二次根式及其有意义的条件 (2)

合集下载

二次根式及其有意义的条件 (2)

二次根式及其有意义的条件 (2)

初中数学 二次根式及其有意义的条件 编稿老师 徐文涛 一校杨雪 二校 黄楠 审核 隋冬梅【考点精讲】二次根式 概念表示方法有意义的条件1. a a≥0)的式子叫做二次根式,其中称为二次根号,“a”叫做被开方数。

2. 当a >0a a a 0; 当a =0a 0a 0。

a a ≥0)是一个非负数。

【典例精析】例题1 下列各式中,是二次根式的有( )10,32+x ,315,π,5-A. 1个B. 2个C. 3个D. 4个思路导航:315的根指数为3;5-的被开方数是负数,所以不是二次根式;10,32+x ,π符合二次根式的条件,所以是二次根式的有3个。

答案:C点评:二次根式必须满足两个条件:①根指数为2;②被开方数为非负数。

这两个条件缺一不可。

利用这两个条件逐一判断即可。

例题2 当x 取何值时,下列各式在实数范围内有意义?(1)2)3(-x ;(2)x 34-;(3)11-x 思路导航:要使被开方数有意义,则被开方数必须是非负数,如果分母中有根式,那么被开方数必须是正数,因为零不能作分母。

答案:解:(1)因为(x -3)2≥0,所以无论x 取任何实数,2)3(-x 都有意义;(2)若x 34-有意义,则必有4-3x≥0,即当x≤34时,x 34-有意义; (3)若11-x 有意义,则必有x -1>0,即当x >1时,11-x 有意义。

点评:本题考查了二次根式及分式有意义的条件。

用到的知识点:要使分式有意义,分母不能为0;二次根式的被开方数是非负数。

本题应注意在求得取值后应排除不在取值范围内的值。

例题3 已知x 、y 为实数,y=224412x x x -+-+-,试求3x+4y 的值。

思路导航:根号内是非负数,分母不为0来综合考虑,得到相应的未知字母的值。

答案:解:依题意得⎪⎩⎪⎨⎧≥-≥-040422x x ,所以x 2=4,所以x=±2,又因为x -2是原式分母,所以x -2≠0,所以x≠2,所以x=-2,此时,y=-41,所以3x+4y=3×(-2)+4×(-41)=-7。

二次根式知识点总结及其应用

二次根式知识点总结及其应用

二次根式知识点及其应用一、二次根式的概念:(1)形如 的式子叫做二次根式.(2)二次根式有意义的条件:被开方数大于或等于零。

二、二次根式化简:1、最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式。

①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式;2、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同, 那么这几个二次根式叫做同类二次根式。

3、分母有理化:(1)有理化因式:两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

(2)分母有理化:在分母含有根号的式子中,把分母中的根号化去。

方法:①分子与分母同乘以分母的有理化因式例如:②分子或分母分解因式,约去分母中含有二次根式的因式例如:三、二次根式的性质:(1) 非负性0()a ≥0 2(2)(0)a = ≥ 0()a ≥0(00)0,0,)a b a b a b ==≥>==≥≥≠ ,0,0)0,0)x y x y ==>>==>>四、二次根式的运算:二次根式乘法法则二次根式除法法则二次根式的加减:(1)将每个二次根式化为最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式。

五、二次根式的应用1.对二次根式的认识1.一个自然数的算术平方根为()0a a >,则与这个自然数相邻的两个自然数的算术平方根为( )(A )1,1a a -+(BCD )221,1a a -+2.若21x +的平方根是5±_____=.3.a 的被开方数相同,则_____ab +=.4.若xy____x =,_____y =.5=,且0x y <<,则满足上式的整数对(),x y 有_____.2、根据二次根式有意义的条件确定未知数的值:1有意义的x 的取值范围=(0,0)a b = ≥ ≥(00)a b = ≥>(0,0)a b = ≥≥(0,0)a b = ≥>2.若2)(11y x x x +=-+-,则y x -=_____________。

