工业现场总线体系介绍
三种工业总线及其中的现场总线

一,工业总线三种基本类型*传感器级总线,即485总线网络*设备级总线,即HART总线网络*现场总线,即FieldBus现场总线网络现场总线定义:现场总线是指以工厂内的测量和控制机器间的数字通讯为主的网现场总线分为以下几种:下面就几种主流的现场总线做一简单介绍。
1、基金会现场总线(FoundationFieldbus 简称FF)这是以美国Fisher-Rousemount公司为首的联合了横河、ABB、西门子、英维斯等80家公司制定的ISP协议和以Honeywell公司为首的联合欧洲等地150余家公司制定的WorldFIP协议于1994年9月合并的。
该总线在过程自动化领域得到了广泛的应用,具有良好的发展前景。
基金会现场总线采用国际标准化组织ISO的开放化系统互联OSI的简化模型(1,2,7层),即物理层、数据链路层、应用层,另外增加了用户层。
FF分低速H1和高速H2两种通信速率,前者传输速率为31.25Kbit/秒,通信距离可达1900m,可支持总线供电和本质安全防爆环境。
后者传输速率为1Mbit/秒和2.5Mbit/秒,通信距离为750m和500m,支持双绞线、光缆和无线发射,协议符号IEC1158-2标准。
FF的物理媒介的传输信号采用曼切斯特编码。
2、CAN(ControllerAreaNetwork控制器局域网)最早由德国BOSCH公司推出,它广泛用于离散控制领域,其总线规范已被ISO国际标准组织制定为国际标准,得到了Intel、Motorola、NEC等公司的支持。
CAN协议分为二层:物理层和数据链路层。
CAN的信号传输采用短帧结构,传输时间短,具有自动关闭功能,具有较强的抗干扰能力。
CAN支持多主工作方式,并采用了非破坏性总线仲裁技术,通过设置优先级来避免冲突,通讯距离最远可达10KM/5Kbps/s,通讯速率最高可达40M /1Mbp/s,网络节点数实际可达110个。
已有多家公司开发了符合CAN协议的通信芯片。
工业数据通信和控制网络(现场总线)

工业数据通信和控制网络(现场总线)现场总线技术现场总线控制系统(简称FCS)其结构模式为“工作站――现场总线智能仪表”二层结构,成本低、可靠性高,可实现真正的开放式互连系统结构。
操作站LANH2H1服务器H1现场总线现场设备124H1网桥H1H132现场设备H1现场总线现场总线FCS控制层32现场设备原理图控制系统应用图示例使用控制系统分布确定现场总线的接线H1现场总线#3网段控制室PCGreenLiquorStorageLT111LT112H1现场总线#2网段LT101Re-BurnedPurchasedLimeLimeDT109FT11019SC11124IP102IP104AIP104BCoolerSC11225SC1102320FT102AT10321TT104HeaterCV-101A/OAT106AT107AAT107BLT108SC10822H1现场总线#1网段TT105现场总线定义现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络。
它的关键标志是能支持双向、多节点、总线式的全数字通讯。
网络节点网络体系包括IPC、PLC以及各种智能化的现场控制设备基于统一、规范的通信协议通过同一总线实现相互间的数据传输与信息共享位于生产控制的底层网络结构通信总线在现场设备中的延伸现场总线的发展1996年到1998年,国际性组织FF(现场总线基金会)和PNO(Profibus国际组织)先后发布了适于过程自动化的现场总线标准H1、H2(HSE)和Profibus-PA,H1和PA都在实际工程中开始应用。
1999年底,包含8种现场总线标准在内的国际标准IEC-61158开始生效,除H1、HSE和PA外,还有WorldFIP、Interbus、ControlNet、P-NET、SwiftNet等五种。
Profibus较适合于工厂自动化,CAN适用于汽车工业,FF总线(FoundationFieldbus)主要适用于过程控制现场总线的网络结构现场总线的星形网络结构现场总线的网络结构特点Ethernet/HighwayFiledbusIPC、PLC。
工业现场总线体系介绍

