极坐标与参数方程复习PPT课件

合集下载

高考总复习数学(文):18.2 极坐标与参数方程 精品优选公开课件

高考总复习数学(文):18.2 极坐标与参数方程 精品优选公开课件

【失误与防范】在将曲线的参数方程化为普通方程时,不
仅仅是把其中的参数消去,还要注意 x,y 的取值范围,也即在 消去参数的过程中一定要注意普通方程与参数方程的等价性. ①题很容易忽略参数范围 0≤θ≤ π ,②题很容易忽略参数方程
2 中 0≤sin2θ≤1 而出错.
自从那一天,我衣着脚,挑着行李,沿着崎岖曲折的田埂,离开故乡,走向了城市;从此,我便漂泊在喧嚣和浮躁的钢筋水泥丛林中,穿行于 中国文化三大支柱的儒释道,其内容相当丰富。以浩如海洋来比喻,都不之为过! 近日,我在“儒风大家”上,看到一篇文章,仅用---三句话、九个字。说出了儒释道,其实并不高高在上,而是与我们的人生和日常生活密切相关!
φ, φ
转换
成普通方程为 y=x-a 和x92+y42=1,直线与 x 轴的交点为(a,0)
就是椭圆的右顶点(3,0),所以 a=3.
答案:3
【方法与技巧】常见的消参数法有:代入消元(抛物线的参 数方程)、加减消元(直线的参数方程)、平方后再加减消元(圆、 椭圆的参数方程)等.经常使用的公式有sin2α+cos2α=1.在将曲 线的参数方程化为普通方程的过程中一定要注意参数的范围, 确保普通方程与参数方程等价.
_______________________________.
(2)柱坐标、球坐标与直角坐标的互化公式:
①柱坐标化为直角坐标公式: xy= =ρρcsionsθθ,, z=z;
____________________.
x=rsinφcosθ,
②球坐标化为直角坐标公式:
y=rsinφsinθ, z=rcosφ
C.x2+y-122=14
D.x-122+y2=14
3.若直线的参数方程为xy= =12+ -23tt, (t 为参数),则直线的

高三数学一轮复习课件坐标系与参数方程ppt.ppt

高三数学一轮复习课件坐标系与参数方程ppt.ppt

5.(2012·江西模拟)在极坐标系中,圆 ρ=4cos θ 的圆心 C 到
直线 ρsinθ+π4=2 2的距离为________.
解析:注意到圆 ρ=4cos θ 的直角坐标方程是 x2+y2
=4x,圆心 C 的坐标是(2,0).直线 ρsinθ+π4=2 2的
直角坐标方程是 x+y-4=0,因此圆心(2,0)到该直线
(1)在以 O 为极点,x 轴正半轴为极轴的极坐标系中,
分别写出圆 C1,C2 的极坐标方程,并求出圆 C1,C2 的交点 坐标(用极坐标表示);
(2)求圆 C1 与 C2 的公共弦的参数方程.
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
其普通方程为 x2+y2=2y,
ρcos θ=-1 的普通方程为 x=-1,
联立xx2=+-y21=,2y, 解得xy==1-,1,
故交点(-1,1)的极坐标为
2,34π.
答案:
2,34π
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[自主解答] (1)圆 C1 的极坐标方程为 ρ=2, 圆 C2 的极坐标方程 ρ=4cos θ. 解ρρ= =24,cos θ 得 ρ=2,θ=±π3, 故圆 C1 与圆 C2 交点的坐标为2,π3,2,-π3. 注:极坐标系下点的表示不惟一.
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
的距离等于|2+0-4|= 2
2.