2020年中考数学必考专题04 二次根式的运算(解析版)

2020年中考数学必考专题04 二次根式的运算(解析版)

专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。

(或是说,表示非负数的算术平方根的式子,叫做二次根式)。

2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。

(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。

反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。

7.分母有理化的方法:分子分母同乘以分母的有理化因式。

8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。

如:①的有理化因式为,②的有理化因式为。

(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。

即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。

一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

二次根式及其有意义的条件

二次根式及其有意义的条件

【考点精讲】1. a ≥0)的式子叫做二次根a ”叫做被开方数。

2. 当a >0a 0;当a =00=0。

a ≥0)是一个非负数。

【典例精析】例题1 下列各式中,是二次根式的有( ) 10,32+x ,315,π,5- A. 1个 B. 2个 C. 3个 D. 4个思路导航:315的根指数为3;5-的被开方数是负数,所以不是二次根式;10,32+x ,π符合二次根式的条件,所以是二次根式的有3个。

答案:C点评:二次根式必须满足两个条件:①根指数为2;②被开方数为非负数。

这两个条件缺一不可。

利用这两个条件逐一判断即可。

例题2 当x 取何值时,下列各式在实数范围内有意义? (1)2)3(-x ;(2)x 34-;(3)11-x 思路导航:要使被开方数有意义,则被开方数必须是非负数,如果分母中有根式,那么被开方数必须是正数,因为零不能作分母。

答案:解:(1)因为(x -3)2≥0,所以无论x 取任何实数,2)3(-x 都有意义;(2)若x 34-有意义,则必有4-3x ≥0,即当x ≤34时,x 34-有意义; (3)若11-x 有意义,则必有x -1>0,即当x >1时,11-x 有意义。

点评:本题考查了二次根式及分式有意义的条件。

用到的知识点:要使分式有意义,分母不能为0;二次根式的被开方数是非负数。

本题应注意在求得取值后应排除不在取值范围内的值。

例题3 已知x 、y 为实数,y=12x -,试求3x+4y 的值。

思路导航:根号内是非负数,分母不为0来综合考虑,得到相应的未知字母的值。

答案:解:依题意得⎪⎩⎪⎨⎧≥-≥-040422x x ,所以x2=4,所以x=±2,又因为x -2是原式分母,所以x -2≠0,所以x ≠2,所以x=-2,此时,y=-41,所以3x+4y=3×(-2)+4×(-41)=-7。