工业现场总线体系介绍工业现场总线(Industrial Fieldbus)是一种用于工业控制领域的通讯系统技术,它能够实现多个设备之间的数据交换和通信。
工业现场总线系统是由若干个节点组成的,每个节点可以连接一个或多个设备,包括传感器、执行器、PLC(可编程逻辑控制器)等。
总线系统可以实现设备之间的数据传输、控制指令传达等功能。
总线系统的主要作用是使各个设备之间可以实现信息的共享和集成。
传统的控制系统往往需要大量的硬件设备和复杂的布线,而总线系统可以通过一个统一的总线将各个设备连接在一起,大大减少了系统的复杂性和成本。
此外,总线系统还具有灵活性和可扩展性强的特点,可以根据实际需求对系统进行调整和升级。
工业现场总线的发展可以追溯到20世纪80年代初,当时的西门子公司首先提出了一种用于连接PLC的域总线系统,即PROFIBUS。
随后,其他公司也相继推出了自己的总线系统,如施耐德电气的Modbus、ABB的FieldBus和Yokogawa的HART等。
总线系统通常由以下几个组成部分构成:总线介质、节点、传输协议和应用软件。
总线介质是指传输信号的媒介,可以是电缆、光纤或无线信号。
不同的总线系统使用不同的总线介质,如PROFIBUS使用双绞线,而FOUNDATION Fieldbus使用双绞线或光纤。
节点是总线系统中的每个设备,每个节点都有唯一的地址。
节点可以是传感器、执行器、PLC等,它们通过总线与其他设备进行通信和数据交换。
节点可以发送和接收数据,根据命令进行相应的操作。
传输协议是总线系统中节点之间通信的规范和约定。
传输协议定义了数据的格式、传输速率、错误检测和纠正等功能。
不同的总线系统使用不同的传输协议,如PROFIBUS使用RS-485作为物理层协议,而FOUNDATION Fieldbus使用HART作为物理层协议。
应用软件是用于配置和管理总线系统的软件。
应用软件可以用于设置节点的地址、数据采集和监控、故障诊断等功能。
现场总线助力工业ppt课件

第四次 工业革命
解放“师” 机器替代部分 可创造性劳动
复杂程度
1784 年,出现了第一 台机械织布机
1969 年,美国 Modicon 公司
传送带方式于 1870 年开始在辛
推出 084 PLC
辛那提屠宰场使用
1800
1900
2000 今天
从工业 1.0 到工业 4.0 工业发展史的解放人的工作程度
推出 084 PLC
辛那提屠宰场使用
1800
1900
2000 今天
从工业 1.0 到工业 4.0
时间轴 8
2.2 工业发展史
第一次 工业革命
机械化
第二次 工业革命
机械化电气化
第三次 工业革命
电气化自动化
第四次 工业革命
复杂程度
自动化智能化
1784 年,出现了第一 台机械织布机
1800
从工业 1.0 到工业 4.0
14
2.3.2 工业4.0架构—四大主题
智能工厂:
有四大关键点:
一是要连接所有网络以拿到数据。
二是要有智能机器。
三是大数据,将所有设备、所有人连接后,所有数据都大批量传 送到 智能终端上。
四是分析,得到数据后从中抓取出应用趋势来,提高设备状态的 检测和预测水平。
15
三.现场总线助力工业4.0之智能工厂
5
二、工业4.0概述
2.1 什么是工业4.0? 2.2 工业发展史 2.3 工业4.0架构
6
2.1 什么是工业4.0
工业4.0是德国政府推行的“新一轮智能 工厂计划”,是以智能制造为主题的第 四次工业革命。
7
2.2 工业发展史
第一次 工业革命
现场总线之工业40超实用(ppt 28页)

2.3
工 业 4. 工 0业
4. 0 简 介
发展优势
在生产能力上,工业4.0将确保仅一次性生产,且产量很低时 的获利能力,确保工艺流程的灵活性和资源利用率。另一方面, 工业4.0将使人的工作生涯更长,工作与生活更加平衡,高工资时 产业仍有强大竞争力。
实现方式
主要是通过深度应用CPS(信息物理系统),总体掌控从 消费需求到生产制造的所有过程,由此实现高效生产管理。
现场总线之工业4.0(中国制造2025)
目录
一. 现场总线(与无线通信的融合) 二 . 工业4.0到来 三. 工业4.0各国战略 四. 工业4.0之中国制造2025
一. 现场总线(与无线通信的融合)
1.1
现
场
