——14.3因式分解同步练习及含答案1
【精编】人教版八年级数学上册同步练习14.3因式分解(含答案解析).doc

14.3因式分解专题一因式分解1.下列分解因式正确的是()A.3x2-6x =x(x-6) B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x-y)(4x+y) D.4x2-2xy+y2=(2x-y)22.分解因式:3m3-18m2n+27mn2=____________.3.分解因式:(2a+b)2-8ab=____________.专题二在实数范围内分解因式4.在实数范围内因式分解x4-4=____________.5.把下列各式因式分解(在实数范围内)(1)3x2-16;(2)x4-10x2+25.6.在实数范围内分解因式:(1)x3-2x;(2)x4-6x2+9.专题三因式分解的应用7.如果m-n=-5,mn=6,则m2n-mn2的值是()A.30 B.-30 C.11 D.-118.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.9.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中,(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.状元笔记【知识要点】1.因式分解我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式因式分解,也叫做把这个多项式分解因式.2.因式分解的方法(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写出公因式与另一个因式的乘积的形式,这样分解因式的方法叫做提公因式法.(2)将乘法公式的等号两边互换位置,得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法. (3)平方差公式:a 2-b 2=(a+b)(a -b),两个数的平方差,等于这两个数的和与这两个数的差的积.(4)完全平方公式:a 2±2ab+b 2=(a ±b)2,两个数的平方和,加上(或减去)它们的积的2倍,等于这两个数的和(或差)的平方.【温馨提示】1.分解因式的对象必须是多项式,如把25a bc 分解成abc a ⋅5就不是分解因式,因为25a bc 不是多项式.2.分解因式的结果必须是积的形式,如21(1)1x x x x +-=+-就不是分解因式,因为结果(1)1x x +-不是积的形式.【方法技巧】1.若首项系数为负时,一般要提出“—”号,使括号内首项系数为正,但要注意,此时括号内的各项都应变号,如)2(22--=+-x x x x .2.有些多项式的特点与公式相比,只是某些项的符号不符,这时就需要先对符号进行变化,使之符合公式的特点.参考答案:1.B 解析:A 中,3x 2 - 6x=3x(x -2),故A 错误;B 中,-a 2+b 2=-(a -b)(a+b)=(b+a)(b -a),故B 正确;C 中,4x 2 - y 2=(2x)2-(2y)2=(2x -y)(2x+y),故C 错误;D 中,4x 2-2xy+y 2的中间项不是2×2x×y ,故不能因式分解,故D 错误.综上所述,选B .2.3m(m -3n)2 解析:3m 3-18m 2n+27mn 2=3m(m 2-6mn+9n 2)=3m(m -3n)2.3.(2a -b)2 解析:(2a+b)2-8ab=4a 2+4ab+b 2-8ab=4a 2-4ab+b 2=(2a -b)2.4.(x 2 解析:x 4-22-2)=(x 2.5.解:x -4);10x 2+25=(x 2-5)2)2(x 2.6.解:2-(2)x 4-6x 2+9=(x 2-3)2)2(x 2.7.B -n=-5,mn=6,∴m 2n -mn 2=mn (m -n )=6×(-5)=-30,故选B .8.2013 解析:32×20.13+5.4×201.3+0.14×2013=0.32×2013+0.54×2013+0.14×2013=2013×(0.32+0.54+0.14)=2013×1=2013.9.解:(1)答案不唯一,如:(x 2-4x )+(x 2+2x )=2x 2-2x=2x (x -1).(2) 答案不唯一,如:x 2-4x >x 2+2x ,合并同类项,得-6x >0,解得x <0.。
2022-2023学年人教版八年级数学上册《14-3因式分解》同步练习题(附答案)

