举例说明离心式风机与水泵采用变频调速节能的原理
风机水泵采用变频调速的分析

风机水泵采用变频调速的分析默认分类 2009-07-03 18:50 阅读70 评论0字号:大中小泵类设备在生产范畴同样有着辽阔的利用空间,提水泵站、水池储罐给排系统、产业水(油)循环系统、热交流系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。
而且,根据不同的生产需求往往采用调剂阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。
这样,不仅造成大批的能源挥霍,管路、阀门等密封性能的损坏;还加速了泵腔、阀体的磨损和汽蚀,离心泵,严重时破坏设备、影响生产、危及产品德量。
风机、泵类设备多数采用异步电动机直接驱动的方法运行,存在启动电流大、机械冲击、电气掩护特性差等毛病。
不仅影响设备应用寿命,而且当负载呈现机械故障时不能瞬间动作维护设备,潜水泵,时常涌现泵破坏同时电机也被销毁的现象。
近年来,出于节能的急切须要和对产品德量不断进步的请求,加之采取变频调速器(简称变频器)易操作、免保护、节制精度高,并可以实现高功效化等特色;因而采用变频器驱动的计划开端逐步代替风门、挡板、阀门的把持计划。
变频调速技术的基础原理是依据电机转速与工作电源输进频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分辨表现转速、输进频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率到达转变电机转速的目标。
变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技巧于一身的综合性电气产品。
三、节能剖析通过流体力学的基础定律可知:风机、泵类装备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。
以一台水泵为例,它的出口压头为H0(出口压头即泵进口和管路出口的静压力差),额定转速为n0,阀门全开时的管阻特征为r0,额定工况下与之对应的压力为H1,出口流量为Q1。
流量-转速-压力关系曲线如下图所示。
风机水泵变频调速的节能运行原理

风机水泵变频调速的节能运行原理风机和水泵是典型的变转矩负载。
变转矩负载的特性是转矩随速度的上升而上升。
风机和水泵的电动机的轴功率P 与其流量(风量)Q ,扬程(压力)H 之间的关系式如下:P ∝Q×H ④当流量由Q 1变化到Q 2时,电动机的转速为N 1、N 2,Q 、H 、P 相对于转速的关系如下:Q 2=Q 1×(N 2/N 1)H 2=H 1×(N 2/N 1)2 ⑤ P 2=P 1×(N 2/N 1)3而电动机的轴功率P 和转矩T 的关系为: T ∝P /N 因此:T 2=T 1×(N 2/N 1)2 ⑥由式⑤和式⑥可以看出,风机和水泵的电动机的轴功率(功率输出)与转速的3次方成正比,而转矩与转速的2次方成正比。
图6(a )显示出了风机和水泵的扬程(压力)与风量(流量)的关系曲线,图6(b )显示出转矩与电机速度的关系曲线:从图6中可以看出,在低速时,功率会有很大的下降。
由于风机或水泵运行于额定转速以上是恒功率调速,此时风机和水泵效率很低,机械磨损大,容易损坏电机。
从理论上讲,速度降低10%时会带来30%左右的功率下降,由于功率的大幅度降低,可获得显著的节能效果。
风机水泵在改用变频调速前,要根据实际工况首先取得设备运行的技术参数,进行改造前的一些必要的技术论证,计算是其中最为重要的一个环节,而节能估算又是论证计算中关系到用户是否体现经济效益的重要环节。
在节能方面的计算是无法非常精确的,这是由于实际工况中有许多无法精确预算的影响因素存在。
因此,只能称其为“节能估算”。
节能是指能量形式相互转换过程。
包括能量转换为功的过程中,H 2H 1转矩T 功率P 21转速 100%图6(a)图6(b)努力减少多余的能量消耗,即所谓“所费多于所当费,或所得少于所可得”的那部分能耗,而“当费”与“可得”的那部分是不能被节约的。
对于电力产生的消费来说,“可得”是指发电机应得到的发电效果,“当费”是指用电器(包括电动机)做功的耗效果。
