二次根式有意义

合集下载

二次根式有意义的条件练习题

二次根式有意义的条件练习题

二次根式有意义的条件练习题1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. 若1a b -+()2005_____________a b -=。

13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( ) A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。

22. 当a取什么值时,代数式1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。

21.2 二次根式的乘除1. 当0a ≤,0b __________=。

二次根式有意义的条件

二次根式有意义的条件

二次根式有意义的条件
二次根式有意义的条件是被开方数是非负数,如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

二次根式有意义的条件是被开方数是非负数。

二次根式的性质:
1、任何一个正数的平方根有两个,它们互为相反数。

如正数a 的算术平方根是√a,则a的另一个平方根为﹣√a,最简形式中被开方数不能有分母存在。

2、零的平方根是零。

3、负数的平方根也有两个,它们是共轭的。

4、有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

2020初高衔接数学—有意义的根式和分式及相关计算

2020初高衔接数学—有意义的根式和分式及相关计算

衔接点03 有意义的根式和分式及相关计算【基础内容与方法】1.分式有意义的条件对于分式,分母不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义。

即若0B≠,式子AB有意义;若0B=,则式子AB无意义;若A=0且0B≠,则0AB=,即分式的值为0的条件.2.对于根式,我们主要是指二次根式,一般地,”称为二次根号,是一个非负数,且0a≥.考点一:二次根式的概念例1:在式子,(x>0),,(y=﹣2),(x>0),,,x+y中,二次根式有()A.2个B.3个C.4个D.5个【分析】根据二次根式的定义作答.【解答】解:(x>0),,符合二次根式的定义.(y=﹣2),(x>0)无意义,不是二次根式.属于三次根式.x+y不是根式.故选:B.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).考点练习:1.在式子①②③x2④⑤(x≤1)中,二次根式有3个.【分析】根据二次根式的定义填空即可.【解答】解:因为形如(a≥0)叫二次根式,所以①②⑤都符合要求,而③二次根号,④中的被开方数小于0,即二次根式有3个,故答案为3.【点评】本题考查了二次根式的定义,比较简单.考点二:二次根式有意义的条件例2:(1)当x满足x>0时,代数式有意义;【分析】根据二次根式有意义:被开方数为非负数,分式有意义的条件:分母不等于零可得x>0.【解答】解:由题意得:x>0,故答案为:x>0.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.(2)要使式子有意义,则x的取值范围是x≥﹣2,且x≠﹣1.【分析】首先保证被开方数x+2≥0,再保证分母x+1≠0,解出不等式即可.【解答】解:∵式子有意义,∴x+2≥0,且x+1≠0,解得:x≥﹣2,且x≠﹣1.故答案为:x≥﹣2,且x≠﹣1.【点评】此题主要考查了分式,二次根式有意义的条件,关键是把握:①二次根式中的被开方数是非负数;②分母≠0.考点练习:1.二次根式有意义,则x应满足的条件是()A.B.C.D.【分析】根据二次根式中的被开方数必须是非负数,即可列出不等式求解.【解答】解:根据题意得:1﹣2x≥0,解得:x≤.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.若二次根式有意义,则m的取值范围是()A.m≥﹣2 B.m>﹣2 C.m≥﹣2且m≠﹣1 D.m≤﹣2且m≠1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出m的范围.【解答】解:由题意得,m+2≥0且m+1≠0,解得m≥﹣2且m≠﹣1.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.代数式有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【解答】解:由题意可知:∴x≤且x≠2,∴x的取值范围为:x≤故答案为:x【点评】本题考查二次根式的有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.考点三:与二次根式有关的计算类型(一)1.已知a=3+2,b=3﹣2,求a2b﹣ab2的值.【分析】先计算出a﹣b和ab的值,再分解因式得到∴a2b﹣ab2=ab(a﹣b),然后利用整体代入的方法计算;【解答】解:∵a=3+2,b=3﹣2,∴a﹣b=4,ab=9﹣8=1,∴a2b﹣ab2=ab(a﹣b)=1×4=4;【点评】本题考查了整体代入的思想.2.已知a=+2,b=2﹣,则a2020b2019的值为()A.﹣﹣2 B.﹣+2 C.1 D.﹣1【分析】由积的乘方与同底数幂的乘法,可得a2016b2015=(ab)2015•a,然后由平方差公式求解即可求得答案.【解答】解:∵a=+2,b=2﹣,∴a2020b2019=(ab)2019•a=[(+2)(2﹣)]2019•(+2)=﹣(+2)=﹣﹣2.故选:A.【点评】此题考查了二次根式的乘法以及积的乘方与同底数幂的乘法.注意掌握积的乘方与同底数幂的乘法公式的逆用.类型(二)阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:===方法二:====(1)请用两种不同的方法化简:;(2)化简:.【分析】(1)利用分母有理化和平方差公式计算;(2)先分母有理化,然后合并即可.【解答】解:(1)方法一:原式==﹣;方法二:原式==﹣;(2)原式=(﹣+﹣+…+﹣)=(﹣)=﹣.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.类型(三)先阅读然后解答问题:化简解:原式=根据上面所得到的启迪,完成下面的问题:(1)化简:(2)化简:.【分析】(1)把4写成2,把9写成4+5,根据完全平方公式配方即可求解;(2)把算式平方然后再求算术平方根即可得解.【解答】解:(1),=,=,=﹣2;(2)∵()2,=4++2+4﹣,=8+2,=10,∴=.【点评】本题考查了二次根式的化简,读懂并理解题目信息,根据完全平方公式把被开方数整理成完全平方的形式是解题的关键,难度较大.考点四:分式的意义例3:若分式的值为0,则x的取值为()A.x≠1B.x≠﹣1 C.x=1 D.x=﹣1【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.考点练习:1.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.2.分式与都有意义的条件是()A.x B.x≠﹣1 C.x且x≠﹣1 D.以上都不对【分析】根据分式的分母不能为零分式有意义,可得答案.【解答】解:由分式与都有意义,得2x﹣3≠0且x+1≠0,解得x≠,x≠1,故选:C.【点评】本题考查了分式有意义的条件,分式的分母不等于零是分式有意义的条件.3.当x=9时,分式的值等于零.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵|x|﹣9=0,∴x=±9,当x=9时,x+9≠0,当x=﹣9时,x+9=0,∴当x=9时分式的值是0.故答案为9.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.考点五:分式的计算例4:先化简,再求值:,其中x=1+,y=1﹣.【分析】(2)先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:(2)原式=•=,当x=1+,y=1﹣时,原式===.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤.考点练习:1.已知a+=1+,求a2+的值.【分析】根据题目中的式子,两边平方整理化简即可求得所求式子的值.【解答】解:∵a+=1+,∴∴∴a2+=9+2.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.。