总
线
与 无 线
简 介 与 主
通要
信特
的点
融
合
现场总线简介
现场总线是指以工厂内的测量和控制机器间的数字通讯为 主的网络,也称现场网络。也就是将传感器、各种操作终 端和控制器间的通讯及控制器之间的通讯进行特化的网络。
四. 工业4.0之中国制造2025
4.1
中
国中
制国
造制
2 0
造 现 状
2
5大
而
不
强
从中国制造业形势看,2013年工业占GDP的37%,装备制造业产值规模突 破20万亿元人民币,占全球装备制造业总量的三分之一以上。中国发电设备产量 约占全球总量的60%;造船占全球比重的41%;机床占全球比重38%。在500余 种工业产品中,中国有220多种产量居世界第一。
1.3
现
现场总线与无线通信的融合问题
场
1) 融合的方法大多处于理论研究阶段或需要对原有的现场
hse现场总线控制系统的体系结构

hse现场总线控制系统的体系结构
现场总线(Profibus)是一种国际标准的工业控制系统,其结构极其复杂,它涉及很多技术,从电子控制系统到国际通信协议,从通信层到数据层,从传感器到控制器,以及从通信支持到集成服务等。
现场总线结构是一个分层架构,它被称为“体系结构”。
下面将对现场总线控制系统的体系结构进行简单的概述介绍。
首先,任何现场总线系统都是由一系列“设备”所组成的,这些设备包括传感器、执行器、控制器和其他支持设备(如计算机、存储设备等)。
设备之间通过“物理层”相互连接,该层定义了现场总线系统的实体、介质、线路等信息。
其次是“数据层”,它定义了现场总线系统中所有设备之间进行数据传输的格式和协议。
数据层也定义了设备的功能、配置、通讯、诊断等机制。
接下来,是“应用层”,它定义了现场总线应用的软件结构,也是由一系列的软件、服务和应用程序构成的。
现场总线的应用层可支持传感器、执行器、控制器以及非现场总线设备之间的通讯。
最后,是“组态层”,它定义了现场总线系统的组态工具,它支持用户以及系统管理员为设备配置参数,进行控制参数配置以及进行通信管理,配置维护以及网络安全等工作。
总之,现场总线控制系统的体系结构十分复杂,它可以满足各种应用的需求,使得工厂自动化的设计和运行更加高效。
现场总线技术的发展事实上促进了工厂自动化的更为完善的实施,让企业能够更有
效地控制生产过程,从而获得更大的效率和收益。
现场总线技术概述

现场总线技术概述现场总线技术(Fieldbus)是指在工业自动化系统中,用于连接现场设备和控制系统的一种通信协议和架构。
它通过将数据和控制命令从控制系统传输到现场设备,并将现场设备反馈的数据传输回控制系统,实现实时监控和控制。
现场总线技术的发展起源于20世纪80年代,旨在解决传统控制系统中布线复杂、成本高昂、可靠性低等问题。
与传统控制系统相比,现场总线技术具有可编程、分布式、开放性强等优点,是实现工业自动化和智能化的重要手段之一现场总线技术的核心是通信协议,常见的现场总线协议包括Profibus、Modbus、FOUNDATION Fieldbus、DeviceNet等。
这些协议定义了数据格式、通信速度、错误检测和纠正等通信规范,保证了不同设备之间的互通性和稳定性。
现场总线技术的架构通常由控制层、总线层和现场设备层组成。
控制层包括控制器和上位机,负责发送控制命令和接收反馈数据;总线层是控制器与现场设备之间的通信介质,包括总线线缆、连接器和信号转换设备;现场设备层包括传感器、执行器等各种设备,负责感知和执行现场操作。
现场总线技术在工业自动化中的应用广泛,涵盖了各个行业和领域。
它可以实现对现场设备的远程监控和控制,提高了系统的可靠性和灵活性。
同时,现场总线技术还可以对现场设备进行参数配置和诊断,减少了故障排除时间和维护成本。
然而,现场总线技术也存在一些挑战和限制。
首先,不同的现场总线协议之间,通常不能直接互联互通,需要通过网关或转换器进行数据的转换和交换。
其次,现场总线技术对硬件设备的要求较高,需要选择与总线兼容的设备进行接入。
此外,现场总线技术的通信速度相对较慢,对于一些对实时性要求较高的应用场景可能不够满足。
总的来说,现场总线技术是工业自动化领域的重要技术和工具,具有广泛的应用和发展前景。
随着工业互联网的兴起,现场总线技术将继续推动工业自动化向智能化、高效化的方向发展。