节能原理及节能计算

节能原理及计算方法一、节能原理风机和水泵,前者工作介质为液体,均属于流体机械设备。
下面以风机为例说明它们的工作特性。
特别是离心式风机及水泵,工作特性基本相同。
以下就以风机为例说明他们的调速工作原理。
风机的工作特性图如下:风机的工作特性图由上图可以看出,风机工作的位置,即风机的风量是由风机特性曲线(风压特性)和管网特性曲线(风阻特性)决定的,无论是改变风机的特性曲线,或者是改变管网特性曲线,都可以达到改变风量的目的。
图中:风机特性曲线 HA =kQ12K——风机特性系数;管网特性曲线 HA =Hc-λQ12λ——管网特性系数。
(一)工频工作方式工频工作方式是指泵的特性曲线保持不变,而改变管网特性曲线。
通常采取的方式是保持风机的特性曲线不变,即不改变风机的转速,而用调节挡板改变出风口的大小,达到改变风量的目的。
如下图所示:工频工作方式时风机的工作特性图从图中可以看出,风机工作在A点时,风量为Q1,风压为H1。
保持风机的转速不变,用挡板将风量调节为Q2时,风压将上升到H2,风机工作点变为B点。
由于挡板的节流作用,风道的阻力曲线变为OB。
风机工作在A点时,其功率为PA =H1×Q1/102;风机工作在B点时,其功率为PB =H2×Q2/102。
虽然Q2<Q1,但H3>H1,所以PA与为PB的值变化不大,说明采用工频工作方式时,改变风机的风量,风机的轴功率减小有限。
(二)变频工作方式变频工作方式是指管网特性曲线保持不变,而改变风机的特性曲线。
通常采取的方式是保持管网特性曲线不变,即不改变风机出口的大小,而改变风机的特性曲线,即改变风机的转速,达到改变风量的目的。
如下图所示:风机工作在A点时,其功率为PA =H1×Q1/102;风机工作在B点时,其功率为PB =H2×Q2/102。
Q 2<Q1,而且 H2>H1,所以PA与为PB的值变化较大,说明采用变工频工作方式时,改变风机的风量,风机的轴功率减小很大,节能效果显著。
风机水泵变频节能原理及适用

风机水泵变频节能原理及适用风机和水泵是工业领域中常用的设备,其能耗在工业生产中占据相当大的比重。
为了降低能耗,提高能源利用效率,节能变频技术逐渐被广泛应用于风机和水泵的驱动系统中。
本文将详细介绍风机和水泵节能变频的原理及其适用范围。
风机和水泵节能变频的原理主要体现在控制电机的输出转速上。
传统的风机和水泵系统通常采用调节阀门或者调节叶片的方式来控制流量,这种方式会导致系统的效率较低,能耗较高。
而节能变频技术则通过调节电机的转速来实现流量的控制,以达到节能的目的。
节能变频控制系统由变频器、传感器和控制器等组成。
变频器是核心设备,它通过改变电源频率来调节电机的转速,从而控制流量。
传感器用于实时监测系统的压力、温度、流量等参数,并将采集到的数据传输给控制器。
控制器根据传感器采集的数据,通过PID调节算法计算出最佳转速,然后将指令传输给变频器,控制风机或者水泵的转速。
风机和水泵节能变频适用于很多领域,包括工业生产、建筑、供暖通风空调等领域。
具体适用范围如下:1.工业生产:在工业生产中,风机和水泵是常见的动力设备。
通过节能变频技术,可以降低风机和水泵的能耗,提高生产效率。
例如,在制造业中,风机和水泵广泛应用于物料输送、通风排烟、冷却循环等环节,节能变频技术可以使系统的能耗减少30%以上。
2.建筑领域:在建筑领域,风机和水泵被广泛应用于通风、空调、给排水等系统。
通过节能变频技术可以有效降低建筑物的能耗,减少能源浪费。
尤其在一些大型建筑物中,如商业中心、大型办公楼、医院等,节能变频技术可以带来可观的节能效果。
3.供暖通风空调系统:节能变频技术在供暖通风空调系统中的应用也十分广泛。
通过控制风机和水泵的转速,可以实现精确的温控和湿控,提高系统的运行效率。
尤其在一些需要频繁调节的场合,如办公室、商场、酒店等,节能变频技术有着显著的节能效果。
总结起来,风机和水泵节能变频技术通过调节电机的转速来实现流量的控制,以达到节能的目的。
变频调速技术在风机及泵类中的节能应用

和 变 速 调 节 各 自所 消耗 的 功 率
假定 水
往 往 采 用 调 整 阀 回 流 阀 截 止 阀等节 流
、 、
泵 效率
1 1=
0 6
.