极坐标和参数方程ppt课件

极坐标和参数方程ppt课件
解 由 公 式 1 0 - 1 ,可 得 :
x5cos352,
y5sin3523.
极坐标和参数方程
于 是 得 点 M 的 直 角 坐 标 为 5 2,523 .我 们 也 可 以 把 点 M 的
直 角 坐 标 化 为 极 坐 标 ,由 公 式 101变 化 可 得 :
2 x2 y2
tan y x 0
例6 作出下列极坐标方程的图像.
(1) aa0; (2) .
2
解 (1)对于方程 a a 0,
可以看出,当取任何值时, 的
取值都是a,因此方程的图像是 以 极 点 O为 圆 心 , a为 半 径 的 圆
图 10-8 ;
a
x
O
a
a,0
图 1 0 8 例 6 题 ( 1 ) a a 0 的 图 像
设M1,是极坐标系中任意一点图1010,M3,
是M1,关于极点的对称点;M4,是M1,关于极
轴的对称点;M2 ,是 M1,关于直线2的
M2,
2
M1,
对称点.
x
O
M3,
M4,
极坐标和参数图方程10-10 极坐标系中的对称关系
由 以 上 点 的 对 称 关 系 , 可 得 到 曲 线 f 的 对 称 关 系 见
开点,又当 增大时, 也随之
增大, 每转一圈增加2,
CB
也相应增加2a. 依照表103可
••
D•
•A
作出曲线如图1015所示,图中
O
x
虚线表示 为负值时的曲线.
极坐标和参数方程
图10-15 等速螺线
例10 如图10-16所示,一凸轮的轮廓线由CDE和ABC两段 曲线组成.C为启动时从动杆与凸轮的接触点,凸轮轴心O与C点 的距离为100mm.当凸轮按箭头方向做等角速转动时,要求: CDE段推动从动杆向右做等速直线运动,其最大推程为10mm; 当从动杆接触到轮廓线上点E时,由于弹簧的作用从动杆就向 左移动到A,开始与凸轮的ABC段相接触,从动杆接触ABC段时 不动,试求凸轮的轮廓线ABC段和CDE段的极坐标方程.

极坐标与参数方程复习课件

极坐标与参数方程复习课件
详细描述
摆线的极坐标方程是ρ=a(1-cosθ),其中ρ表示点到原点的距离,θ表示点与x轴的夹角,a表示摆线的 半径。通过这个方程,我们可以方便地计算摆线的长度和面积。
实例三:磁场线的参数方程
总结词
磁场线的参数方程表示
详细描述
磁场线的参数方程通常由两个参数构 成,例如时间和角度。参数方程可以 描述磁场线在任意时刻的位置和方向 ,从而方便地计算磁场线的长度和面 积。
极坐标与参数方程的转换关系
极坐标与直角坐标转换
极坐标系中的点可以用直角坐标系中的坐标表示,反之亦然。具体转换公式为 :$x = rho cos theta, y = rho sin theta, x^2 + y^2 = rho^2$。
参数方程与直角坐标转换
参数方程中的点也可以用直角坐标系中的坐标表示,具体转换公式取决于参数 方程的形式。
05
极坐标与参数方程的习题及解析
习题一:求圆的极坐标方程
总结词
理解并掌握圆的极坐标方程的推 导方法
详细描述
通过给定的圆心和半径,利用极 坐标与直角坐标方程
80%
总结词
掌握参数方程转换为普通方程的 方法
100%
详细描述
通过消去参数,将参数方程转化 为普通方程,以便更好地理解曲 线的几何意义。
极坐标与直角坐标的关系
对于平面内任意一点P,其直角坐标为(x,y),则其极坐标为(r,θ), 其中r=√(x²+y²),tanθ=y/x。
极坐标与直角坐标的转换
直角坐标转换为极坐标
已知点P的直角坐标为(x,y),则其极 坐标为(r,θ),其中r=√(x²+y²), tanθ=y/x。
极坐标转换为直角坐标

