电磁场与电磁波

合集下载

电磁场与电磁波教案

电磁场与电磁波教案

电磁场与电磁波教案第一章:电磁场的基本概念1.1 电荷与电场介绍电荷的性质和分类解释电场的概念和电场线电场的叠加原理1.2 磁场与磁力介绍磁铁和磁性的概念解释磁场的概念和磁场线磁场的叠加原理和磁力计算1.3 电磁感应介绍法拉第电磁感应定律解释电磁感应现象的应用第二章:电磁波的基本性质2.1 电磁波的产生与传播介绍麦克斯韦方程组解释电磁波的产生和传播过程电磁波的波动方程和相位2.2 电磁波的波动性质介绍电磁波的波长、频率和波速波动方程的解和电磁波的波动性质2.3 电磁波的能量与辐射解释电磁波的能量和辐射机制介绍电磁波的辐射压和光电效应第三章:电磁波的传播与应用3.1 电磁波在自由空间的传播自由空间中电磁波的传播方程电磁波的传播速度和天线原理3.2 电磁波在介质中的传播介绍电磁波在介质中的传播方程介质的折射率和反射、透射现象3.3 电磁波的应用介绍电磁波在通信、雷达和医学等领域的应用第四章:电磁波的辐射与接收4.1 电磁波的辐射介绍电磁波的辐射机制和天线理论电磁波的辐射强度和辐射功率4.2 电磁波的接收介绍电磁波接收原理和接收器设计调制和解调技术在电磁波接收中的应用4.3 电磁波的辐射与接收实验设计实验来观察和测量电磁波的辐射和接收现象第五章:电磁波的传播特性与调控5.1 电磁波的传播特性介绍电磁波的传播损耗和传播距离电磁波的多径传播和散射现象5.2 电磁波的调控技术介绍电磁波的调制技术和幅度、频率和相位的调控方法5.3 电磁波的传播调控应用介绍电磁波在无线通信和雷达系统中的应用和调控技术第六章:电磁波的波动方程与电磁波谱6.1 电磁波的波动方程推导电磁波在均匀介质中的波动方程讨论电磁波的横向和纵向波动特性6.2 电磁波谱介绍电磁波谱的分类和各频段的特征讨论电磁波谱中常见的波段,如射频、微波、红外、可见光、紫外、X射线和γ射线等6.3 电磁波谱的应用分析电磁波谱在不同领域的应用,如通信、医学、材料科学等第七章:电磁波的传播环境与传播效应7.1 电磁波的传播环境分析不同传播环境对电磁波传播的影响,如自由空间、大气层、陆地、海洋等讨论传播环境中的衰减、延迟和散射等效应7.2 电磁波的传播效应介绍电磁波的折射、反射、透射、绕射和干涉等传播效应分析这些效应在实际应用中的影响和应对措施7.3 电磁波的传播环境与效应应用探讨电磁波传播环境与效应在通信、雷达、遥感等领域的应用和解决方案第八章:电磁波的辐射与天线技术8.1 电磁波的辐射原理分析电磁波辐射的物理机制,如开放电极、偶极子、天线阵列等讨论电磁波辐射的方向性和极化特性8.2 天线的基本理论介绍天线的基本参数,如阻抗、辐射效率、增益等分析天线的设计方法和性能优化策略8.3 电磁波的辐射与天线技术应用探讨天线技术在无线通信、广播、雷达等领域的应用和实例第九章:电磁波的接收与信号处理9.1 电磁波的接收原理介绍电磁波接收的基本过程,如放大、滤波、解调等分析接收机的性能指标,如灵敏度、选择性、稳定性等9.2 信号处理技术介绍信号处理的基本方法,如采样、量化、编码、调制等讨论数字信号处理技术在电磁波接收中的应用9.3 电磁波的接收与信号处理应用探讨电磁波接收与信号处理技术在通信、雷达、遥感等领域的应用和实例第十章:电磁波的测量与实验技术10.1 电磁波的测量原理分析电磁波测量的基本方法,如直接测量、间接测量、网络分析等讨论测量仪器和设备的选择与使用10.2 实验技术介绍电磁波实验的基本步骤和方法,如实验设计、数据采集、结果分析等分析实验中可能遇到的问题和解决策略10.3 电磁波的测量与实验技术应用探讨电磁波测量与实验技术在科研、工程、教学等领域的应用和实例重点解析第一章:电磁场的基本概念重点:电荷与电场的性质,电场的概念和电场线,电场的叠加原理。