。
设 备进行流量
、
压力
、
水位 等 信 号 的 控
,
在工 业 生 产和产 品加工 制造业 中
、
,
制
腔
。
这 样 不 仅 造 成 大量 的 能源 浪 费 管
,
风 机 泵 类 设 备应 用 范 围广 泛 其 电能 消
H = 15
m
代 风 门 挡板 阀 门 的 控制方案
、 、
为 :N
。
0 9 8 1 0 x 1 5 x 6 6/ 6 x 3 6 0 0 x 1 0 0 0 = 0 5 k W
.
综述
通 常在 工 业 生 产
、
变频 调 速 技术 的 基 本 原 理 是 根 据 电 产 品加工 制造 业
、
可 见 变速 调 节 比节 流 调 节 经 济 因
越 的调 速性 能 显 著 的节 电效 果 改 善 现
、
时 常 出现 泵 损 坏 同 时 电机 也 被烧 毁 的 现
1000
一
』醣 W
,
象 近 年来 出 于 节 能 的 迫 切需 要 和 对 产
。
,
( 1 )节 流 调 节 由 上 图 知 :流 量 为 6
,
.
6
有设 备 的运 行 工 况
,
提 高 系统 的安 全 可
牵变所电容选 引电蓄池量择
() 2 电压校正 结论 :
1 2 7
表1 环境温度对可用容量的影响关系
风机水泵压缩机变频调速节能技术讲座(二)

风机水泵压缩机变频调速节能技术讲座(二)风机水泵压缩机变频调速节能技术讲座(二)第一讲风机变频调速节能技术(二)二、风机变频调速节能分析1 风机(水泵)的几何相似,运动相似和动力相似两台风机(水泵)若几何相似,就是说它们的形状完全相同,只是大小不同,其一台风机(水泵)相当于另一台风机(水泵)按一定比例的放大或缩小。
举个形象的例子:两张不同比例尺的国地图,它是几何相似的,但大小相差一定的倍数。
应该指出的是:本文所说的两台风机(水泵)几何相似,是指通流部分的几何相似,并不是要求两台风机(水泵)之间的外形轮廓也必须几何相似。
两台风机(水泵)的运动相似是指两台几何相似的风机(水泵)通流部分各对应点的速度三角形相似。
显然,只有当两台风机(水泵)的通流部分几何相似,才有可能运动相似,但满足几何相似条件的,不一定满足运动相似的条件,只有当两台几何相似的风机(水泵)都在对应的工况点运行时(例如:都运行在最高效率工况点时),才是运动相似,所以运动相似又称工况相似。
两台风机(水泵)的运动相似则是指作用于两台风机(水泵)内各对应点上力的方向相同,大小成比例。
作用于风机(水泵)内流体的力主要有惯性力、粘性力的总压力。
因此,为使风机(水泵)的动力相似,必须对应点上的惯性力与弹性力(或压力与密度)之比相等,惯性力与粘性力之比相等。
2 叶片式风机(水泵)的相似定律叶片式风机与水泵的相似定律是两台风机(水泵)在满足几何相似和运动相似的前提下导出的。
它给出几何相似的风机(水泵)在对应工况点的流量之间、扬程(或全压)之间、功率之间的相互关系为: q v/q’v=(D2/D’2)3·n/n’·ηv/η’v(1)H/H’=(D2/D’2)2·(n/n’)2·ηh/η’h(2)p/p’=(D2/D’2)2·(n/n’)2·ρ/ρ’·ηh/η’h(2a)P/P’=(D2/D’2)5·(n/n’)3·ρ/ρ’·ηm/η’m (3) 式带“'”与不带“'”分别表示两台相似的风机(水泵)各自的参数。
简述泵与风机变频运行的节能分析
1前 言
通过 式( 1 ) 可知变 频器 是通 过改变 电源 频率睐 改 变 电动机转 速 的。 可通过 降低转速 达到节 能的 目的 。 这里 必须 指 出, 变频器 的投资 很 昂贵 , 投资 必须 审核
变频 器 以取得 经济 效益