点评:用到的知识点为:互为相反数的两个数都是被开方数,那么这两个数都为0。

初二数学二次根式知识点大全

初二数学二次根式知识点大全

第1关 二次根式(讲义部分)知识点1 二次根式1.二次根式的定义二次根式的定义:一般地,我们把形如(0≥a )的式子叫做二次根式. (1)“”称为二次根号;(2)a (0≥a )是一个非负数. 2.二次根式有意义的条件(1)二次根式的概念.形如(0≥a )的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数. (3)二次根式具有非负性.(0≥a )是一个非负数. 3.二次根式的双重非负性(1)0≥a 被开方数的非负性;(2)0≥a (算数平方根的非负性). 4.二次根式化简(1)把被开方数分解因式;(2)利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来; (3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.题型1 二次根式定义【例1】0)y 0,0)a b <<中,是二次根式的有( ) A .3个B .4个C .5个D .5个【解答】0)y 0,0)a b <<是二次根式,共4个, 故选:B .【点评】此题主要考查了二次根式定义,关键是注意被开方数为非负数.【例2】y( ) A .0x B .0x 且0y >C .x 、y 同号D .0x ,0y >或0x ,0y <【解答】解:依题意有20x y 且0y ≠,即0xy且0y ≠. 所以0x ,0y >或0x ,0y <. 故选:D .【点评】0)a 叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.题型2 二次根式有意义的条件【例3】若a 、b 为实数,且4b =+,则a b +的值为( ) A .1± B .4 C .3或5 D .5【解答】解:由题意得,210a -,210a -,则21a =,解得,1a =±,4b ∴=,则3a b +=或5, 故选:C .【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.【例4】若2y =,求x y 的值. 【解答】解:22y x =,24x ∴=,解得:2x =±, 故2y =-,则2(2)4x y =-=或21(2)4x y -=-=. 【点评】此题主要考查了二次根式有意义的条件,正确得出x 的值是解题关键.题型3 二次根式化简求值【例5】已知a 、b 、c ||||a bb c ++.【解答】解:如图所示:0a <,0a b +<,0c a ->,0b c +<,||||a b b c ++a ab c a bc =-+++---a=-.【点评】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.【例6】设a ,b ,c 为ABC ∆的三边,化简:【解答】解:根据a ,b ,c 为ABC ∆的三边,得到0a b c ++>,0a b c --<,0b a c --<,0c b a --<,则原式||||||||4a b c a b c b a c c b a a b c b c a a c b a b cc=+++--+--+--=++++-++-++-=. 【点评】此题考查了二次根式的性质与化简,以及三角形的三边关系,熟练掌握运算法则是解本 题的关键.【例7】数a ,b【解答】解:如图得,21a-<<-,12b <<,0a b ∴-<,10b ->,10a +<,∴1(1)b a b a =-+----, 211b a a =--++, 2b =.【点评】本题考查了二次根式的性质与化简以及实数与数轴,掌握二次根式的化简是解题的关键.知识点2 二次根式运算1.最简二次根式(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式. 2.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理 化因式. 3.同类二次根式(1)定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这 几个二次根式叫做同类二次根式. (2)合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变. 4.二次根式的混合运算(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式 的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括 号的先算括号里面的.(2)二次根式的运算结果要化为最简二次根式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解 题途径,往往能事半功倍.题型4 最简二次根式【例8】下列说法错误的是( )A . BC .是一个非负数D 的最小值是4【解答】解:A |3|a =-,说法错误,故本选项正确;BC 是一个非负数说法正确,故本选项错误;D 、4说法正确,故本选项错误. 故选:A .