电磁场与电磁波知识点总结 知乎

电磁场与电磁波知识点总结 知乎

电磁场与电磁波知识点总结知乎
电磁场和电磁波是物理学中的重要基础知识,涉及到电学、磁学、波动光学等多个领域。

下面是对电磁场和电磁波的一些重要知识点总结:
1. 电场和磁场:电场是指空间中由电荷引起的电力作用,磁场是指空间中由电流引起的磁力作用。

电场和磁场都是矢量场,可以用矢量图形表示。

2. 麦克斯韦方程组:麦克斯韦方程组是描述电磁场行为的基本方程,包括四个方程:高斯定理、高斯磁定理、法拉第电磁感应定律和安培环路定理。

3. 电磁波:电磁波是由电场和磁场相互作用引起的一种波动现象,包括无线电波、可见光、紫外线、X射线等。

电磁波具有波长、频率等特征,可以用波动方程表示。

4. 偏振:偏振是指电磁波中电场矢量的振动方向。

根据电场矢量的振动方向,电磁波可以分为线偏振、圆偏振和不偏振等。

5. 折射和反射:当电磁波从一种介质传播到另一种介质时,会发生折射现象,即波的传播方向改变。

同时,当电磁波遇到介质的边界时,会发生反射现象,即波发生反向传播。

折射和反射现象可以用斯涅尔定律和菲涅尔公式计算。

6. 衍射和干涉:电磁波在经过小孔或射缝等障碍物时,会发生衍射现象,即波扩散后形成干涉条纹。

同时,当两束电磁波相遇时,会发生干涉现象,即波的振幅会增强或减弱。

衍射和干涉现象可以用
菲涅尔衍射和双缝干涉等理论进行描述。

以上是电磁场和电磁波的一些重要知识点总结。

熟练掌握这些知识,对于理解电学、磁学、波动光学等学科都具有重要意义。

电磁场和电磁波

电磁场和电磁波

电磁场和电磁波是物理学中的两个基本概念。

电磁波和电磁场有什么区别?
电磁场
一般来说,电磁场是指相互联系的交变电场和磁场。

电磁场是带电粒子运动产生的物理场。

在电磁场中,磁场的任何变化都会产生电场,电场的任何变化也会产生磁场。

这种交变电磁场不仅可以存在于电荷、电流或导体周围,而且可以在空间中传播。

电磁场可以看作是电场和磁场之间的联系。

电场由电荷产生,运动电荷产生磁场。

什么是电磁波
电磁场的传播构成电磁波。

又称电磁辐射,例如,我们常见的电磁波有无线电波、微波、红外线、可见光、紫外线、X射线和r射线。

这些是电磁波,但是这些电磁波有不同的波长。

其中,无线电波的波长最长,R射线的波长最短。

另外,人眼能接收到的电磁波的波长通常在380到780纳米之间,这就是我们通常所说的可见光。

一般来说,只要物体本身的温度大于绝对零度(即零下273.15摄氏度),除了暗
物质外,还会发射电磁波。

然而,没有一个物体的温度低于-273.15℃,所以可以说我们周围的物体会发射电磁波。

电磁波以光速传播。

谁最先发现电磁波的?历史上,电磁波首先由詹姆斯·麦克斯韦在1865年预言,然后在1887年至1888年由德国物理学家海因里希·赫兹证实。

展开:
《电磁场与电磁波第四版》是高等教育出版社于2006年1月出版的一本书。

作者是谢丽和饶克金。

本书可作为普通高校电子信息、通信工程、信息工程等专业电磁场和电磁波课程的教材,也可供工程技术人员参考。

电磁场与电磁波技术

电磁场与电磁波技术
气象观测:利用电磁波对气象目标的散射和折射特性,观测气象信息
雷达测距:利用电磁波的反射和传播特性,测量目标距离
雷达测速:通过分析电磁波的多普勒效应,测量目标速度
无线电导航:利用无线电信号确定船只、飞机等物体的位置和航向
卫星导航系统:利用电磁波信号实现定位和导航