近一 段时 期 , 随着环 保 成本的投 入增 加和 煤炭 资源的 日益消 耗 , 节 能降耗 已经成 为火 电厂降低成 本 , 保 持盈 利的重 要手段 之一 。 在 日常生产 中 , 降低厂 用 电是 控制成 本 的主要途 径 , 而 电厂 中各种 泵和 风机 则是最 主要 的耗 电设备 , 并 且这 些设备 往往 是长 期连 续运 行和 常常处 于低 负荷 及变 负荷运 行状 态 , 运 行 工况 点偏 离高 效 点 , 运行 效 率降 低 ,大量 的能 源在 终端 利 用 中被 白 白地 浪 费 掉。 因此 , 对 电厂泵 和风 机进行 节 能研 究与 改造 具有 重要 的现 实意 义 。 2泵和 风 机变 频调 节 的节 能原 理 改变 泵 和风机 转速 可 以改变泵 的性 能 曲线, 在管路 曲线 保持 不变情 况下 , 使 工作点 改变 , 这 种调节 方 式称为 变速 调节 。 如图l 所示 , 当泵和 风机 的转速升
了厂 用 电 。
4 结束 语
一
毽 l
姆
ቤተ መጻሕፍቲ ባይዱ
次 风机变 频 改造 还具有 一 下优 点 :
( 1 ) { 殳 备运 行和 维护费 用下 降 : 采用调 速 后 , 由于 通过调 节 电机转 速来 实现 节能 , 在负荷 低时 , 电机 、 风机 的转速也 降低 , 设备 的轴承等 磨损 也减轻 , 维护周 期 加长 , 设备 运行 寿命 延 长。 同时也 降 低了风 机 的噪音 。 ( 2 ) 可对 电机 实现软启 动 : 启 动 电流不超过额 定 电流 的 1 . 2 倍, 电机 的使用 寿 命 增长 。 同时减 少了 由于启 动时 的机械 冲击 对轴 承 、 阀 门、 管道 等 造成 的损坏 。
风机泵类变频节能的工作原理
风机泵类变频节能的工作原理变频调速节能装置的节能原理1、变频节能由流体力学可知,P(功率)=Q(流量)╳H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,假如水泵的效率肯定,当要求调整流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
即水泵电机的耗电功率与转速近似成立方比的关系。
例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%。
2、功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,铺张严峻,由公式P=S╳COSФ,Q=S╳SINФ,其中S -视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,一般水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COS Ф≈1,从而削减了无功损耗,增加了电网的有功功率。
3、软启动节能由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严峻的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震惊时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。
而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开头,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。
节约了设备的维护费用。
变频调速节能装置的节能原理1、变频节能由流体力学可知,P(功率)=Q(流量)╳H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,假如水泵的效率肯定,当要求调整流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
风机水泵变频调速节能分析