现场总线(PROFIBUS)技术简介

现场总线(PROFIBUS)技术简介摘要:本文详细的介绍PROFIBUS的概念以及相关的基础知识。
内容:第一章:现场总线技术及PROFIBUS1.1 现场总线技术的由来1.1.1 CIMS体系结构及工业数据结构的层次划分根据工厂管理、生产过程及功能要求,CIMS体系结构可分为5层,即工厂级、车间级、单元级、工作站级和现场级。
简化的CIMS则分为3层,即工厂级、车间级和现场级。
在一个现代化工厂环境中,在大规模的工业生产过程控制中,工业数据结构同样分为这三个层次,与简化的网络层次相对应。
如图1-1所示。
图1-1:简化的CIMS网络体系结构1.1.2 现场级与车间级自动化监控及信息集成是工厂自动化及CIMS不可缺少的重要部分。
现场级与车间级自动化监控及信息集成系统主要完成底层设备单机控制、连机控制、通信连网、在线设备状态监测及现场设备运行、生产数据的采集、存储、统计等功能,保证现场设备高质量完成生产任务,并将现场设备生产及运行数据信息传送到工厂管理层,向工厂级MIS系统数据库提供数据。
同时也可接受工厂管理层下达的生产管理及调度命令并执行之。
因此,现场级与车间级监控及信息集成系统是实现工厂自动化及CIMS系统的基础。
1.1.3 传统的现场级与车间级自动化监控及信息集成系统传统的现场级与车间级自动化监控及信息集成系统(包括:基于PC、PLC、DCS 产品的分布式控制系统),其主要特点之一是,现场层设备与控制器之间的连接是一对一(一个I/O点对设备的一个测控点)所谓I/O接线方式,信号传递4-20mA(传送模拟量信息)或24VDC(传送开关量信息)信号。
如图1-2所示:图1-2:传统的现场级与车间级自动化监控及信息集成系统1.1.4 系统主要缺点(1)信息集成能力不强:控制器与现场设备之间靠I/O连线连接,传送4-20mA 模拟量信号或24VDC等开关量信号,并以此监控现场设备。
这样,控制器获取信息量有限,大量的数据如设备参数、故障及故障纪录等数据很难得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.现场总线概述现场总线(Field bus)是近年来迅速发展起来的一种工业数据总线,它主要解决工业现场的智能化仪器仪表、控制器、执行机构等现场设备间的数字通信以及这些现场控制设备和高级控制系统之间的信息传递问题。
由于现场总线简单、可靠、经济实用等一系列突出的优点,因而受到了许多标准团体和计算机厂商的高度重视。
它是一种工业数据总线,是自动化领域中底层数据通信网络。
简单说,现场总线就是以数字通信替代了传统4-20mA模拟信号及普通开关量信号的传输,是连接智能现场设备和自动化系统的全数字、双向、多站的通信系统。
现场总线应用行业:现场总线的产生对工业的发展起着非常重要的作用,对国民经济的增长有着非常重要的影响。
现场总线主要应用于石油、化工、电力、医药、冶金、加工制造、交通运输、国防、航天、农业和楼宇等领域。
现场总线是应用在生产现场与微机化测量控制设备之间实现双向串行多节点通信的系统也称为开放式.全数字化.多点通信的底层控制网络。
①现场总线的定义:现场总线是用于现场仪表与控制室之间的一种“全数字化,双向.多变量,多点多站的通信系统”其本质含义表现在以下六个方面:现场通信网络、现场设备互连、互操作性、分散功能模块和开放式互连网络②现场总线的优点:实现了全数字化通信,不同厂家产品互操作;实现了真正的分布式控制(分散式控制):可以传送多个过程变量的同时可将仪表标识符和简单诊断信息一并传送,可以产生最先进的现场仪表,多变量变送器;提高了测试精度;增强了系统的自治性。
现场总线特征(1) 全数字化通信(2) 开放型的互联网络(3) 互可操作性与互用性(4) 现场设备的智能化(5) 系统结构的高度分散性(6) 对现场环境的适应性现场总线特点及缺陷现场控制设备具有通信功能,便于构成工厂底层控制网络。
通信标准的公开、一致,使系统具备开放性,设备间具有互可操作性。
功能块与结构的规范化使相同功能的设备间具有互换性。
控制功能下放到现场,使控制系统结构具备高度的分散性。