2022-2023学年人教版八年级数学上册《14.3因式分解》同步练习题(附答案)一.选择题1.下列等式中,从左到右的变形是因式分解的是()A.a(a﹣3)=a2﹣3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+)D.a2﹣9=(a+3)(a﹣3)2.4a2b3与2ab4c的公因式为()A.ab B.2ab C.2ab3D.2abc3.把多项式x2+2x﹣8因式分解,正确的是()A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)4.下列多项式中,不能用乘法公式进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+1 5.若x2+px+q=(x﹣3)(x﹣5),则p+q的值为()A.15B.7C.﹣7D.﹣86.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.a2(a2﹣1)﹣a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于08.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是()A.2B.5C.20D.99.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4B.2C.﹣2D.﹣410.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽12.如果△ABC的三边a、b、c满足ac2﹣bc2=(a﹣b)(a2+b2),则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形13.(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9二.填空题14.分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),乙看错b的值,分解的结果是(x﹣2)(x+1),则a=,b=.15.若实数x满足x2﹣3x﹣1=0,则2x3﹣5x2﹣5x﹣2020的值为.16.多项式8x2m y n﹣1﹣12x m y n中各项的公因式为.17.已知a+b=1,则代数式a2﹣b2+2b+9的值为.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.19.若a=12,b=109,则ab﹣9a的值为.20.如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a的正方形,两块是边长为b 的正方形,三块是长为a,宽为b的矩形(a>b).观察图形,发现多项式a2+3ab+2b2可因式分解为.21.已知多项式f(x)除以x﹣1,x﹣2,x﹣3的余数分别为1,4,5,则f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为.三.解答题22.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.23.把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.24.因式分解:(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2﹣2(x2+2x)﹣3(4)x3+3x2﹣4(拆开分解法)25.如图是L形钢条截面,请写出它的面积公式.并计算:当a=54mm,b=54.5mm,c=8.5mm时的面积.26.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.27.例题:已知二次三项式x2﹣4x+m中有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n).∴解得n=﹣7,m=﹣21.另一个因式为x﹣7,m的值为﹣21.仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.28.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1﹣2﹣3﹣…﹣2021)×(2+3+…+2022)﹣(1﹣2﹣3﹣…﹣2022)×(2+3+…+2021).参考答案一.选择题1.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.左到右的变形属于因式分解,故本选项符合题意;故选:D.2.解:4a2b3与2ab4c的公因式为2ab3,故选:C.3.解:x2+2x﹣8=(x﹣2)(x+4),故选:D.4.解:A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.5.解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故选:B.6.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.7.解:∵a2(a2﹣1)﹣a2+1=a2(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a2﹣1)=(a2﹣1)2,∴a2(a2﹣1)﹣a2+1的值不是负数.故选:A.8.解:∵c2﹣a2﹣2ab﹣b2=10,∴c2﹣(a2+2ab+b2)=10,∴c2﹣(a+b)2=10,∴(c+a+b)(c﹣a﹣b)=10,∵a+b+c=﹣5,∴c﹣a﹣b=﹣2,∴a+b﹣c=2,故选:A.9.解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.10.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.11.