风机水泵变频调速节能分析一、风机基本知识概述1、风机的主要作用和分类风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。
风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;风洞风源和气垫船的充气和推进等。
风机按工作原理的不同,可以分为叶片式(又称叶轮式或透平式)和容积式(又称定排量式)两大类。
叶片式风机又可以分为离心式风机、轴流式风机、混流式风机和横流式风机;容积式风机又可以分为往复式风机和回转式风机,而回转式风机又可用分为罗茨风机和叶氏风机。
风机除按上述工作原理分类外,还常按其产生全压的高低来分类:(1)通风机 指在设计条件下,风机产生的额定全压值在98Pa ~14700Pa 之间的风机。
在各类风机中,通风机应用最为广泛,如火力发电厂中用的各种风机基本上都是通风机。
(2)鼓风机 指气体经风机后的压力升高在14700Pa ~196120Pa 之间的风机。
(3)压缩机 指气体经风机后的压力升高大于196120Pa ,或压缩比大于3.5的风机。
(4)风扇 指在标准状况下,风机产生的额定全压低于98Pa 的风机。
这类风机无机壳,故又称自由风扇。
2、风机的性能参数风机的基本性能参数表示风机的基本性能,风机的基本性能参数有流量、全压、轴功率、效率、转速、比转速等6个。
(1)流量 以字母Q(q)表示,单位为l/s 、m3/s 、m3/h 等。
风机的流量是指单位时间内通过风机进口的气体体积。
若无特殊说明,风机的流量Q V 是指在风机进口法兰空气在标准状态下的体积。
即这时空气的压力为一个大气压力Pa = 10.13×104N/m 2,温度t = 20℃,相对湿度为50%,相应的气体密度为3/2.1m kg =ρ。
(2)全压 风机的全压p 表示空气经风机后所获得的机械能。
风机的全压p 是指单位体积气体从风机的进口截面1流经叶轮至风机的出口截面2所获得的机械能。
泵变频调速的节能原理
泵变频调速的节能原理
泵变频调速的节能原理是通过控制泵的运行速度来达到节能的目的。
通常情况下,泵的运行速度是固定的,当流量需求增加时,需要提高泵的运行速度来满足需求。
而变频调速技术可以根据实际需求,精确地控制泵的运行速度,使其与流量需求匹配,避免了过剩的能耗。
具体来说,变频调速通过改变电机的供电频率和电压来实现泵的调速。
当流量需求较小时,变频器会降低电机的频率和电压,使得电机的运行速度降低,从而降低泵的输出流量,减少能耗。
而当流量需求增加时,变频器会提高电机的频率和电压,以增加泵的输出流量。
采用泵变频调速技术可以有效地避免泵的能耗过剩。
传统的固定速度泵在流量需求较小时仍然会以定速运行,即使流量需求很小,泵也需以最高速度运行,造成能源的浪费。
而变频调速技术可以根据实际需求,实现精确的调速,使泵的运行更加节能。
此外,泵变频调速还能提高泵的运行效率。
根据瑞士泵制造商研究发现,通过变频调速提高泵的效率平均可达到30%,最高可达到50%以上。
这是因为变频调速技术避免了过剩能耗,减少了泵的损耗,提高了运行效率。
综上所述,泵变频调速的节能原理主要通过精确控制泵的运行速度,使其与流量需求匹配,避免能耗的过剩,从而实现节能的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
举例说明离心式风机与水泵采用变频调速节能的原理
在各种工业用风机、水泵中,如锅炉鼓、引风机、深井、离心泵等,大部分是额定功率运行,而它们的能耗都与机组的转速有关。
通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
风机流量的设计均以最大风量需求来设计,其调整方式采用调节风门、挡板开度的大小、回流、启停电机等方式控制,无法形成闭环控制,也很少考虑省电。