现场总线总线优点现场总线使自控设备与系统步入了信息网络的行列,为其应用开拓了更为广阔的领域;一对双绞线上可挂接多个控制设备,便于节省安装费用;节省维护开销;提高了系统的可靠性;为用户提供了更为灵活的系统集成主动权。
现场总线总线缺点网络通信中数据包的传输延迟,通信系统的瞬时错误和数据包丢失,发送与到达次序的不一致等都会破坏传统控制系统原本具有的确定性,使得控制系统的分析与综合变得更复杂,使控制系统的性能受到负面影响。
现场总线总线本质不同的机构和不同的人可能对现场总线有着不同的定义,不过通常情况下,大家公认在以下六个方面:现场总线通信网络用于过程自动化和制造自动化的现场设备或现场仪表互连的现场通信网络。
现场总线设备互联依据实际需要使用不同的传输介质把不同的现场设备或者现场仪表相互关联。
现场总线互操作性用户可以根据自身的需求选择不同厂家或不同型号的产品构成所需的控制回路,从而可以自由地集成FCS。
现场总线分散功能块FCS 废弃了DCS 的输入/输出单元和控制站, 把DCS 控制站的功能块分散地分配给现场仪表, 从而构成虚拟控制站,彻底地实现了分散控制。
现场总线通信线供电通信线供电方式允许现场仪表直接从通信线上摄取能量, 这种方式提供用于本质安全环境的低功耗现场仪表, 与其配套的还有安全栅。
现场总线开放式互联网现场总线为开放式互联网络,既可以与同层网络互联,也可与不同层网络互联,还可以实现网络数据库的共享。
从以上内容我们可以看到,现场总线体现了分布、开放、互联、高可靠性的特点,而这些正是DCS系统的缺点。
DCS通常是一对一单独传送信号,其所采用的模拟信号精度低,易受干扰,位于操作室的操作员对模拟仪表往往难以调整参数和预测故障,处于“失控”状态,很多的仪表厂商自定标准,互换性差,仪表的功能也较单一,难以满足现代的要求,而且几乎所有的控制功能都位于控制站中。
FCS 则采取一对多双向传输信号,采用的数字信号精度高、可靠性强,设备也始终处于操作员的远程监控和可控状态,用户可以自由按需选择不同品牌种类的设备互联,智能仪表具有通信、控制和运算等丰富的功能,而且控制功能分散到各个智能仪表中去。
由此我们可以看到FCS相对于DCS的巨大进步。
也正是由于FCS的以上特点使得其在设计、安装、投运到正常生产都具有很大的优越性:首先由于分散在前端的智能设备能执行较为复杂的任务,不再需要单独的控制器、计算单元等,节省了硬件投资和使用面积;FCS的接线较为简单,而且一条传输线可以挂接多个设备,大大节约了安装费用;由于现场控制设备往往具有自诊断功能,并能将故障信息发送至控制室,减轻了维护工作;同时,由于用户拥有高度的系统集成自主权,可以通过比较灵活选择合适的厂家产品;整体系统的可靠性和准确性也大为提高。
这一切都帮助用户实现了减低安装、使用、维护的成本,最终达到增加利润的目的。
现场总线发展趋势从现场总线技术本身来分析,它有两个明显的发展趋势:一、是寻求统一的现场总线国际标准。
二、是Industrial Ethernet走向工业控制网络。
EPA即以太网过程自动化技术。
统一、开放的TCP/IP Ethernet是20多年来发展最成功的网络技术,过去一直认为,Ethernet(以太网)是为IT领域应用而开发的,它与工业网络在实时性、环境适应性、总线馈电等许多方面的要求存在差距,在工业自动化领域只能得到有限应用。
事实上,这些问题正在迅速得到解决,国内对EPA技术(Ethernet for Process Automation)也取得了很大的进展。
随着FF HSE的成功开发以及PROFInet的推广应用,可以预见Ethernet技术将会十分迅速地进入工业控制系统的各级网络。
国际上形成的工业以太网技术的四大阵营:主要用于离散制造控制系统的是:1)Modbus-IDA工业以太网2)Ethernet/IP工业以太网3)PROFInet工业以太网主要用于过程控制系统的是:4)Foundation Fieldbus HSE工业以太网随着科学技术的快速发展,过程控制领域在过去的两个世纪里发生了巨大的变革。