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.12.解:∵ac2﹣bc2=(a﹣b)(a2+b2),∴(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,即该三角形是等腰三角形或直角三角形.故选:D.13.解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.故选:C.二.填空题14.解:∵分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),∴x2+ax+b=x2+5x﹣6,故b=﹣6;∵乙看错b的值,分解的结果是:∴x2+ax+b=(x﹣2)(x+1)=x2﹣x﹣2,∴a=﹣1则a=﹣1,b=﹣6.故答案为:﹣1,﹣6.15.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴2x3﹣5x2﹣5x+2020=2x3﹣6x2+x2﹣3x﹣2x+2020=2x(x2﹣3x)+(x2﹣3x)﹣2x+2020=2x+1﹣2x+2020=2021,故答案为:2021.16.解:系数的最大公约数是4,各项相同字母的最低指数次幂是x m y n﹣1,所以公因式是4x m y n﹣1,故答案为:4x m y n﹣1.17.方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.18.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.19.解:因为a=12,b=109,所以ab﹣9a=a(b﹣9)=12×(109﹣9)=12×100=1200,故答案为:1200.20.解:根据图形得到长方形的面积为:a2+ab+ab+ab+b2+b2=a2+3ab+2b2,也可以为(a+b)(a+2b),则根据此图,多项式a2+3ab+2b2分解因式的结果为(a+b)(a+2b),故答案为:(a+b)(a+2b).21.解:∵(x﹣1)(x﹣2)(x﹣3)的结果是三次多项式,∴多项式f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为二次多项式,设这个余式为ax2+bx+c,由题意得:,解得:.∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为﹣x2+6x﹣4.∵﹣x2+6x﹣4=﹣(x﹣3)2+5,∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为5.故答案为:5.三.解答题22.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).23.解:(1)x2+3x﹣4=(x+4)(x﹣1);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;24.解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a2(2a﹣x)2﹣2a(2a﹣x)3=a(2a﹣x)2[a﹣2(2a﹣x)]=a(2a﹣x)2[a﹣4a+2x]=a(2a﹣x)2(﹣3a+2x);(3)(x2+2x)2﹣2(x2+2x)﹣3=[(x2+2x)﹣3][(x2+2x)+1]=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2;(4)x3+3x2﹣4=(x3+2x2)+(x2﹣4)=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)(x+2)(x﹣1)=(x+2)2(x﹣1).25.解:L形钢条的面积=ac+(b﹣c)c=ac+bc﹣c2=c(a+b﹣c);当a=54mm,b=54.5mm,c=8.5mm时,原式=8.5×(54+54.5﹣8.5)=850(mm2),即面积为850mm2.26.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.27.解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a),则2x2+3x﹣k=2x2+(a﹣10)x﹣5a,∴,解得a=13,k=65,故另一个因式为(2x+13),k的值为65.28.解:(1)①没有,设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步)=(x+1)4(第五步).故答案为:(x+1)4;②设x2﹣4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4;(2)设x=1﹣2﹣3﹣...﹣2021,y=2+3+ (2022)则1﹣2﹣3﹣…﹣2022=x﹣2022,2+3+…+2021=y﹣2022,x+y=1+2022=2023,所以原式=xy﹣(x﹣2022)(y﹣2022)=xy﹣xy+2022(x+y)﹣20222=2022×2023﹣20222=2022(2022+1)﹣20222=2022.。
八年级数学上册14.3因式分解同步练习(一)(含解析)新人教版(new)