【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分 母;(2)被开方数不含能开得尽方的因数或因式.题型5 分母有理化【例9】阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①2525555==;②1===等运算都是分母有理化.根据上述材料, (1(2.【解答】解:(1)原式==(2)原式11.【点评】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键. 【例10】观察下列运算①由1)1=1=;②由1=③由1=④由1==;⋯(1)通过观察,将你发现的规律用含有n 的式子表示出来. (2)利用你发现的规律,+⋯+.【解答】解:(1n =为正整数);(2)原式1)=+++⋯+,1=1=.【点评】此题考查了分母有理化,弄清阅读材料中的方法是解本题的关键.题型6 同类二次根式【例11】( )A B CD【解答】解:,∴ 故选:A .【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的概念.【例12】 是同类二次根式的是( )A .①和②B .②和③C .①和④D .③和④【解答】解:=2==3==,∴故选:C .【点评】本题考查了同类二次根式的定义: 化成最简二次根式后, 被开方数相同, 这样的二 次根式叫做同类二次根式 .【例13】是同类二次根式,则a = .【解答】解:38172a a ∴-=-,解得:5a =.【点评】此题主要考查最简二次根式和同类二次根式的定义.【例14】计算:(1)-.(2)-.(3)2132 3+(4)【解答】解:(1)原式==(2)原式22=-1812=-6=;(3)原式23=-+5=;(4)原式13932=⨯⨯=【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.题型7 二次根式化简求值【例15】先化简,再求值(6(4-,其中32x=,27y=.【解答】解:32x=,27y=,∴原式=-=-====【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【例16】已知x=,y=,求代数式22242x xy y-+的值.【解答】解:353x+==+-5y ==-∴原式222(2)x xy y =-+22()x y =-22(55=++2= 296=⨯ 192=.【点评】本题考查了二次根式的化简求值,先化简x ,y 的值是解题的关键.第1关 二次根式(题册部分)【课后练1】下列各式中,不属于二次根式的是( )A 0)xB C D【解答】解:当0aA ∴、属于二次根式,故本选项错误;B 、属于二次根式,故本选项错误;C 、属于二次根式,故本选项错误;D 、210x --<不属于二次根式,故本选项正确; 故选:D .【课后练2】实数a ,b 在数轴上的位置如图所示,( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++【解答】解:由数轴可知:102a b -<<<<,10a ∴+>,20b ->, ∴原式|1||2|a b =+--12a b =+-+ 3a b =-+, 故选:A .【课后练3】a 的值可能是( ) A .2- B .2C .32D .8【解答】解:0a ∴,且a故选项中2-,32,8都不合题意,a ∴的值可能是2. 故选:B .【课后练4】,那么x 的取值范围是( )A .12xB .12x <C .2xD .2x >【解答】解:由题意可得,10x -且20x ->,解得2x >. 故选:D .【课后练5】下列根式中,与是同类二次根式的是( )A .BC D【解答】与A 错误;=B 错误;C 错误;=是同类二次根式,D 正确; 故选:D .【课后练6】的结果是( )A .BC .D .3-【解答】解:原式6===. 故选:B .【课后练7】x 的取值范围是 .【解答】1200x x -⎧⎨≠⎩. 解得12x且0x ≠, 故答案为:12x 且0x ≠.【课后练8】实数a 化简后为 .【解答】解:由数轴可得,48a <<,∴310a a =-+- 7=,故答案为:7.【课后练9】先观察下列的计算,再完成:(11==;====请你直接写出下面的结果:= ;= ; (2)根据你的猜想、归纳,运用规律计算:1)+⨯.【解答】解:(12==;==(2)根据题意得:原式111==.故答案为:(12【课后练10】计算题:①②(2+-③④⑤⑥2314()22+⨯--.【解答】解:①原式==,②原式43=- 1=,③原式==1311=⨯ 143=,④原式==89=⨯ 72=,⑤原式328=-- 7=-.【课后练11】已知1a =,1b =,分别求下列各式的值.(1)22a b +; (2)b a a b+.【解答】解:当1a =,1b =时,(1)原式221)1)=+44=-+8=;(2)原式22a b ab+=22=82= 4=.【课后练12】化简求值(1)23)3)+;(2)已知x =-【解答】解:(1)原式59119=-+-16=-.(2)原式(2x =-,1212x ==+,∴原式1(2(1)xx x x -=--1(2x x =+,当2x =原式(2(2=-++9=-。

