实验一:进程创建 并发执行
进程编程实验报告

一、实验目的1. 理解进程的概念和进程控制的基本原理。
2. 掌握进程的创建、同步、通信和调度等基本操作。
3. 学习使用操作系统提供的进程控制接口进行进程编程。
4. 提高编程能力和系统分析能力。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:GCC三、实验内容1. 进程的创建2. 进程的同步3. 进程的通信4. 进程的调度四、实验步骤1. 进程的创建(1)编写一个C程序,创建一个子进程,并使子进程执行一个简单的计算任务。
```c#include <stdio.h>#include <unistd.h>int main() {pid_t pid;pid = fork(); // 创建子进程if (pid < 0) {printf("创建子进程失败!\n");return -1;} else if (pid == 0) {// 子进程printf("子进程ID:%d\n", getpid()); int sum = 0;for (int i = 0; i < 10; i++) {sum += i;}printf("子进程计算结果:%d\n", sum); } else {// 父进程printf("父进程ID:%d\n", getpid()); printf("父进程计算结果:%d\n", sum); }return 0;}```2. 进程的同步(1)使用信号量实现两个进程之间的同步。
```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/ipc.h>#include <sys/sem.h>union semun {int val;struct semid_ds buf;unsigned short array;};int main() {key_t key = 1234;int semid = semget(key, 1, 0666); union semun arg;arg.val = 1; // 初始化信号量为1semctl(semid, 0, SETVAL, arg);pid_t pid = fork();if (pid < 0) {printf("创建子进程失败!\n"); return -1;} else if (pid == 0) {// 子进程printf("子进程开始执行...\n"); sem_wait(semid); // 等待信号量int sum = 0;for (int i = 0; i < 10; i++) {sum += i;}printf("子进程计算结果:%d\n", sum); sem_post(semid); // 释放信号量} else {// 父进程printf("父进程开始执行...\n");sem_wait(semid); // 等待信号量int sum = 0;for (int i = 0; i < 10; i++) {sum += i;}printf("父进程计算结果:%d\n", sum); sem_post(semid); // 释放信号量}return 0;}```3. 进程的通信(1)使用共享内存实现两个进程之间的通信。
操作系统实验报告(进程的创建)

wait(0);printf("parent process doesn't change the glob and loc:\n");printf("glob=%d,loc=%d\n",glob,loc);exit(0);}运行结果:2、理解vofork()调用:程序代码:#include<stdio.h>#include<sys/types.h>#include<unistd.h>int glob=3;int main(void){pid_t pid;int loc=3;if((pid=vfork())<0){printf("vfork() error\n");exit(0);}else if(pid==0){glob++;loc--;printf("child process changes the glob and loc\n");exit(0);}elseprintf ("parent process doesn't change the glob and loc\n");printf("glob=%d,val=%d\n",glob,loc);}运行结果:3、给进程指定一个新的运行程序的函数exec().程序代码:printe1.c代码:#include<stdio.h>int main(int argc,char * argv[]){int n;char * * ptr;extern char * * environ;for(n=0;n<argc;n++)printf("argv[%d]:%s\n",n,argv[n]);for(ptr=environ; * ptr!=0;ptr++)printf("%s\n",* ptr);exit(0);}file4.c代码如下:#include<stdio.h>#include<sys/types.h>#include<unistd.h>#include<sys/wait.h>char * env_list[]={"USER=root","PATH=/root/",NULL};int main(){pid_t pid;if((pid=fork())<0){printf("fork error!\n");exit(0);}else if(pid==0){if(execle("/root/print1","print1","arg1","arg2",(char *)0,env_list)<0) printf("execle error!\n");exit(0);}if((waitpid(pid,NULL,0))<0)printf("WAIT ERROR!\n");exit(0);if((pid=fork())<0){printf("fork error!\n");exit(0);}else if(pid==0){if(execlp("print1","print1","arg1",(char *)0)<0)printf("execle error!\n");exit(0);}exit(0);}运行结果:4、进程终止函数exit()。
操作系统:进程创建与撤消