二次根式有意义的判定方法

二次根式有意义的判定方法

二次根式有意义的判定方法
一、利用表达式判定:
1. 看括号内的表达式是否有意义,括号内为常数或未定义的符号,则整个表达式也是没有意义的;
2. 若括号内存在有理数、有理数的混合因数,或实数系数、实数根、复合因数,则有意义;
3. 如果括号内有多个式子,且式子之间存在加减乘除计算,则也有意义;
4. 若括号内有二次项及以上次数的项,则也是有意义的。

二、利用解析法进行判定:
1. 将括号内的表达式进行代入,若是可以得出结果,则说明表达式有意义;
2. 若是经过代入之后,无法得出结果,则说明括号内表达式没有意义。

二次根式及其有意义的条件

二次根式及其有意义的条件

【考点精讲】1. a ≥0)的式子叫做二次根a ”叫做被开方数。

2. 当a >0a 0;当a =00=0。

a ≥0)是一个非负数。

【典例精析】例题1 下列各式中,是二次根式的有( ) 10,32+x ,315,π,5- A. 1个 B. 2个 C. 3个 D. 4个思路导航:315的根指数为3;5-的被开方数是负数,所以不是二次根式;10,32+x ,π符合二次根式的条件,所以是二次根式的有3个。

答案:C点评:二次根式必须满足两个条件:①根指数为2;②被开方数为非负数。

这两个条件缺一不可。

利用这两个条件逐一判断即可。

例题2 当x 取何值时,下列各式在实数范围内有意义? (1)2)3(-x ;(2)x 34-;(3)11-x 思路导航:要使被开方数有意义,则被开方数必须是非负数,如果分母中有根式,那么被开方数必须是正数,因为零不能作分母。

答案:解:(1)因为(x -3)2≥0,所以无论x 取任何实数,2)3(-x 都有意义;(2)若x 34-有意义,则必有4-3x ≥0,即当x ≤34时,x 34-有意义; (3)若11-x 有意义,则必有x -1>0,即当x >1时,11-x 有意义。