这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。
在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。
从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
同样,离心式水泵在我国当前的工业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,水泵流量的设计同样为最大流量,压力的调控方式只能通过控制阀门的大小、电机的启停等方法。
这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。
电气控制采用直接或Y-△启动,不能改变风机和水泵的转速,无法具有软启动的功能,机械冲击大,传动系统寿命短,震动及噪声大,功率因数较低等是其主要难点。
为解决这些难题,相关科研技术人员根据生产需要对风机和水泵等装置的转速进行控制和调节以适应工艺要求和运行工况,在满足生产需求的基础上又节约了能源。
所以,变频调速对生产生活具有十分重要的意义,这也就意味着我们有必要了解风机和水泵等装置采用变频调速节能的原理。
为了对变频调速节能原理有更清晰、更深入的理解,我们可以先从变频器的工作原理出发。
变频器电路(见下图)的基本工作原理为:三相交流电源经二极管整流桥输出恒定的直流电压,由六组大功率晶体管组成逆变器,利用其开关功能,由高频脉宽调制(PWM)驱动器按一定规律输出脉冲信号,控制晶体管的基极,使晶体管输出一组等幅而不等宽的矩形脉冲波形,其幅值为逆变器直流侧电压Vd而宽度则按正弦规律变化,这一组脉冲可以用正弦波来等效,此脉冲电压用来驱动电机运转,通过控制PWM驱动器输出波形的幅值和频率,即可改变晶体管输出波形的频率和电压,达到变频调速的目的。
交—直—交变频器,主要由主电路(包括整流器、中间直流环节、逆变器)和控制电路组成。
前面已经提到,在生产中,许多设备的能耗都与机组的转速有关,这些设备一般都是根据生产中可能出现的最大负荷条件,如最大流量来进行选择的,但实际生产中所需的流量往往比设计的最大流量小得多,如果所用的电动机是不能调速的,通常只能通过调节阀门的开度来控制流量,其结果是会在阀门上造成很大的能量损耗,如果不用阀门调节,而是让电机调速运行,那么,当需要的流量减少时,电动机的转速降低,消耗的能量将会明显减少。
当风机的转速从n1变为n2时,流量Q、压力H、功率P大致变化关系为:Q2=Q1(n2/n1)、H2=H1(n2/n1)、P2=P1(n2/n1),由上式可知,当转速下降1/2时,流量下降1/2,压力下降1/4,功率下降1/8,即流量需求减少一半时,如通过变频调速,则理论上讲,仅需额定功率的12.5%,即可节约87.5%的能源。
如果不是用关小阀门的方法,而是把电机的转速降下来,那么随着输出压头的降低,在输出同样流量的情况下,原来消耗在阀门上的功率就可以完全避免,这就是调速节电的原理所在。
简单地说,就是在不装变频调速装置时,风机或水泵的出口排量靠出口阀调节,电机易过负荷,流量小时,靠关小阀门调节,增加了管道阻力,使部分能量白白消耗在出口阀上,安装变频调速器后,可以降低电机的转速,电机的电耗也相应降低,是原来消耗在出口阀上的能量,用变频调速方法得到了解决。
由于采用恒转矩特性,变频降速后的电机转矩不变,拖动力矩恒定,可以保证排量,从而实现了节约电能的作用。
下面讨论风机与水泵变频调速节电原理
风机多为交流异步电机拖动,当电机转速降低时,即可节约能源,经济效益十分明显。
异步电动机的转速公式如下:
式中:
no:异步电动机的同步转速
n:异步电动机转子的转速
p:电动机的磁极对数
s:转差率