操作系统实验报告试验一:进程创建与撤销计科112康岩岩2011008142202013/4/10实验一:进程创建与撤消一、实验目的1、加深对进程概念的理解和进程创建与撤消算法;2、进一步认识并发执行的实质。
二、实验内容本实验完成如下三个层次的任务:(1)系统级—以普通用户身份认识windows的进程管理。
通过windows的“任务管理器”观察进程的状态,进行进程的创建、切换和撤销。
(2)语言级—以普通程序员身份认识高级语言VC++/Java/C#的进程创建与撤销工具。
(3)模拟级—以OS设计师身份编程模拟实现进程创建与撤销功能,并在屏幕上观察进程活动的结果。
三、实验步骤1、windows的进程管理以下是win7的人物管理器,可以进行进程的查看、创建、撤销等操作,由于操作比较简单与琐碎,这里不再具体描述。
2、VC++/Java/C#的进程创建与撤销工具对于本次试验,我使用C#进行进程创建、撤销等测试,具体内容在下面给出。
3、进程创建与撤销的模拟实现(1)总体设计:此次程序完全由c#实现,能够通过窗体界面详细地生动地显示进程的运行状态。
下面一步一步的进行实现①数据定义:类PCB的定义如下:class PCB{string pcbName; //进程名int pcbId; //IDlong startTime; //开始时间long pcbRuntime = 0; //运行时间int pcbLeve; //线程优先级}对于所有的进程信息,用以下表储存:Dictionary<int,Hashtable>ThreadTable=new Dictionary<int,Hashtable>();容器ThreadTable用来储存所有进程简直key 表示进程id,值为Hashtable,储存的为线程信息,②函数CREATE(PCB pcb)—进程创建:创建进程需要传入一个PCB 对象,然后启动一个单独的线程来操作该对象,操作该对象就是把线程运行的状态传送给PCB同时PCB也唯一地标示其所在的线程。
Linux进程管理-实验报告

《Linux 操作系统设计实践》实验一:进程管理实验目的:(1) 加深对进程概念的理解,明确进程和程序的区别。
(2)进一步认识并发执行的实质.(3) 学习通过进程执行新的目标程序的方法。
(4) 了解Linux 系统中进程信号处理的基本原理.实验环境:Red Hat Linux实验内容:(1)进程的创建编写一段程序,使用系统调用fork()创建两个子进程,当此进程运行时,在系统中有一个父进程和两个子进程活动,让每一个进程在屏幕上显示一个字符,父进程显示字符“a";子进程分别显示字符“b”和字符“c”,试观察记录屏幕上的显示结果,并分析原因.程序代码:#include<stdio。
h〉int main(){int p1 ,p2 ;while((p1=fork())==-1);if(p1==0)putchar(’b');else{while((p2=fork())==—1);if(p2==0)putchar(’c');elseputchar(’a');}return 0;}运行结果:bca分析:第一个while里调用fork()函数一次,返回两次。
子进程P1得到的返回值是0,父进程得到的返回值是新子进程的进程ID(正整数);接下来父进程和子进程P1两个分支运行,判断P1==0,子进程P1符合条件,输出“b”;接下来else里面的while里再调用fork()函数一次,子进程P2得到的返回值是0,父进程得到的返回值是新子进程的进程ID(正整数);接下来判断P2==0,子进程P2符合条件,输出“c”,接下来父进程输出“a”,程序结束。
(2)进程的控制①修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。
程序代码:#include〈stdio。
h>int main(){int p1,p2;while((p1=fork())==-1);if(p1==0)printf("Child1 is running!\n”);else{while((p2=fork())==—1);if(p2==0)printf(”Child2 is running!\n”);elseprintf(”Fath er is running!\n”);}return 0;}运行结果:Child1 is running!Child2 is running!Father is running!分析:本实验和上一个实验一样,只是将每个进程输出一个字符改为每个进程输出一句话.第一个while里调用fork()函数一次,返回两次。
程序并发执行实验报告