高考数学一轮复习 12.2极坐标与参数方程课件

高考数学一轮复习 12.2极坐标与参数方程课件

x y
(θa为c o参s θ数, ),
b sin θ
双曲线 x
a
2 2
-y 2
b2
=1(a>0,b>0)的参数方程为
x y
(φa为s e参c φ数, ),
b tan φ
抛物线y2=2px的参数方程为
x
(t为2 p参t 2 ,数).
y 2 pt
完整版ppt
7
1.在平面直角坐标系xOy中,点P的直角坐标为(1,- 3).若以原点O为极点,x 轴正半轴为极轴建立极坐标系,则点P的极坐标可以是 ( )
ρ2 cos
θ=1.
4
(2)由ρsin
θ
=61,得
ρsin θ·cos -ρcos θ·sin =1,
6
6
∴直线的直角坐标方程为 1 x- 3 y+1=0,
22
又点
2
,
的6 直角坐标为(
,1),3
| 3 3 1|
∴点到直线的距离d= 2 =12.
完整版ppt
3
x
ρ
c
o
s
θ
,
ρ
2
x2
y2,
y
ρ
s
in
θ
,
t
an
θ
y x
(x
0).
(3)直线的极坐标方程:若直线过点M(ρ0,θ0),且极轴与此直线所成的角为α,
则它的方程为ρsin(θ-α)=⑥ ρ0sin(θ0-α) .
几个特殊位置的直线的极坐标方程:
(i)直线过极点:θ=θ0和θ=⑦ π-θ0 ;
完整版ppt
2
ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序 数对④ (ρ,θ) 叫做点M的极坐标,记为M(ρ,θ). 一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. (2)直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系 中取⑤ 相同 的长度单位.设M是平面内任意一点,它的直角坐标、极 坐标分别为(x,y)和(ρ,θ),则

极坐标与参数方程ppt课件

极坐标与参数方程ppt课件
当 θ1=θ2,|AB|=/ρ1—-ρ2/
• 3.直线的极坐标方程:若直线过点M(ρ0,θ0),且极 轴到此直线的角为α,则它的方程为:
• ρsin(θ-α)=ρ0sin(θ0-α). • 几个特殊位置的直线的极坐标方程 • (1)直线过极点:θ=θ0和θ=π+θ0; • (2)直线过点M(a,0)且垂直于极轴:ρcosθ=a;
若 M1,M2 是 l 上的两点,其对应参数分别为 t1,t2,则 (1)M1,M2 两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0 +t2cos α,y0+t2sin α). (2)|M1M2|=|t1-t2|. (3)若线段 M1M2 的中点 M 所对应的参数为 t,则 t=t1+2 t2, 中点 M 到定点 M0 的距离|MM0|=|t|=t1+2 t2. (4)若 M0 为线段 M1M2 的中点,则 t1+t2=0.
[解] (1)直线 l 的普通方程为 xsin α-ycos α+cos α=0. 曲线 C 的极坐标方程为 ρcos2θ=4sin θ, 即 ρ2cos2θ=4ρsin θ,∵ρcos θ=x,ρsin θ=y, ∴曲线 C 的直角坐标方程为 x2=4y.
x=tcos α, (2)将 l: y=1+tsin α 代入曲线 C∶x2=4y 中, 得 t2cos2α-4tsin α-4=0.
意判断点P所在的象限(即角θ的终边的位置),以 便正确地求出角θ. • (2)注意“双坐标系”是直角坐标与极坐标互化的 前提.若要判断曲线的形状,通常是先将极坐标 方程化为直角坐标方程,再判断.
(3)极坐标系中两点间的距离公式:已知点 A(ρ1,θ1),
B(ρ2,θ2),那么|AB|= ρ12+ρ22-2ρ1ρ2cosθ1-θ2.