14。
3因式分解一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列各式分解因式结果正确的是()A.B。
C.D.2、多项式提取公因式后的另一个因式是( ).A。
B。
C。
D.3、因式分解:。
A。
B.C。
D。
4、因式分解的结果是的多项式是( )A。
B。
C。
D.5、下列从左到右的变形中,是因式分解的是()A。
B。
C。
D。
6、下列等式从左到右的变形是因式分解的是()A。
B。
C。
D.7、因式分解:=()A。
B。
C。
D。
8、因式分解:()A。
B.C.D。
9、下列各式能用平方差公式分解因式的有()①;②;③;④;⑤.A。
个B。
个C。
个D。
个10、把多项式分解因式,结果正确的是()A。
B。
C。
D。
11、把多项式分解因式时,应提出的公因式是()A.B.C.D.12、下列各组式子中,没有公因式的是( )A。
与B. 与C。
与D. 与13、多项式与多项式的公因式是( )A.B.C。
D。
14、下列从左到右的变形,是因式分解的是( )A.B。
C。
D.15、分解因式:______.A.B。
C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、因式分解: .17、因式分解:=_______.18、多项式与多项式的公因式是___________.19、若进行因式分解的结果为,则.20、分解因式:______.三、解答题(本大题共有3小题,每小题10分,共30分)21、用简便方法计算:。
22、分解因式:.23、能被整除吗?能被整除吗?14.3因式分解同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列各式分解因式结果正确的是()A。
B。
C。
D。
【答案】A【解析】解:,不能分解因式,故该选项错误;,故该选项错误;,不是因式分解,故该选项错误;,故该选项正确.故答案应选:。
2、多项式提取公因式后的另一个因式是()。
A。
B。
C.D.【答案】C【解析】解:,故答案为:.3、因式分解:。
2021-2022学年人教版八年级数学上册《14-3因式分解》同步达标训练(附答案)

2021-2022学年人教版八年级数学上册《14.3因式分解》同步达标训练(附答案)1.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x2.多项式a2﹣9与a2﹣3a的公因式是()A.a+3B.a﹣3C.a+1D.a﹣13.下列代数式中,能用完全平方公式进行因式分解的是()A.x2﹣1B.x2+xy+y2C.x2﹣2x+1D.x2+2x﹣14.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1B.a2﹣2a﹣1C.a2﹣a+1D.a2﹣2a+15.已知多项式x2+bx+c因式分解的结果为(x﹣1)(x+2),则b+c的值为()A.﹣1B.﹣2C.2D.06.下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x2﹣4x+4=(x+2)(x+2)D.x(x﹣y)+y(y﹣x)=(x﹣y)2 7.小东是一位密码爱好者,在他的密码手册中有这样一条信息:a﹣b、a+b、a2﹣b2、c﹣d、c+d、c2﹣d2依次对应下列六个字:科、爱、勤、我、理、学,现将(a2﹣b2)c2﹣(a2﹣b2)d2因式分解,其结果呈现的密码信息可能是()A.勤学B.爱科学C.我爱理科D.我爱科学8.已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定9.数348﹣1能被30以内的两位整数整除的是()A.28,26B.26,24C.27,25D.25,2310.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p ≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n 的最佳分解,并规定:F(n)=,例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=,则F(36)的值是()A.B.C.1D.11.写出多项式x2﹣y2与多项式x2+xy的一个公因式.12.把3xy﹣15x因式分解的结果是.13.因式分解:x3﹣2x2y+xy2=.14.把多项式3a3b﹣27ab3分解因式的结果是.15.分解因式:x2﹣1+y2﹣2xy=.16.分解因式:﹣3ab+2a﹣4+6b=.17.a+b=0,ab=﹣7,则a2b+ab2=.18.若ab=5,a﹣2b=3,则a2b﹣2ab2的值为.19.分解因式:(1)a3b﹣ab3 (2)x2﹣x﹣620.在实数范围内分解因式:﹣9x4+16.21.(1)分解因式:﹣x2(2)利用分解因式简便计算:20192﹣2019×4040+2020222.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小长方形的周长是20cm且每块大正方形与每块小正方形的面积差为40cm2,求这张长方形纸板的面积是多少平方厘米?23.