雷达导航:利用电磁波探测目标并进行定位
汇报人:
电磁场与电磁波技术
目录
添加目录标题
电磁场与电磁波的基本概念
电磁场与电磁波的应用
电磁场与电磁波的危害与防护
电磁场与电磁波的未来发展
添加章节标题
电磁场与电磁波的基本概念
电磁场是由电荷和电流产生的空间区域
电磁场包含电场和磁场两个分量
电磁波是电磁场中的波动现象,具有能量和动量
电磁波的传播速度等于光速
电磁波的传播速度等于光速
电磁波是由电磁场中的振荡电场和振荡磁场相互激发产生的
电磁波的传播不需要介质,可以在真空中传播
电磁波的频率越高,传播速度越接近于光速
波动性:电磁波具有波动性质,可以像水波一样传播。
粒子性:电磁波具有粒子性质,可以像光子一样传播。
传播速度:电磁波在真空中的传播速度为光速。
频率范围:电磁波的频率范围非常广泛,从低频到高频都有应用。
合理布局:合理规划电磁波发射源和接收器的布局,避免形成有害的电磁辐射环境。
电磁场与电磁波的未来发展
新型电磁材料的发展趋势:高效能、环保等
新型电磁材料的应用领域:通信、雷达、导航等
新型电磁材料的特点:高导电性、高磁导率等
新型电磁材料的种类:铁氧体、碳纳米管等
简介:高效电磁波吸收与反射材料在电磁场与电磁波技术中具有重要应用,能够有效地吸收和反射电磁波,降低电磁干扰和电磁辐射。

电磁场与电磁波

电磁场与电磁波

RR E r B d )(=(James Clerk Maxwell 1831-1879)在自由空间ρ = 0, J c = 0∇⋅ D = 0∂B ∇× E = − ∂t∇⋅B = 0 ∂D ∇× H = ∂t微分形式∇⋅ D = ρ∂B ∇× E = − ∂t∇⋅B = 0∂ ∂ ∂ ˆ ˆ ˆ ∇=i + j +k ∂x ∂y ∂z 22∂D ∇× H = Jc + ∂t在自由空间结合ρ = 0, J c = 0∇⋅ D = 0∂B ∇× E = − ∂t∇⋅B = 0 ∂D ∇× H = ∂t和D=εE B= μH∂ E ∇ E = με 2 ∂t2 2可以得到:∂ H ∇ H = με 2 ∂t2 2 2 2 2 2∂ ∂ ∂ 其中 ∇ = 2 + 2 + 2 ∂x ∂y ∂z23电、磁分量都具有波 动特征——电磁波! 当电磁波沿x方向传播时结合D=εE B= μH∂ E ∇ E = με 2 ∂t2 2可以得到:∂ Ey ∂ Ey 2 = με 2 ∂t ∂x2 2∂ Hz ∂ Hz 2 = με 2 ∂x ∂t2 2和∂ H ∇ H = με 2 ∂t2 2其中∂ ∂ ∂ ∇ = 2+ 2+ 2 ∂x ∂y ∂z2 2 2 224电、磁分量都具有波 动特征——电磁波! 当电磁波沿x方向传播时即:若设电场方向沿y方向, 磁场必为z方向!yE yHzux∂ Ey ∂ Ey 2 = με 2 ∂t ∂x2 2z2∂ Hz ∂ Hz 2 = με 2 ∂x ∂t2 2比较波动方程电磁波 u = 波速为1∂ ξ 1 ∂ ξ 2 = 2 2 u ∂t ∂x225με*电磁波波速与光矢量* 真空中u=1μ0ε 01= 3 × 108 mcs——光速 c推测:光也是电磁波! 在介质中 u =με=n= εr c = μ rε r n n = μ rε r — 折射率在光波段μr=1 ,与物质作用的主要是 E矢量E ——通常被称为光矢量!注意:在BEC(Bose-Einstein Condensation)介质中,光的传 播速度可以慢到大约为17m/s。