专题06 二次根式篇(解析版)

专题06 二次根式篇(解析版)

专题06 二次根式考点一:二次根式之定义与有意义的条件1. 二次根式的定义:形如()0≥aa的式子叫做二次根式。

2. 二次根式有意义的条件:二次根式的被开方数大于等于0。

即a中,0≥a。

1.(2022•湘西州)要使二次根式63-x有意义,则x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:∵3x﹣6≥0,∴x≥2,故选:D.2.(2022•广州)代数式11+x有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.3.(2022•贵阳)代数式3-x在实数范围内有意义,则x的取值范围是( )A.x≥3B.x>3C.x≤3D.x<3【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式在实数范围内有意义,∴x ﹣3≥0,解得:x ≥3,∴x 的取值范围是:x ≥3.故选:A .4.(2022•绥化)若式子21-++x x 在实数范围内有意义,则x 的取值范围是( )A .x >﹣1B .x ≥﹣1C .x ≥﹣1且x ≠0D .x ≤﹣1且x ≠0【分析】根据二次根式的被开方数是非负数,a ﹣p =(a ≠0)即可得出答案.【解答】解:∵x +1≥0,x ≠0,∴x ≥﹣1且x ≠0,故选:C .5.(2022•雅安)使2-x 有意义的x 的取值范围在数轴上表示为( )A .B .C .D .【分析】根据二次根式有意义的条件,得出关于x 的不等式,解不等式,即可得出答案.【解答】解:∵∴x ﹣2≥0,∴x ≥2,故选:B .6.(2022•菏泽)若31-x 在实数范围内有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得,x ﹣3>0,解得x >3.故答案为:x >3.7.(2022•青海)若式子11-x 有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.【解答】解:由题意得x ﹣1>0,解得x >1,故答案为:x >1.8.(2022•包头)若代数式x x 11++在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式有意义的条件,分式有意义的条件是分母不等于零,列不等式组,解出即可.【解答】解:根据题意,得,解得x ≥﹣1且x ≠0,故答案为:x ≥﹣1且x ≠0.9.(2022•常德)要使代数式4-x x 有意义,则x 的取值范围为 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x ﹣4>0,解得:x >4,故答案为:x >4.10.(2022•邵阳)若21-x 有意义,则x 的取值范围是 .x 的不等式组,求出x 的取值范围即可.【解答】解:∵有意义,∴,解得x >0.故答案为:x >2.考点二:二次根式之性质与化简1. 二次根式的性质:①二次根式的双重非负性:二次根式本身是一个非负数,恒大于等于0。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。

二次根式

二次根式
.
3、二次根式的双重非负性
例7 已知实数 x、y、a 满足:
x y 8 8 x y 3x y a x 2 y a 3
x、y、a .问:
以 为三边长的线段能否组成一个三角形?如果能,请 求出三角形的周长;如果不能,请说明理由.
3、二次根式的双重非负性
1 x 2 x
的图像上,
变式:如果代数式 m
有意义,那么在平面直角坐
象限.
x2 6 x m
标系中,点 P m, n 的位置在第 例4 无论x取任何实数,代数式 取值范围为 .
都有意义,则m的
2、二次根式有意义的条件
例5 设 a 8 x , b 3x 4, c x .2 a、b、c 都有意义? (1)当x取什么实数时, (2)若a、b、c 为Rt△ABC的三边长,求x的值.
a a a 0, b 0 b b
n
3、二次根式的加减: 先化简,再求值 4、根式运算法则: a b ab ,
n n n
a na n b b
最简二次根式:
0.2 x ,
12 x 12 y ,
x2 y2 ,
5ab 2
同类二次根式:

ab b 1 b , , , 3 中,与 a3b是同类二次根式的是 2 a ab a
a、b、c ,且 a、b、c 例8 已知△ABC的三边长分别为 满足a 2 6a 9 a b 1 c 2 5 0 .试判断△ABC的形 状.
几个非负数的和为0,则每个非负数都为0. 初中常见的三大非负数: (1)绝对值; (2)偶次方; (3)算术平方根.
变式1:若 a b+1 与 a 2b 4 互为相反数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【考点精讲】
1. a≥0)的式子叫做二次根式,其中称为二
次根号,“a”叫做被开方数。

2. 当a >0a 0; 当a =000。

a ≥0)是一个非负数。

【典例精析】
例题1 下列各式中,是二次根式的有( )
10,32+x ,315,π,5-
A. 1个
B. 2个
C. 3个
D. 4个
思路导航:315的根指数为3;5-的被开方数是负数,所以不是二次根式;10,
32+x ,π符合二次根式的条件,所以是二次根式的有3个。

答案:C
点评:二次根式必须满足两个条件:①根指数为2;②被开方数为非负数。

这两个条件缺一不可。

利用这两个条件逐一判断即可。

例题2 当x 取何值时,下列各式在实数范围内有意义?
(1)2
)3(-x ;(2)x 34-;(3)
1
1
-x 思路导航:要使被开方数有意义,则被开方数必须是非负数,如果分母中有根式,那么被开方数必须是正数,因为零不能作分母。