高三第二轮专题复习极坐标与参数方程课件.ppt

高三第二轮专题复习极坐标与参数方程课件.ppt

x
y
a b
r r
cos sin
(为参数)
其中参数的几何意义为: θ为圆心角
4.椭圆
x2 a2
y2 b2
1(a
b
0)的参数方程为:
x
y
a b
cos sin
(为参数)
双基自测
1.极坐标方程 ρ=cos θ 和参数方程xy= =2-+1t-t, (t 为参
数)所表示的图形分别是( ).
A.直线、直线
答案 (-4,0)
4.(2013·广州调研)已知直线 l 的参数方程为:xy==12+t,4t (t 为参数), 圆 C 的极坐标方程为 ρ=2 2sin θ,则直线 l 与圆 C 的位置关系为 ________.
x=2t,
解析 将直线 l 的参数方程:
化为普通方程得,y=1+2x,
y=1+4t
圆 ρ=2 2sin θ 的直角坐标方程为 x2+(y- 2)2=2,圆心(0, 2)到
重点方法:<1>消参的方法;<2>极 坐标方程化为直角坐标方程的方法; <3>设参的方法。
1、过定点 M 0 (x0 , y0 ) 、倾斜角为 的直线 l 的参
数方程为
x
y
x0 y0
t cos t sin
,(t
为参数)
我们把这一形式称为直线参数方程的标准形式,其
中t表示直线l上以定点M0为起点,任意一点M(x,y)为终 点的有向线段的数量M0M。当点M在点M0的上方时, t>0;当点M在点M0的下方时,t<0;当点M与点M0重合 时,t=0。很明显,我们也可以参数t理解为以M0为原点, 直线l向上的方向为正方向的数轴上点M的坐标,其长度

数学优质课件精选选修系列极坐标与参数方程课件

数学优质课件精选选修系列极坐标与参数方程课件

(t 为参数).
极坐标、参数方程的综合应用
利用极坐标、参数方程与普通方程间的转化,把 点、线和曲线等问题转化为熟知内容,进而解决 有关问题.
例3 (2011 年盐城市高三调研)已知直线 l 的参数方 程xy==1t +2t (t 为参数)和圆 C 的极坐标方程 ρ=
2 2sin(θ+π4). (1)将直线 l 的参数方程化为普通方程,圆 C 的极 坐标方程化为直角坐标方程; (2)判断直线 l 和圆 C 的位置关系.
参数),
所以曲线 C 的直线坐标方程为 y=12x2(x∈[-
2,2]),
联立解方程组得xy==00,,
或x=2 3, y=6.
根据 x 的范围应舍去x=2 3, y=6,
故 P 点的直角坐标为(0,0).
考点探究·挑战高考
考点突破 极坐极系与直角坐标系的互化
1.极坐标的四要素:(1)极点;(2)极轴;(3)长 度单位;(4)角度单位和它的正方向,四者缺一 不可.
y),极坐标是(ρ,θ),可以得出它们之间的
关系:x=_______,y=_______.又可得到关
系 ρcosθ
ρsinθ
• 式:ρ2=_______,tanθ= ___y_ (x≠0).
x2+y2
x
• 3.常见曲线的极坐标方程
• (1)直线的极坐标方程
• •
过 方 (2)点 程圆M为的(ρ_极ρs_0i_,n坐_(θ_θ标-_0)_方且α__)程倾=__斜ρ_0_角s_in_为(_θ_α0_-的__α直_)_线_.l的极坐标
第三节 坐标系与参数方程
双基研习·面对高考 第 三 节


考点探究·挑战高考

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


tanθ,θ为直线的倾斜角,所以该直线的倾斜角为150°.
第5页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
2.直线的参数方程
过定点P0(x0,y0)且倾斜角为α的直线的参数方程为
□5
_________(t为参数),则参数t的几何意义是□6 _________.
第6页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
成的有向线段P0P的数量且在直线上任意两点P1、P2的距离为
|P1P2|=|t1-t2|= t1+t22-4t1t2.
第9页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
3种方法——化参数方程为普通方程的方法 (1)利用解方程的技巧求出参数的表示式,然后代入消去参 数; (2)利用三角恒等式消去参数; (3)根据参数方程本身的结构特征,选用一些灵活的方法从整 体上消去参数. 将参数方程化为普通方程时,要注意防止变量x和y取值范围的 扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值 域,即x和y的取值范围.
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
3.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极
轴建立极坐标系.已知射线θ=
π 4
与曲线
x=t+1, y=t-12
(t为参数)相交
于A,B两点,则线段AB的中点的直角坐标为__________.
第14页
返回导航
选修4-4 第二节
3.圆的参数方程 圆心为(a,b),半径为r,以圆心为顶点且与x轴同向的射 线,按逆时针方向旋转到圆上一点所在半径成的角α为参数的圆
的参数方程为□7 __________________α∈[0,2π).
4.椭圆的参数方程
以椭圆的离心角θ为参数,椭圆
x2 a2