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。

电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。

电荷是产生电场的源。

正电荷会产生向外辐射的电场,负电荷则产生向内汇聚的电场。

电场强度 E 用来描述电场的强弱和方向,其单位是伏特每米(V/m)。

电流是产生磁场的源。

电流产生的磁场方向可以通过右手螺旋定则来确定。

磁场强度 H 用来描述磁场的强弱和方向,其单位是安培每米(A/m)。

法拉第电磁感应定律表明,变化的磁场会产生电场。

麦克斯韦进一步提出,变化的电场也会产生磁场。

这两个定律共同揭示了电磁场的相互联系和相互转化。

二、电磁波的产生电磁波是电磁场的一种运动形态。

当电荷加速运动或者电流发生变化时,就会产生电磁波。

例如,在一个开放的电路中,电荷在电容器和电感之间来回振荡,就会产生电磁波。

这种振荡电路是产生电磁波的一种简单方式。

电磁波的频率和波长之间存在着一定的关系,即光速 c =λf,其中c 是光速(约为 3×10^8 m/s),λ 是波长,f 是频率。

不同频率的电磁波具有不同的特性和应用。

例如,无线电波频率较低,用于通信和广播;而X 射线频率较高,用于医学成像和材料检测。

三、电磁波的传播电磁波在真空中可以无需介质传播,在介质中传播时,其速度会发生变化。

电磁波在传播过程中遵循反射、折射和衍射等规律。

当电磁波遇到障碍物时,会发生反射。

如果电磁波从一种介质进入另一种介质,会发生折射,折射的程度取决于两种介质的电磁特性。

衍射则是指电磁波绕过障碍物传播的现象。

当障碍物的尺寸与电磁波的波长相当或较小时,衍射现象较为明显。

电磁波的极化是指电场矢量的方向在传播过程中的变化。

常见的极化方式有线极化、圆极化和椭圆极化。

四、电磁波的特性1、电磁波是横波,电场和磁场的振动方向都与电磁波的传播方向垂直。

2、电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。

3、电磁波的传播速度是恒定的,在真空中为光速。

电磁场和电磁波

电磁场和电磁波

充 电
放电

q=0 i=Im

++ ++
q=Qm i=0
两类量:
第一类:电容器的电荷q、电压u、电场E、 电场能E电、线圈的自感电动势e自 第二类:线圈的电流i、磁场B、磁场能E磁 两类量的变化规律相反. 即第一类增大时 第二类减小; 第一类达最大时第二类为零.
(3)变化规律的图象描述:
q
o t i o
讨论:
麦克斯韦认为变化的磁场在线圈中产生电场,正是这种电场(涡旋 电场)在线圈中驱使自由电子做定向的移动,引起了感应电流。
1.变化的磁场产生的电场叫感应电场(涡流电场),电场线是 闭合的。
2.静止电荷周围产生的电场叫静电场,电场线由正电荷起到负 电荷终止,不是闭合的。
总结:麦克斯韦认为线圈只不过用来显
一、电磁振荡的产生
+ + + + L
-- - -
C
E
S

电磁波的产生与传播
由麦克斯韦的电磁场理论,变化的电场产生变化的磁场, 而变化的磁场又产生变化的电场,这样,变化电场和变化磁场 之间相互依赖,相互激发,交替产生,并以一定速度由近及远 地在空间传播出去。这样就产生了电磁波。
1、电磁波的波源 我们知道,线圈L和电容C组成的电路可以产生电磁振荡, 电磁振荡能够发射电磁波。但由LC组成普通振荡电路,有以下 特点: (1) 电磁场能量几乎分别集中于电容器和自感线圈内,不利于电 磁波的辐射,所以必需设计能让能量辐射的电路。
(2) 电磁波在单位时间内辐射功率与频率的四次方成正比,而
L C电路频率为
1 2π LC
很低,因而要对电路进行改造。
实验表明,LC回路里产生的振荡电流是按正 弦规律变化的。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁 场的 主要 研究 领域
AHJZ-JHH
作为理论物理学的一个 重要研究分支,主要致 力于统一场理论和微观 量子电动力学的研究。
作为无线电技术的理论 基础,集中于三大类应 用问题的研究。
3-58
四 学习的目的、方法及要求
1. 掌握宏观电磁场的基本属性和运动规律 2. 掌握宏观电磁场问题的基本求解方法 3. 了解宏观电磁场的主要应用领域及其原理 4. 训练分析问题、归纳问题的科学方法 5. 培养用数学解决实际问题的能力 6. 独立完成作业,做好课堂笔记
•Av坐=标A表ρ ev示ρ + Aϕ evϕ + A z ev z