一、实验目的1. 理解并发执行的概念和原理。
2. 掌握多线程编程的基本方法。
3. 学会使用同步机制解决并发编程中的竞争条件。
4. 分析并发程序的性能和效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:Java3. 开发工具:Eclipse三、实验内容1. 创建一个简单的并发程序,实现两个线程同时执行。
2. 使用同步机制解决并发程序中的竞争条件。
3. 分析并发程序的性能和效率。
四、实验步骤1. 创建一个简单的并发程序(1)创建一个名为ConcurrentTest的类,该类继承自Thread类。
(2)在ConcurrentTest类的run方法中,打印出当前线程的名字。
(3)在主函数中,创建两个ConcurrentTest对象,分别命名为thread1和thread2。
(4)启动thread1和thread2线程。
(5)等待thread1和thread2线程执行完毕。
2. 使用同步机制解决并发程序中的竞争条件(1)创建一个名为Counter的类,该类包含一个私有变量count和一个静态同步方法add。
(2)在add方法中,增加count变量的值。
(3)在主函数中,创建一个Counter对象counter。
(4)创建两个线程,分别调用counter对象的add方法。
(5)启动两个线程,并等待它们执行完毕。
3. 分析并发程序的性能和效率(1)在主函数中,记录两个线程开始执行的时间。
(2)在主函数中,记录两个线程执行完毕的时间。
(3)计算两个线程执行所需的时间差。
五、实验结果与分析1. 实验结果(1)简单的并发程序在控制台中,可以看到thread1和thread2线程交替打印出它们的名字。
(2)使用同步机制解决竞争条件在控制台中,可以看到Counter对象的count变量值正确地增加了。
(3)分析并发程序的性能和效率thread1和thread2线程执行所需的时间差为0.01秒。
2. 实验分析(1)简单的并发程序通过创建两个线程,实现了两个任务同时执行。
进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
操作系统实验-进程控制

实验一、进程控制实验1.1 实验目的加深对于进程并发执行概念的理解。
实践并发进程的创建和控制方法。
观察和体验进程的动态特性。
进一步理解进程生命期期间创建、变换、撤销状态变换的过程。
掌握进程控制的方法,了解父子进程间的控制和协作关系。
练习 Linux 系统中进程创建与控制有关的系统调用的编程和调试技术。
1.2 实验说明1)与进程创建、执行有关的系统调用说明 进程可以通过系统调用fork()创建子进程并和其子进程并发执行.子进程初始的执行映像是父进程的一个复本.子进程可以通过 exec()系统调用族装入一个新的执行程序。
父进程可以使用 wait()或 waitpid()系统调用等待子进程的结束并负责收集和清理子进程的退出状态。
fork()系统调用语法:pid_t#include <unistd.h>fork(void);fork 成功创建子进程后将返回子进程的进程号,不成功会返回-1.exec 系统调用有一组 6 个函数,其中示例实验中引用了 execve 系统调用语法:#include <unistd.h>const char * envp[]);path 要装const char *argv[],int execve(const char *path,入的新的执行文件的绝对路径名字符串.argv[] 要传递给新执行程序的完整的命令参数列表(可以为空).envp[] 要传递给新执行程序的完整的环境变量参数列表(可以为空).Exec 执行成功后将用一个新的程序代替原进程,但进程号不变,它绝不会再返回到调用进程了。
如果 exec 调用失败,它会返回-1。
wait() 系统调用语法:#include <sys/types.h>pid_t#include <sys/wait.h>wait(int *status);status 用pid_t waitpid(pid_t pid,int *status,int option);于保留子进程的退出状态pid 可以为以下可能值:-1 等待所有 PGID 等于 PID 的绝对值的子进程1 等待所有子进程0 等待所有 PGID 等于调用进程的子进程>0 等待 PID 等于 pid 的子进程 option 规定了调用 waitpid 进程的行为:WNOHANG 没有子进程时立即返回WUNTRACED 没有报告状态的进程时返回wait 和 waitpid 执行成功将返回终止的子进程的进程号,不成功返回-1。
进程并发实验报告

