. Is it Tom?–It ________ be him. He is giving a performance at the theater now.A. mayB. mustC. mustn‟tD. can‟t26. –Do you know why he didn‟t _______ a word when he ______ to?--Because he was too nervous.A. speak, speaksB. say, was spokenC. say, spokeD. speak, is spoken27. –Wait. Did this ________ the back of the truck?–Yes. We‟re going to call the police to stop the truck.A. fall offB. fall behindC. fall intoD. fall asleep28. –What‟s the matter?–I‟m having trouble ______who has taken my book .A. findingB. looking forC. looking upD. finding out29. –Do you know what her interests are ?–Sorry , I don‟t know. Because we talk ______about work when we meet .A. luckilyB. safelyC. mainlyD. clearly30. –Did the radio say ______?–Yes, from Human.A. how the bad rice cameB. where the bad rice came fromC. how did the bad rice comeD. where did the bad rice come fromIV.完形填空。
(共10分,每小题1分)阅读下面短文,从短文后所给各题的四个选项A、B、C、和D中,选出可以填入空白处的最佳选项。
Everyone may have days like this in their life. It is when you get up in the morning, things aren‟t the way you 31 they would be. That‟s when you have to encourage yourself and tell yourself that things will get 32 .There are times when people let you down and make you 33 . But those are the times when you must remind yourself not to 34 your own views. There will be 35 to face and changes to make in your life. This depends on whether you believe in 36 and would like to accept them.Always keep making your way in the right direction. It may not be easy at times, 37 difficulties help us grow. In those times of 38 . you will find you becoming much stronger.So when the days that are filled with many difficulties come, you should 39 to believe in yourself and do your best. That‟s because the challenges and changes will help you 40 your aims.Never stop believing in yourself. It will make a big difference to your life!31. A. suggested B. discovered C. explained D. hoped32. A. worse B. better C. less D. more33. A. upset B. relaxed C. excited D. active34. A. care about B. deal with C. give up D. look for35. A. challenges B. chances C. opportunities D. entertainments36. A. me B. myself C. you D. yourself37. A. but B. or C. so D. and38. A. arguing B. obeying C. playing D. fighting39. A. stop B. stay C. try D. decide40. A. plan B. achieve C. imagine D. loveV.阅读理解。