因此,改变电动机的磁极对数p、转差率s及电源频率f都可以改变转速。
本文主要研究变频调速的情况。
变频调速是将电网交流电经过变频器变成电压和频率均可调的交流电,然后供给电动机,使其可以在变速的情况下运行。
改变电动机定子频率f可以平滑的调节同步转速no,相应的也改变转子转速n,而转差率s可保持不变或很小,可以使风机与水泵的性能曲线改变,达到调节风机与水泵工况的目的。
但对风机电动机来说,定子频率改变后,其运行影响,如果电压不变,频率增加时,磁通减少,电动机转矩下降,严重时会使电动机堵转;频率减小,磁通增加,会使磁路饱和,励磁电流上升,导致铁芯损失急剧增加而发热,是不允许的。
因此,在实际应用中,要求调频的同时,改变定子电压,保持磁通基本不变,
既不使铁芯发热,又保持转矩不变。
二者之所以能够同时同时满足,主要是由于三相异步电动机定子每相电动势的有效值为m N f E Φ=11144.4
式中:
1f ——电动机定子频率,单位为Hz ;
1N ——定子相绕组有效匝数;
m Φ——每极磁通量,单位为Wb
从公式可知,对1E 和1f 进行适当控制即可维持磁通不变。
虽然变频调速技术在生产中得到了很大的推广应用,但是仍存在一些问题。
下面,我会简单地为大家分析一下变频调速的优缺点如下。
变频调速的主要优点是:
(1)可实现平滑的无级调速,且调速精度高,转速(频率)分辩率高。
(2)调速效率高。
变频调速的特点是在频率变化后,电动机仍在该频率的同步转速附近运行,基本上保持额定转差率,转差损失不增加。
变频调速时的损失,只是在变频装置中产生的变流损失,以及由于高次谐波的影响,使电动机的损耗有所增加,相应效率有所下降。
所以变频调速是一种高效调速方式。
(3)调速范围宽,一般可达10∶1(50~5Hz )或20∶1(50~2.5Hz )。
并在整个调速范围内均具有较高的调速装置效率ηV 。
所以变频调速方式适用于调速范围宽,且经常处于低转速状态下运行的负载。
(4)功率因数高,可以降低变压器和输电线路的容量,减少线损,节省投资。
或在同样的电源容量下,可以多装风机或水泵负载。
(5)变频装置故障时可以退出运行,改由电网直接供电(工频旁路)。
这对于泵或风机的安全经济运行是很有利的。
如万一变频装置发生故障,就退出运行,不影响泵与风机的继续运行;又如在接近额定频率(50Hz )范围工作时,由变频装置调速的经济性并不高,变频装置可退出运行,由电网直接供电,改用节流等常规的调节方式。
(6)变频装置可以兼作软起动设备,通过变频器可将电动机从零速起动连续平滑加速直致全速运行。
变频软起动是目前最好的软起动方式,变频器是目前最好的软起动设备。
变频调速的主要缺点是:
(1)目前,变频调速技术在高压大容量传动中推广应用的主要问题有两个:一个是我国发电厂辅机电动机供电电压高(3~10KV ),而功率开关器件耐压水平
不够,造成电压匹配上的问题;二是高压大功率变频调速装置技术含量高、难度
大,因而投入也高,而一般风机水泵节能改造都要求低投入,高回报,从而造成
经济效益上的问题。
这两个问题是它应用于风机水泵调速节能的主要障碍。
(2)因电流型变频器输出电流的波形和电压型变频器输出电压的波形均为非正弦波形而产生的高次谐波,对电动机和供电电源会产生种种不良影响。
如使电动机附加损耗增加、温升增高,从而使电动机的效率和功率因数下降,出力受到限制,噪声增大以及对无线电通信干扰增大等。
同时,高次谐波会引起电动机转矩产生脉动,其脉动频率为6kf(k=1,2,3…)。
当转矩脉动频率较低并接近装置系统的固有频率时,可能产生共振现象。
因此,装置系统必须注意避免在共振点附近运行。
如采用PWM变频器或采用多重化技术的电流型和电压型变频器,其输出波形大为改善,高次谐波大大减少,所以这个问题可以得到大大的改善。
以上只是我自己对风机和水泵采用变频调速节电的简单理解,希望老师不要嫌弃,。