d
线元
lv = ev ρ
d
ρ
+
evϕ ρ d ϕ +
ev z dz
•dsv面=元evρdsρ + evϕdsϕ + evzdsz
• 体积元 dV = ρdρdϕdz
ds ρ = ρ d ϕ dz ds ϕ = d ρ dz ds z = ρ d ρ d ϕ
evy dy +
evz dz
= evl dl
• 面dsv元= evxdsx + evydsy + evzdsz • 体积元 d V = d x d y d z
dsx = dydz dsy = dxdz dsz = dxdy
AHJZ-JHH
⊥ ⊥ ⊥
eeevvvxzy
11-58
球坐标系
• 三变量
0 ≤ r < +∞ 0 ≤ θ ≤ π 0 ≤ ϕ ≤ 2π
AHJZ-JHH
6 学时 9 学时 3 学时 6 学时 9 学时 9 学时
5-58
第一章 矢量分析与场论基础
主要内容
梯度、散度、旋度、亥姆霍兹定理 6学时
1. 三种常用坐标系
2. 矢量运算
3. 标量场的梯度
4. 矢量场的散度
5. 矢量场的旋度
6. 亥姆霍兹定理
AHJZ-JHH
8-58
一 电磁场理论的主要研究领域
AHJZ-JHH
⊥ ⊥ ⊥
eeevvvϕρz
13-58
三种坐标系的关系
⎧x = ρ cosϕ
⎪ ⎨
y
=
ρ
sin ϕ
⎪⎩ z = z
AHJZ-JHH
16-58
直角坐标系
• 三变量 x y z
• 坐标表示
Av = Axevx + Ayevy + Azevz = Av evA

线元
dlv = evx dx +
gradu
z 那么,梯度 gradu 就是 u(M) 变化率 最大的方向。
AHJZ-JHH
33-58
梯 度 gradient
z 梯度的物理意义 2
例1 三维高度场的梯度 例2 电位场的梯度
三维高度场的梯度
电位场的梯度
高度场的梯度
电位场的梯度
• 与过该点的等高线垂直; • 与过该点的等位线垂直;
• 数值等于该点位移的最 • 数值等于该点的最大方向导数;
矢量场 Fv(x, y, z)
Fv (x, y, z,t)
AHJZ-JHH
29-58
梯 度 gradient
z 在这无穷多个方向中哪个方向的变化率
Q
最大定Δ?义lv =:Δlevlgr=adΔux=evxevx+∂∂Δuxy+evevyy+∂∂uyΔz+evevzz
∂u ∂z
u(M
)

u(M0
)
=
Δu
电磁波作为探测未知世界的一种重要手 段,主要研究领域为电磁波与目标的相互 作用特性、目标特征的获取与重建、探测 新技术等。
AHJZ-JHH
4-58
主要教学参考书:
【1】 孙玉发等,电磁场与电磁波,合肥工 业大学出版社
【2】 马冰然,电磁场与微波技术(上册) 华南理工大学出版社
【3】 谢处方,电磁场与电磁波,高等教育 出版社
z矢量函数的导数
9 对空间坐标的导数
( ) ∂Ev
∂x
=
∂ ∂x
=
Ex
∂evx ∂x
evx Ex + evy Ey + evz Ez
+ evx
∂Ex ∂x
+
Ey
∂evy ∂x
+ evy
∂Ey ∂x
+
Ez
∂evz ∂x
+ evz
∂Ez ∂x
=
evx
∂Ex ∂x
+ evy
∂Ey ∂x
+ evz
∂Ez ∂x
Av
的模值:A
= (Ax2
+
Ay2
+
Az2
1
)2
=
Av
AevA
=A
方向余旋:
cosα
=
Ax A
AHJZ-JHH
cosβ
=
Ay A
cosγ
=
Az A
20-58
矢量代数
• 标量积结论 –