利用因式分解计算(1)3x3﹣3x2+9x (2)a4﹣8a2b2+16b4(3)20202﹣2022×2018 (4)2.132+2.13×5.74+2.87224.(1)若x+y=2,y﹣z=﹣1,求代数式x2+y2+z2+xy﹣yz+xz的值;(2)已知a、b、c满足a2+b2+c2=1①若a+b+c=0,求ab+bc+ca的值;②求(a+b+c)2的最大值.参考答案1.解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.2.解:a2﹣9=(a﹣3)(a+3),a2﹣3a=a(a﹣3),故多项式a2﹣9与a2﹣3a的公因式是:a﹣3,故选:B.3.解:A、x2﹣1=(x+1)(x﹣1),不符合题意;B、x2+xy+y2,无法运用完全平方公式分解因式,不合题意;C、x2﹣2x+1=(x﹣1)2,符合题意;D、x2+2x﹣1,无法运用完全平方公式分解因式,不合题意;故选:C.4.解:A、a2﹣1=(a+1)(a﹣1),故此选项错误;B、a2﹣2a﹣1,无法分解因式,故此选项错误;C、a2﹣a+1,无法运用完全平方公式分解因式,故此选项错误;D、a2﹣2a+1=(a﹣1)2,正确.故选:D.5.解:根据题意得:x2+bx+c=(x﹣1)(x+2),则b=2﹣1=1,c=﹣1×2=﹣2,所以b+c=1﹣2=﹣1.故选:A.6.解:A.﹣x2+4x=﹣x(x﹣4),故本选项错误;B.x2+xy+x=x(x+y+1),故本选项错误;C.x2﹣4x+4=(x﹣2)(x﹣2),故本选项错误;D.x(x﹣y)+y(y﹣x)=(x﹣y)2,故本选项正确;故选:D.7.解:∵(a2﹣b2)c2﹣(a2﹣b2)d2=(a2﹣b2)(c2﹣d2)=(a+b)(a﹣b)(c+d)(c﹣d),a﹣b、a+b、c﹣d、c+d四个代数式分别对应科、爱、我、理,∴结果呈现的密码信息可能是“我爱理科”;故选:C.8.解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三边,∴a+c﹣b>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2的值是负数.故选:B.9.解:348﹣1=(324+1)(324﹣1)=(324+1)(312+1)(312﹣1)=(324+1)(312+1)(36+1)(36﹣1)=(324+1)(312+1)(36+1)(33+1)(33﹣1)=(324+1)(312+1)×730×28×26,∵348﹣1能被30以内的两位数(偶数)整除,则这个数是28或26,故选:A.10.解:1×36=2×18=3×12=4×9=6×636﹣1>18﹣2>12﹣3>9﹣4>6﹣6F(36)=故选:C.11.解:因为x2﹣y2=(x+y)(x﹣y),x2+xy=x(x+y),所以两个多项式的公因式为:x+y.故答案为:x+y12.解:原式=3x(y﹣5),故答案为:3x(y﹣5)13.解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)214.解:原式=3ab(a2﹣9b2)=3ab(a+3b)(a﹣3b).故答案是:3ab(a+3b)(a﹣3b).15.解:原式=(x2﹣2xy+y2)﹣1,=(x﹣y)2﹣1,=(x﹣y+1)(x﹣y﹣1).故答案为:(x﹣y+1)(x﹣y﹣1)16.解:﹣3ab+2a﹣4+6b=(3b﹣2)(2﹣a),故答案为:(3b﹣2)(2﹣a),17.解:∵a+b=0,ab=﹣7,∴a2b+ab2=ab(a+b)=﹣7×0=0,故答案为:0.18.解:∵ab=5,a﹣2b=3,∴a2b﹣2ab2=ab(a﹣2b)=5×3=15故答案为:15.19.解:(1)原式=ab(a2﹣b2)=ab(a+b)(a﹣b);(2)x2﹣x﹣6=(x+2)(x﹣3).20.解:﹣9x4+16=(4+3x2)(4﹣3x2)=(4+3x2)(2+)(2﹣).21.解:(1)原式=﹣(x2﹣4)=﹣(x+2)(x﹣2);(2)原式=20192﹣2×2019×2020+20202=(2019﹣2020)2=(﹣1)2=1.22.解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)∵m2﹣n2=40,∴(m+n)(m﹣n)=40,∵m+n=20÷2=10,∴m﹣n=4,解得m=7,n=3,∴2m+n=17,m+2n=13,∴纸板的面积(2m+n)(m+2n)=17×13=221(平方厘米).答:纸板的面积为221平方厘米.23.解:(1)3x3﹣3x2+9x=3x(x2﹣x+3);(2)a4﹣8a2b2+16b4=(a2﹣4b2)2=(a+2b)2(a﹣2b)2;(3)20202﹣2022×2018=20202﹣(2020+2)(2020﹣2)=20202﹣(20202﹣22)=22=4;(4)2.132+2.13×5.74+2.872=2.132+2×2.13×2.87+2.872=(2.13+2.87)2=52=25.24.解:(1)∵x+y=2,y﹣z=﹣1,∴x+z=3,x2+y2+z2+xy﹣yz+xz=(2x2+2y2+2z2+2xy﹣2yz+2xz)=[(x+y)2+(y﹣z)2+(x+z)2]=[22+(﹣1)2+32]=7;(2)①∵a+b+c=0,∴(a+b+c)2=0,∴a2+b2+c2+2ab+2ac+2bc=0,而a2+b2+c2=1,∴ab+bc+ca=﹣;②∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,而(a﹣b)2≥0,即2ab≤a2+b2,同理有2bc≤b2+c2,2ac≤a2+c2,∴(a+b+c)2≤a2+b2+c2+a2+b2+b2+c2+a2+c2,∴(a+b+c)2≤3(a2+b2+c2),而a2+b2+c2=1,∴(a+b+c)2≤3,∴(a+b+c)2的最大值为3.。