150多年前出现的基于5-13psi的气动信号标准(PCS,Pneumatic Control System气动控制系统),标志着控制理论初步形成,但此时尚未有控制室的概念;20世纪50年代,随着基于0-5V或4-20mA的电流模拟信号的模拟过程控制体系被提出并得到广泛的应用,标志了电气自动控制时代的到来,三大控制论的确立奠定了现代控制的基础,设立控制室、控制功能分离的模式也一直沿用至今;20世纪70年代,随着数字计算机的介入,产生了“集中控制”的中央控制计算机系统,而信号传输系统大部分是依然沿用4-20mA的模拟信号,不久人们也发现了伴随着“集中控制”,该系统存在着易失控、可靠性低的缺点,并很快将其发展为分布式控制系统(DCS,Distributed Control System分布式控制系统);微处理器的普遍应用和计算机可靠性的提高,使分布式控制系统得到了广泛的应用,由多台计算机和一些智能仪表以及智能部件实现的分布式控制是其最主要的特征,而数字传输信号也在逐步取代模拟传输信号。
随着微处理器的快速发展和广泛的应用,数字通信网络延伸到工业过程现场成为可能,产生了以微处理器为核心,使用集成电路代替常规电子线路,实施信息采集、显示、处理、传输以及优化控制等功能的智能设备。
设备之间彼此通信、控制,在精度、可操作性以及可靠性、可维护性等都有更高的要求。
由此,导致了现场总线的产生。
2.国际标准发展历程1984年美国Inter公司提出一种计算机分布式控制系统-位总线(BITBUS),它主要是将低速的面向过程的输入输出通道与高速的计算机总线多(MULTIBUS)分离,形成了现场总线的最初概念。
80年代中期,美国Rosemount 公司开发了一种可寻址的远程传感器(HART)通信协议。
采用在4~20mA模拟量叠加了一种频率信号,用双绞线实现数字信号传输。
HART协议已是现场总线的雏形。
1985年由Honeywell和Bailey等大公司发起,成立了World FIP制定了FIP协议。
1987年,以Siemens,Rosemount,横河等几家著名公司为首也成立了一个专门委员会互操作系统协议(ISP)并制定了PROFIBUS协议。
后来美国仪器仪表学会也制定了现场总线标准IEC/ISA SP50。
随着时间的推移,世界逐渐形成了两个针锋相对的互相竞争的现场总线集团:一个是以Siemens、Rosemount,横河为首的ISP集团;另一个是由Honeywell、Bailey等公司牵头的WorldFIP集团。
1994年,两大集团宣布合并,融合成现场总线基金会(Fieldbus Foundation)简称FF。
对于现场总线的技术发展和制定标准,基金委员会取得以下共识:共同制定遵循IEC/ISA SP50协议标准;商定现场总线技术发展阶段。
1999年底IEC TC65(负责工业测量和控制的第65标准化委员会)通过了8种类型的现场总线作为IEC61158国际标准。
2003年4月,IEC61158 Ed.3现场总线标准第3版正式成为国际标准,规定10种类型的现场总线:TS61158现场总线、ControlNet和Ethernet/IP现场总线、Profibus现场总线、P-NET现场总线、FF HSE现场总线、SwiftNet现场总线、 World FIP现场总线、 Interbus现场总线、FF H1现场总线、PROFInet 现场总线。
国内工业总线EPA,G-link,Symotion与NCUC-BUS现场总线总线现状由于各个国家各个公司的利益之争,虽然早在1984年国际电工技术委员会/国际标准协会(IEC/ISA)就着手开始制定现场总线的标准,至今统一的标准仍未完成。
很多公司也推出其各自的现场总线技术,但彼此的开放性和互操作性还难以统一。
现场总线总线并存世界上存在着大约四十余种现场总线,如法国的FIP,英国的ERA,德国西门子公司Siemens的ProfiBus,挪威的FINT,Echelon公司的LONWorks,PhenixContact公司的InterBus,RoberBosch公司的CAN,Rosemount公司的HART,CarloGavazzi公司的Dupline,丹麦ProcessData公司的P-net,PeterHans 公司的F-Mux,以及ASI(ActraturSensorInterface),MODBus,SDS,Arcnet,国际标准组织-基金会现场总线FF:FieldBusFoundation,WorldFIP,BitBus,美国的DeviceNet与ControlNet等等。