单位矢量 交换率Av ⋅
Bv
evx ⋅ evx = evx ⋅ evy =
= Bv ⋅ Av
evy evy
⋅ evy ⋅ evz
=
∂u ∂x
cosα
+
∂u ∂y
cos
β
+
∂u ∂z
cos γ
AHJZ-JHH
31-58
梯 度 gradient
z 哈密顿(Hamilton)算子 又称那勃勒算子(nabla)

=
evx
∂ ∂x
+
evy
∂ ∂y
+
evz
∂ ∂z
(直角坐标系中)
∇u
=
(evx
∂ ∂x
+
evy
∂ ∂y
+
evz
∂ ∂z
)u
z 等值面方程 u(x, y, z)= C
(C 为任意常数)
AHJZ-JHH
30-58
梯 度 gradient
z 表明gradu在L方向上的投影正好等于
函数u(x,y,z)在该方向上的方向导数,
当gradu与L方向一致时,即:cos(gradu , evl ) =1
方向导数:
。 ∂u
∂l
|max =
【4】 王蔷等,电磁场理论基础,清华大学 出版社
AHJZ-JHH
7-58
课程介绍
一 电磁场的主要研究领域 二 电磁学的发展简史(略) 三 本课程的主要教学内容 四 学习的目的、方法及要求
AHJZ-JHH
2-58
三 本课程的主要教学内容
1. 矢量分析 2. 静电场 3. 恒定电场 4. 恒定磁场理论 5. 时变电磁场理论 6. 电磁波基本理论
另图见下页
ds ρ = ρ d ϕ dz ds ϕ = d ρ dz ds z = ρ d ρ d ϕ
⊥ ⊥ ⊥
eeevvvϕρz
12-58
球坐标系
• 三变量
0 ≤ r < +∞ 0 ≤ θ ≤ π 0 ≤ ϕ ≤ 2π
•Av坐= 标Arev表r +示Aθevθ + Aϕevϕ
•dlv线= 元evrdr + evθ rdθ + evφrsinθdϕ
27-58
1.3 标量场的梯度
¾ 标量场的等值面 ¾ 方向导数 ¾ 梯度
AHJZ-JHH
28-58
方向导数
z 研究的是标量在某点沿某一方向的 变化率问题(directional derivative)。
定义:
∂u ∂l
|M0
=
lim
Δl →0
u(M
)
− u(M Δl
0
)
l
Δl M
U M0
计算:
∂u ∂l
大变化率; • 指向地势升高的方向。
• 指向电位增加的方向。
AHJZ-JHH
36-58
梯 度 gradient
1
例1.3-1
l = evx + 2evy +
•dsv面=元evrdsr +evθdsθ + evϕdsϕ • 体积元
dsr = r2sinθdθdϕ dsθ = rsinθdrdϕ dsϕ = rdrdθ
⊥ ⊥ ⊥
eeevvvϕθr
dV = r2sinθdrdθ dϕ
AHJZ-JHH
15-58
1.2 矢量运算
¾ 矢量表示 ¾ 矢量代数 ¾ 矢量微积分
•Av坐= 标Arev表r +示Aθevθ + Aϕevϕ
•dlv线= 元evrdr + evθ rdθ + evφrsinθdϕ
另图见下页
•dsv面=元evrdsr +evθdsθ + evϕdsϕ • 体积元
dsr = r2sinθdθdϕ dsθ = rsinθdrdϕ dsϕ = rdrdθ
⊥ ⊥ ⊥
eeevvvϕθr
dV = r2sinθdrdθ dϕ
AHJZ-JHH
14-58
• 三变量
xyz
• 三变量
0 ≤ ρ < ∞ 0 ≤ ϕ ≤ 2π − ∞ < z < ∞
• 三变量
0 ≤ r < +∞ 0 ≤ θ ≤ π 0 ≤ ϕ ≤ 2π
三坐标系
AHJZ-JHH
相关文档
最新文档