八年级上册数学第十四章 14.3因式分解 测试卷(含答案)

八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。
人教版八年级上数学14.3 因式分解 同步练习及答案(含答案)

第14章《整式乘除与因式分解》同步练习(§14.3)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.计算:103_________.a a ÷=2.计算: 3532(3)(0.5)_________.m n m n -÷-=3.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为______.4.一个三角形的面积是c b a 433,一边长为2abc ,则这条边上的高为______.5.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,… 根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+… (n 为正整数). 6.计算:2010232_______,________a a x x ÷=÷=7.使等式1)5(93=-+m 成立时,则m 的取值是_____.8.已知多项式3x 3+ax 2+3x +1能被x 2+1整除,且商式是3x +1,那么a 的值是 .9.已知10m =3,10n =2,则102m -n = .10.小宇同学在一次手工制作活动中,先把一张矩形纸片按图-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是_____.二、选择题(每题3分,共24分)11.下列计算中正确的是( )A .248x x x =÷B .55a a a =÷C .23y y y =÷D .224)()(x x x -=-÷-第一次折叠 图-1 第二次折叠 图-2 (第10题)12.若n 221623=÷,则n 等于( )A .10B .5C .3D .613.下面是小林做的4道作业题:(1)ab ab ab 532=+;(2)ab ab ab -=-32;(3)ab ab ab 632=⋅;(4)3232=÷ab ab .做对一题得2分,则他共得到( ) A .2分 B .4分 C .6分 D .8分14.(2008辽宁省大连市)若x =b a -,y =b a +,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a -15.如果8a 写成下列各式,正确的共有( )①44a a +;②42)(a ;③216a a ÷;④24)(a ;⑤44)(a ;⑥1220a a ÷;⑦44a a ⋅;⑧8882a a a =-A .7个B .6个C .5个D .4个16.已知2239494b b a b a n m =÷,则( ) A .3,4==n m B .1,4==n m C .3,1==n m D .3,2==n m17.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x 18.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+三、解答题(共46分)19.(8分)计算(1)2242)()(ab ab ÷; (2))4()7124(22333a b a b a a -÷-+-.20.(6分)先化简,后求值.x y x y x y x 2)])(()[(2÷--+-,其中5.1,3==y x21.(8分)小明与小亮在做游戏时,两人各报一个整式,小亮报的整式作为除式,要求商式必须为2xy ,(1)若小明报的是)2(23xy y x -,小亮应报什么整式?(2)若小明报23x ,小亮能报出一个整式吗?说说你的理由.22.(8分)已知:A =x 2,B 是多项式,小明同学是个小马虎,在计算A +B 时,误把B +A 看作了AB ÷,结果得x x 212+,求B +A 的值.23.(7分)一个单项式的平方与5632123y x y x --的积为,求这个单项式.24.(9分)我们约定:b a b a 1010÷=⊗,如1010103434=÷=⊗(1)试求:410312⊗⊗和的值.(2)试求:4319105212⊗⊗⨯⊗和(3)想一想,)()(c b a c b a ⊗⊗⊗⊗和是否相等,验证你的结论.参考答案一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n + 6.20085,a x 7.m =-3 8.1 9.92 10.1cm 二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)y x -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等。