点评:本题考查了二次根式及分式有意义的条件。

用到的知识点:要使分式有意义,分母不能为0;二次根式的被开方数是非负数。

本题应注意在求得取值后应排除不在取值范围内的值。

例题3 已知x 、y 为实数,y=12x -,试求3x+4y 的值。

思路导航:根号内是非负数,分母不为0来综合考虑,得到相应的未知字母的值。

答案:解:依题意得⎪⎩⎪⎨⎧≥-≥-040422x x ,所以x2=4,所以x=±2,又因为x -2是原式分母,所以x -2≠0,所以x ≠2,所以x=-2,此时,y=-41,所以3x+4y=3×(-2)+4×(-41)=-7。

点评:用到的知识点为:互为相反数的两个数都是被开方数,那么这两个数都为0。

专题06 二次根式篇(解析版)

专题06 二次根式篇(解析版)

专题06 二次根式考点一:二次根式之定义与有意义的条件1. 二次根式的定义:形如()0≥aa的式子叫做二次根式。

2. 二次根式有意义的条件:二次根式的被开方数大于等于0。

即a中,0≥a。

1.(2022•湘西州)要使二次根式63-x有意义,则x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:∵3x﹣6≥0,∴x≥2,故选:D.2.(2022•广州)代数式11+x有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.3.(2022•贵阳)代数式3-x在实数范围内有意义,则x的取值范围是( )A.x≥3B.x>3C.x≤3D.x<3【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式在实数范围内有意义,∴x ﹣3≥0,解得:x ≥3,∴x 的取值范围是:x ≥3.故选:A .4.(2022•绥化)若式子21-++x x 在实数范围内有意义,则x 的取值范围是( )A .x >﹣1B .x ≥﹣1C .x ≥﹣1且x ≠0D .x ≤﹣1且x ≠0【分析】根据二次根式的被开方数是非负数,a ﹣p =(a ≠0)即可得出答案.【解答】解:∵x +1≥0,x ≠0,∴x ≥﹣1且x ≠0,故选:C .5.(2022•雅安)使2-x 有意义的x 的取值范围在数轴上表示为( )A .B .C .D .【分析】根据二次根式有意义的条件,得出关于x 的不等式,解不等式,即可得出答案.【解答】解:∵∴x ﹣2≥0,∴x ≥2,故选:B .6.(2022•菏泽)若31-x 在实数范围内有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得,x ﹣3>0,解得x >3.故答案为:x >3.7.(2022•青海)若式子11-x 有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.【解答】解:由题意得x ﹣1>0,解得x >1,故答案为:x >1.8.(2022•包头)若代数式x x 11++在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式有意义的条件,分式有意义的条件是分母不等于零,列不等式组,解出即可.【解答】解:根据题意,得,解得x ≥﹣1且x ≠0,故答案为:x ≥﹣1且x ≠0.9.(2022•常德)要使代数式4-x x 有意义,则x 的取值范围为 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x ﹣4>0,解得:x >4,故答案为:x >4.10.(2022•邵阳)若21-x 有意义,则x 的取值范围是 .x 的不等式组,求出x 的取值范围即可.【解答】解:∵有意义,∴,解得x >0.故答案为:x >2.考点二:二次根式之性质与化简1. 二次根式的性质:①二次根式的双重非负性:二次根式本身是一个非负数,恒大于等于0。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。

人教版八年级数学下册二次根式的知识点汇总(超值哦)

人教版八年级数学下册二次根式的知识点汇总(超值哦)

二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式.例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义.例2.当x是多少时,31x-在实数范围内有意义?例3.当x是多少时,23x++11x+在实数范围内有意义?知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0().注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