答案:解:(1)因为(x -3)2≥0,所以无论x 取任何实数,2
)3(-x 都有意义;
(2)若x 34-有意义,则必有4-3x≥0,即当x≤
3
4
时,x 34-有意义; (3)若11-x 有意义,则必有x -1>0,即当x >1时,1
1
-x 有意义。

点评:本题考查了二次根式及分式有意义的条件。

用到的知识点:要使分式有意义,分母不能为0;二次根式的被开方数是非负数。

本题应注意在求得取值后应排除不在取值范围内的值。

例题3 已知x 、y 为实数,
y=1
2
x -,试求3x+4y 的值。

思路导航:根号内是非负数,分母不为0来综合考虑,得到相应的未知字母的值。

答案:解:依题意得⎪⎩⎪⎨⎧≥-≥-0
4042
2x x ,所以x 2
=4,所以x=±2,又因为x -2是原式分母,所以x -2≠0,所以x≠2,所以x=-2,此时,y=-41,所以3x+4y=3×(-2)+4×(-4
1

=-7。

点评:用到的知识点为:互为相反数的两个数都是被开方数,那么这两个数都为0。

【总结提升】
1. 正确理解二次根式的概念,要注意以下几点:

1。

(2)
的根指数为2
,即,我们一般省略根指数
2
2. 需要掌握三个具有非负性的式子:①a 2≥0;②
|a|≥0(a≥0)。

(y -1)2
+|z|=0,(y -1)2=0,|z|=0,则x=-1,y=1,z=0。

3.
如果将公式
2
a =(a≥0
)逆用,即2
a =
(a≥0)
,就可以把一个非负数写成
一个数的平方的形式。

例如:2
3=
,2
a b -=。

(a -b≥0)
这一公式常用在因式分解中,如:
2
22
5(a a a a -=-=。

(答题时间:20分钟)
1. 下列式子中,是二次根式的是( )
A.
B.
C. D. x
2. 要使
b
a
是二次根式,则应满足的条件是( ) A. a≥0且b≥0
B. a≥0且b >0
C. b a >0
D. b
a ≥0且b≠0 3. 函数2
1
-=x y 中自变量的取值范围在数轴上表示为( )
A. B.
C.
D.
4. x 有( )个
A. 0
B. 1
C. 2
D. 无数
5. 已知a -12是正整数,则实数a 的最大值为( ) A. 12 B. 11 C. 8 D. 3
6. 若22112----=
n n m ,则m=_______,n= 。

7.
有意义,则x 应满足________。

8. 1的数,那么满足条件的最小的整数a=____。

9. x 取什么实数时,下列各式有意义? (1)x 43-; (2)23-x ; (3)
2
)3(-x ;
(4)x x 3443-+-
10. 已知a 、b 、c 为实数,且()01232
=-+++-c b a ,求a 、b 、c 的值。

1. A 解析:二次根式满足两个条件:①根指数是2;②被开方数为非负数,故选A 。

2. D 解析:根据二次根式的意义,被开方数
b
a
≥0;又根据分式有意义的条件,b≠0。

3. D 解析:根据题意,得x -2>0,解得x >2,在数轴上表示为
故选D 。

4. B 解析:2(5)0x --≥即2(5)0x -≤,所以50x -=,即x=5,有1个值,故选B 。

5. B 12-a>0,a<121=时,a=11,即为最大,故选B 。

6. 2-=m 21=n 解析:210n -≥,120n -≥,所以1
2
n =,此时,m=-2。

7. 根据题意得:3-x≥0且2x -1>0,解得:1
2
<x≤3。

8. 7a 也是整数,∴a 是
一个完全平方数,∴a=1。

9. (1)43≤
x (2)32≥x (3)任意实数 (4)3
4=x 10. 3=a b =-2 c =1
0=,2
(2)0b +=,|1|0c -= ∴a=3,b=-2,c=1
仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文。

相关文档
最新文档