人教版八年级上册14.3《因式分解》同步练习卷 含答案

人教版2020年八年级上册14.3《因式分解》同步练习卷一.选择题1.下列多项式能用平方差公式分解的是()A.a2+a B.a2﹣2ab+b2C.x2﹣4y2D.x2+y22.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+13.把2x2﹣2x+分解因式,其结果是()A.2(x﹣)2B.(x﹣)2C.(x﹣1)2D.(2x﹣)2 4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20B.﹣16C.16D.205.若x+y=﹣1,则x2+y2+2xy的值为()A.1B.﹣1C.3D.﹣36.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n27.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2+5a﹣6D.a2﹣5a﹣68.多项式6ab2+18a2b2﹣12a3b2c的公因式是()A.6ab2c B.ab2C.6ab2D.6a3b2c二.填空题9.分解因式:6xy2﹣8x2y3=.10.在实数范围内分解因式:ab3﹣5ab=.11.因式分解a(b﹣c)﹣3(c﹣b)=.12.把多项式3ax2﹣12a分解因式的结果是.13.把多项式ax2﹣4ax+4a因式分解的结果是.14.若实数a、b满足a+b=﹣2,a2b+ab2=﹣10,则ab的值是.15.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是.三.解答题16.把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.17.因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.18.分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)19.已知△ABC的三边长分别是a、b、c(1)当b2+2ab=c2+2ac时,试判断△ABC的形状;(2)判断式子a2﹣b2+c2﹣2ac的值的符号.20.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.(2)x2﹣2xy+y2﹣9.21.对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?。
人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案

人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案一、选择题1.下列各式从左至右是因式分解的是()A.a2−4=(a+2)(a−2)B.x2−y2−1=(x+y)(x−y)−1C.(x+y)2=x2+xy+y2D.(x−y)2=x2+2xy+y22.a2−(b−c)2有一个因式是a+b−c,则另一个因式为()A.a−b−c B.a+b+c C.a+b−c D.a−b+c3.把(a+b)2+4(a+b)+4分解因式得()A.(a+b+1)2B.(a+b−1)2C.(a+b+2)2D.(a+b−2)24.下列各式能用完全平方公式分解因式的有();③m2n2+4−4mn;④a2−2ab+4b2;⑤x2−8x+9①4x2−4xy−y2;②−1−a−a24A.1个B.2个C.3个D.4个5.计算(−2)100+(−2)99的结果为()A.−299B.299C.2100D.-26.把x2+3x+c分解因式得(x+1)(x+2),则c的值是()A.3 B.2 C.-3 D.17.下列因式分解正确的是()A.x2−x=x(x+1)B.a2−3a−4=a(a−3)−4C.a2+b2−2ab=(a+b)2D.x2−y2=(x+y)(x−y)8.若x2-y2=100,x+y=-25,则x-y的值是()A.5 B.4 C.-4 D.以上都不对二、填空题9.2a2与4ab的公因式为.10.因式分解:2m2−4m=.11.一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:。
12.若有理数m使得二次三项式x2+mx+16能用完全平方公式因式分解,则m=.13.当a=3,a-b=1时,代数式a2-ab的值是三、解答题14.因式分解:(1)(2)15.已知,xy=3,求的值.16.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).17.下面是某同学对多项式进行因式分解的过程.解:设,原式(第一步),(第二步)(第三步),(第四步)(1)该同学第二步到第三步运用进行因式分解;(2)该同学是否完成了将该多项式因式分解?若没有完成,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式进行因式分解.参考答案1.A2.D3.C4.B5.B6.B7.D8.C9.2a10.2m(m−2)11.x2−1(答案不唯一)12.±813.314.(1)解:;(2)解:.15.解:∵,∴原式.16.解:(1)x3﹣xy2=x(x﹣y)(x+y)当x=15,y=5时,x﹣y=10,x+y=20可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:{x+y=13x2+y2=121解得xy=24 而x3y+xy3=xy(x2+y2)所以可得数字密码为24121.17.(1)完全平方公式(2)否;(3)解:设则原式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章——14.3《因式分解》同步练习及(含答案)