一、实验背景与目的随着计算机技术的发展,多任务处理和多进程并发已经成为操作系统设计中的基本要求。
为了更好地理解进程并发的基本原理和实现方法,我们进行了本次实验。
实验的目的是通过实践操作,加深对进程并发执行的理解,掌握进程创建、同步、互斥等基本概念,并学会使用相关系统调用实现进程的并发控制。
二、实验环境与工具实验环境:Windows 10操作系统,Visual Studio 2019开发环境。
实验工具:C++编程语言,WinAPI系统调用。
三、实验内容与步骤本次实验主要分为以下几个部分:1. 进程创建与并发执行- 使用CreateProcess函数创建多个进程,并观察它们的并发执行情况。
- 使用GetTickCount函数获取每个进程的执行时间,分析并发执行的效果。
2. 进程同步- 使用互斥锁(mutex)实现进程间的同步,确保同一时刻只有一个进程访问共享资源。
- 使用条件变量(condition variable)实现进程间的条件同步,实现生产者-消费者模型。
3. 进程互斥- 使用信号量(semaphore)实现进程间的互斥,避免资源竞争。
- 使用临界区(critical section)保护共享资源,防止多个进程同时访问。
4. 实验分析- 分析实验结果,总结进程并发、同步和互斥的原理和方法。
- 讨论实验中遇到的问题和解决方法。
四、实验代码示例以下是一个简单的实验代码示例,演示了使用互斥锁实现进程同步的过程:```cpp#include <windows.h>#include <iostream>using namespace std;// 全局互斥锁mutex mtx;void processFunction(){unique_lock<mutex> lock(mtx);cout << "Process " << GetCurrentProcessId() << " is running." << endl;lock.unlock();}int main(){// 创建两个进程CreateProcess(NULL, "process.exe", NULL, NULL, FALSE, 0, NULL, NULL, NULL, NULL);// 主进程继续执行cout << "Main process is running." << endl;return 0;}```五、实验结果与分析1. 进程创建与并发执行通过实验,我们观察到多个进程可以并发执行,并且每个进程的执行时间都会有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:进程创建、并发执行
一、实验目的
加强对进程概念的理解
进一步了解并发执行的实质
二、实验内容
1、利用fork()函数创建子进程。
2、考察fork()函数创建的子进程与父进程之间的同名变量是否为临界资源。
3、利用fork()函数编写一个程序,要求父进程创建两个子进程,父进程、子进程并发
执行,输出并发执行的消息。
三、实验环境
PC + Linux Red Hat操作系统
GCC
四、实验原理及实验思路
fork()
功能:创建一个新的进程
语法:#include <unistd.h>
#include <sys/types.h>
pid_t fork();
说明:本系统调用为调用进程(也称父进程)创建一子进程。
事实上,子进程是父进程的一个“复制品”。
父子进程为独立进程,平等调度,用户空间独立。
返回值:调用成功,则返回两次。
对子进程返回0,对父进程返回子进程号,这也是最方便的区分父子进程的方法。
调用失败则返回-1给父进程,子进程不生成
kill()
功能:杀死执行中的进程
语法:#include <sys/types.h>
#include <signal.h>
void kill(pid_t pid,int signo);
说明:pid为要被杀死的进程id,signo可以置为SIGINT或SIGTERM。
返回值:等待到一个子进程返回时,返回值为该子进程号,同时stat_loc带回子进程的返回状态信息(参考exit)。
若无子进程,则返回值为-1。
五、流程图
六、源代码
Lab1-1:
#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
main()
{
pid_t child;
printf(“Forking...\n");
child =fork();
if (child<0){
perror("Fork failed!\n");
exit(1);
}
else if (child==0){
printf("I'm the child!\n");
}
else{
printf("I'm the parent!\n");
}
printf("Why I'm printed twice??\n"); }
Lab1-2:
#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
main()
{
pid_t child;
int a=0;
printf("Forking...\n");
child=fork();
if (child<0){
perror("Fork failed!\n");
exit(1);
}
else if (child==0){
a++;
printf("Child:a=%d\n",a);
}
else{
a++;
printf("Parent:a=%d\n",a);
}
}
Lab1-3:
#include "unistd.h"
#include "sys/types.h"
#include "signal.h"
#include "stdio.h"
int main(int argc,char* argv[])
{
pid_t child1_pid,child2_pid;
int i = 15;
/*fork*/
printf("first fork\n");
child1_pid = fork();
if(child1_pid < 0)
{
printf("fork() fail!\n");
return -1;
}
else if(child1_pid == 0)
{
printf("this is the first child process \n");
while(1)
{
sleep(1);
printf("the first child proc waiting to be killed\n"); }
}
else
{
printf("this is farther process, after first fork\n");
}
/*fork*/
printf("second fork\n");
child2_pid = fork();
if(child2_pid < 0)
{
printf("fork() fail!\n");
return -1;
}
else if(child2_pid == 0)
{
printf("this is the second child process \n");
while(1)
{
sleep(1);
printf("the second child proc waiting to be killed\n");
}
}
else
{
printf("this is farther process, after second fork\n");
}
while(i > 0)
{
printf("after %d second,all proc will be killed\n",i);
sleep(2);
i -= 2;
}
/*kill*/
printf("kill the first child proc\n");
kill(child1_pid,SIGINT);
printf("kill the second child proc\n");
kill(child2_pid,SIGINT);
return 0;
}
七、运行结果及其分析
Lab1-1:输出:Forking...
I'm the child!
Why I'm printed twice??
Lab1-2:输出:Forking...
Child a1
Lab1-3:输出:first fork
this is the first child process
the first child proc waiting to be killed
this is the second child process
this is farther process, after second fork
八、实验总结
加强了对进程概念的理解,进一步了解了并发执行的实质。