y2 b2
=1(a>Байду номын сангаас>0)的参数
方程为□8 ________________θ∈[0,2π).
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
选修4-4
坐标系与参数方程
第1页
返回导航
选修4-4 坐标系与参数
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
第二节 参数方程
课前学案 基础诊断
课堂学案 考点通关
自主园地 备考套餐
开卷速查
第2页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
答案:x-3y-5=0
第12页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
2.曲线 __________.
x=5cosθ, y=3sinθ
(θ为参数)的左焦点的坐标是
解析:化为普通方程为2x52 +y92=1,故左焦点为(-4,0).
答案:(-4,0)
第13页
返回导航
1.参数方程的概念
一般地,在平面直角坐标系中,如果曲线上□1 ____的坐标
x,y都是某个变数t的函数:
x=ft, y=gt.
并且对于t的每一个允许
值,由方程组所确定的点M(x,y)都在□2 _____,那么方程叫做
这条曲线的参数方程,t叫做参变数,简称□3 _____.相对于参数
方程而言,直接给出点的坐标间关系的方程叫做□4 ________.
第10页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
3个结论——参数方程的应用
根据直线的参数方程的标准式中t的几何意义,有如下常用结
论.
(1)直线与圆锥曲线相交,交点对应的参数分别为t1,t2,则弦
长l=|t1-t2|;
(2)定点M0是线段M1M2的中点⇒t1+t2=0;
第7页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
答案:
第8页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
1个要点——参数t的几何意义
在直线的参数方程
x=x0+tcosα, y=y0+tsinα
(t为参数)中t的几何意
义是表示在直线上从定点P0(x0,y0)到直线上的任一点P(x,y)构
12+|2|-12= 2.
答案: 2
第16页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
5.若直线的参数方程为
x=1+3t, y=2- 3t
(t为参数),则直线的倾
斜角为__________.
解析:由直线的参数方程知,斜率k=
y-2 x-1

- 3t 3t
=-
3 3
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
解析:记A(x1,y1),B(x2,y2),将θ=π4转化为直角坐标方程为 y=x(x≥0),曲线为y=(x-2)2,联立上述两个方程得x2-5x+4= 0,所以x1+x2=5,故线段AB的中点坐标为52,52.
答案:52,52
第15页
返回导航
考 1.了解参数方程,了解参数的意义. 纲 导 2.能选择适当的参数写出直线、圆和椭圆的参数方 学 程.
第3页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
课前学案 基础诊断
夯基固本 基础自测
第4页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
(3)设线段M1M2中点为M,则点M对应的参数值tM=
t1+t2 2
(由此
可求|M2M|及中点坐标).
第11页
返回导航
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
1.参数方程
x=3t+2, y=t-1
____________________.
(t为参数)的普通方程为
解析:由y=t-1,得t=y+1,代入x=3t+2,得x=3y+5.即 x-3y-5=0.
选修4-4 第二节
高考进行时 一轮总复习 ·数学(新课标通用A版 ·理)
4.在平面直角坐标系xOy中,直线l的参数方程为
x=t, y=t+1
(参数t∈R),圆C的参数方程为
x=cosθ+1, y=sinθ
(参数θ∈[0,2π)),则
圆心C到直线l的距离是__________.
解析:直线方程可化为x-y+1=0,圆的方程可化为(x-1)2+ y2=1.由点到直线的距离公式可得,圆心C(1,0)到直线l的距离为
相关文档
最新文档