例4(1)已知y=2x-+2x-+5,求xy的值.(2)若1a++1b-=0,求a2004+b2004的值知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论.上面的公式也可以反过来应用:若,则,如:,.例1 计算1.(32)22.(35)23.(56)24.(72)2例2在实数范围内分解下列因式:(1)x2—3 (2)x4—4 (3) 2x2—3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式有意义
评卷人得分
一.选择题(共13小题)
1.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
2.在下列二次根式中,x的取值范围是x>3的是()A.B.C.D.
3.式子中x的取值范围是()
A.x≤3 B.x<3 C.x≥﹣3 D.x≥3
4.如果代数式有意义,那么x的取值范围是()
A.x≥0 B.x≠1 C.x>1 D.x≥0且x≠1
5.若二次根式有意义,则x的取值范围为()
A.x≥B.x≤C.x≥﹣D.x≤﹣
6.如果式子有意义,则x的取值范围是()
A.x>﹣2 B.x≥﹣2 C.x>2 D.x≥2
7.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且x≠1
8.若代数式有意义,则x的取值范围是()
A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1
9.二次根式有意义的条件是()
A.x B.x C.x D.x≤3
10.如果式子是有意义,那么a的取值范围是()
A.a≥2 B.a>2 C.a=2 D.a≤1
11.使有意义的x的取值范围是()
A.x>B.x<C.x≥﹣D.x≤﹣
12.使式子有意义的x的取值范围是()
A.x≥1 B.x≤1 C.x≥1且x≠2 D.x>2
13.在二次根式中,字母x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x≥﹣3
评卷人得分
二.填空题(共2小题)
14.当x 时,二次根式有意义.
15.如果分式有意义,那么x的取值范围是.
二次根式有意义
参考答案与试题解析
一.选择题(共13小题)
1.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
【解答】解:由题意可知:
∴x≥﹣3且x≠0
故选:C.
2.在下列二次根式中,x的取值范围是x>3的是()A.B.C.D.
【解答】解:A、∵是二次根式,
∴3﹣x≥0,
∴x≤3,故本选项错误;
B、∵是二次根式,
∴x+3≥0,
∴x≥﹣3,故本选项错误;
C、∵是二次根式,
∴x﹣3≥0,
∴x≥3,故本选项错误;
D、∵是二次根式,
∴≥0,
∴x>3,故本选项正确;
故选:D.
3.式子中x的取值范围是()
A.x≤3 B.x<3 C.x≥﹣3 D.x≥3
【解答】解:由题意可知:x﹣3≥0,
∴x≥3
故选:D.
4.如果代数式有意义,那么x的取值范围是()
A.x≥0 B.x≠1 C.x>1 D.x≥0且x≠1
【解答】解:由题意得,x≥0,x﹣1>0,
解得,x>1,
故选:C.
5.若二次根式有意义,则x的取值范围为()
A.x≥B.x≤C.x≥﹣D.x≤﹣
【解答】解:由题意得,1+2x≥0,
解得x≥﹣.
故选:C.
6.如果式子有意义,则x的取值范围是()
A.x>﹣2 B.x≥﹣2 C.x>2 D.x≥2
【解答】解:由题意得,2x+4≥0,
解得x≥﹣2.
故选:B.
7.若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且x≠1
【解答】解:∵在实数范围内有意义,
∴x≥0且x﹣1≠0,
∴x≥0且x≠1.
故选:D.
8.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1【解答】解:由题意得:x+1≥0,且x﹣1≠0,
解得:x≥﹣1,且x≠1,
故选:D.
9.二次根式有意义的条件是()
A.x B.x C.x D.x≤3
【解答】解:由题意得:3x﹣1≥0,
解得:x≥,
故选:B.
10.如果式子是有意义,那么a的取值范围是()A.a≥2 B.a>2 C.a=2 D.a≤1
【解答】解:∵式子是有意义,
∴a﹣2>0,
解得:a>2,
∴a的取值范围是:a>2.
故选:B.
11.使有意义的x的取值范围是()
A.x>B.x<C.x≥﹣D.x≤﹣
【解答】解:根据题意得:4+5x≥0,
解得:x≤﹣.
故选:D.
12.使式子有意义的x的取值范围是()
A.x≥1 B.x≤1 C.x≥1且x≠2 D.x>2
【解答】解:根据题意,得
x﹣1≥0且x﹣2≠0,
解得,x≥1,且x≠2;
故选:C.
13.在二次根式中,字母x的取值范围是()
A.x≥3 B.x>3 C.x≤3 D.x≥﹣3
【解答】解:二次根式中,字母x的取值范围是:x﹣3>0,
解得:x>3.
故选:B.
二.填空题(共2小题)
14.当x ≥时,二次根式有意义.
【解答】解:由题意得:2x﹣3≥0,
解得:x≥.
故答案为:≥.
15.如果分式有意义,那么x的取值范围是x≥﹣且x≠4.【解答】解:∵二次根式的被开方数是非负数,
∴2x+3≥0,
解得x≥﹣.
又分母不等于零,
∴x≠4,
∴x≥﹣且x≠4.
故答案是:x≥﹣且x≠4.。

相关文档
最新文档