§14.3.1提公因式法
一.精心选一选
1.下列各式从左到右的变形中,是因式分解的是( )。
A.(x+3)(x-3)=x ²-9
B.x ²+1=x(x+1x
) C.3x ²-3x+1=3x(x-1)+1 D.a ²-2ab+b ²=(a-b)²
2多项式- 6a ²b+18a ²b ³x+24ab 2
y 的公因式是( )
A.mx+my 和x+y
B.3a(x+y)和2y+2x
C.3a-3b 和6(b-a)
D.-2a-2b 和 a ²-ab
4.下列各多项式因式分解错误的是( )
A.( a-b) ³-(b-a)=(a-b)2(a-b-1)
B.x(a-b-c)-y(b+c-a)=(a-b-c)(x+y)
C.P(m-n)3-Pq(n-m)3=P(m-n)3(1+q)
D.(a-2b)(7a+b)-2(2b-a)2=(a-2b)(5a+5b)
5.将多项式(3a-4b)(7a-8b)-(11a-12b)(8b-7a)分解因式正确的结果是( )
A.8(7a-8b)(a-b)
B.2(7a-8b) ²
C.8(7a-8b)(b-a)
D.-2(7a-8b) ²
6已知多项式3x ²-mx+n 分解因是的结果为(3x+2)(x-1)则,m,n 的值分别为( )
A.m=1 n=-2
B.m-1 n=-2
Cm=2 n=-2 D.m=-2 n=-2
7.多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,另一个因式为( )
A.m+1
B.2m
C.2
D.m+2
8.a 是有理数,则整式a ²(a ²-2)-2a ²+4的值( ) A.不是负数B.恒为正数 C.恒为负数 D.不等于0
二.细心填一填
9.分解因式3x(x-2)-(2-x)=
10.利用因式分解计算:3.68×15.7-31.4+15.7×0.32= 11.分解因式:(x+y)²-x-y=
12.已知a+b=9 ab=7 则a ²b+ab ²=
13.观察下列各式:①abx-adx ②2x ²y+6xy ² ③8m ³-4m ²+1
④(p+q)x²y-5x²(p+q)+6(p+q)²⑤(x+y)(x-y)-4b(y+x)-4ab
其中可以用提取公因式法分解的因式( )。
(填序号)
14.若x m=5 x n=6 叫x m- x m+2n=
15.不解方程组 2x+y=6 则7y(x-3y)2-2(3y-x)3=
x-3y=1
16.计算 20142-2014×2013+1=
17.分解因式-7m(m-n)3+21mn(n-m)2=
18.若(2x)n-81=(4x2+9)(2x+3)(2x-3)则n=
三、解答题:
19.分解因式
① -49a2bc-14ab2c+7ab
②(2a+b)(2a-3b)-8a(2a+b)
20.试说明817-279-913必能被45整除
21.已知△ABC的三边长a,b,c满足a²-bc-ab+ac=0求证△ABC为等腰三角形
22. 先化简.在求值:
30x²(y+4)-15x(y+4),其中x=2,y=-2
23.已知:m²=n+2 n²=m+2 (m≠n)求m³-2mn+n3的值。
14.3.1答案
一.1. D 2. B 3. D 4 . D
5. B
6. A
7. D
8. A
二.9. (x-2)(3x+1) 10. 31.4 11. (x+y)(x+y-1)
12. 63 13. ①②④ 14.-175 15. 3 16.2015
17. -7m(m-n)2(m-4n) 18. 4
三.19. ①原式=-7ab(7ac+2bc-1)
②原式=(2a+b)(2a-3b-8a)
=(2a+b)(-6a-3b)
=-3(2a+b) 2
20.解:817-279-913
=(34)7-(33)9-(32)13
=328-327-326
=326(32-3-1)
=326×5=324×45
∴817-279-913能被45整除。
21. 证明:∵ a2-bc-ab+ac=0
∴ (a-b)(a+c)=0
∵ a,b为△ABC三边
∴ a+c>0,则a-b=0,即a=b
∴△ABC为等腰三角形
22. 解:原式=15x(y+4)(2x-1)
当x=2, y=-2时
原式=15×2×(-2+4)(2×2-1)=180 23. 解:∵ m2=n+2 n2=m+2
∴ m3=mn+2m n3=mn+2n
∴ m3+n3=2mn+2(m+n)
∴ m3-2mn+n3=2(m+n)
而m2-n2=(n+2)-(m+2)=n-m
∵ m≠n ∴ m-n≠0
∴ m+n=-1
∴ m3-2mn+n3=-1×2=-2。