变频器的节电原理
变频调速技术的作用和节能原理

一、变频调速技术的作用和节能原理1、变频节能:为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。
电机不能在满负荷下运行,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费,在压力偏高时,可降低电机的运行速度,使其在恒压的同时节约电能。
当电机转速从 N1 变到 N2时,其电机轴功率(P)的变化关系如下:P2/ P1 = (N2/N1)3 ,由此可见降低电机转速可得到立方级的节能效果。
2、动态调整节能:迅速适应负载变动,供给最大效率电压。
变频调速器在软件上设有 5000次/秒的测控输出功能,始终保持电机的输出高效率运行。
3、通过变频自身的V/F功能节电:在保证电机输出力矩的情况下,可自动调节V/F曲线。
减少电机的输出力矩,降低输入电流,达到节能状态。
4、变频自带软启动节能:在电机全压启动时,由于电机的启动力矩需要,要从电网吸收 7 倍的电机额定电流,而大的启动电流即浪费电力,对电网的电压波动损害也很大,增加了线损和变损。
采用软启动后,启动电流可从0 -- 电机额定电流,减少了启动电流对电网的冲击,节约了电费,也减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。
5、提高功率因数节能:电动机由定子绕组和转子绕组通过电磁作用而产生力矩。
绕组由于其感抗作用。
对电网而言,阻抗特性呈感性,电机在运行时吸收大量的无功功率,造成功率因数很低。
采用变频节能调速器后,由于其性能已变为:AC-- DC --AC,在整流滤波后,负载特性发生了变化。
变频调速器对电网的阻抗特性呈阻性,功率因数很高,减少了无功损耗根据负载转速的变化要求,通过改变电动机工作电源频率达到改变电机转速的目的,以获得合理的电机运行工况。
在不同的转速情况下,均保持较高的运行效率,不仅降低了电能消耗,同时能改善启动性能,保护电机及负载设备免受瞬时启动的冲击,延长其工作寿命,还提高电动机和负载设备的工作精确度,实践证明,变频技术用于风机、泵类设备驱动控制场合取得了显著的节电效果,普遍节电达到30-50%。
变频器的节能原理

变频调速节能装置的节能原理1、变频节能由流体力学可知,P(功率)=Q(流量)╳ H(压力),流量Q 与转速N的一次方成正比,压力H与转速N的平方成正比,功率P 与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
即水泵电机的耗电功率与转速近似成立方比的关系。
例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%.2、功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S╳COSФ,Q=S╳SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。
3、软启动节能由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。
而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。
节省了设备的维护费用。
在冶金、化工、电力、市政供水和采矿等行业广泛应用的泵类负载,占整个用电设备能耗的40%左右,电费在自来水厂甚至占制水成本的50%。
这是因为:一方面,设备在设计时,通常都留有一定的余量;另一方面,由于工况的变化,需要泵机输出不同的流量。
随着市场经济的发展和自动化,智能化程度的提高,采用高压变频器对泵类负载进行速度控制,不但对改进工艺、提高产品质量有好处,又是节能和设备经济运行的要求,是可持续发展的必然趋势。
变频器为什么能省电?来看看变频器节电原理35个疑问吧

变频器为什么能省电?来看看变频器节电原理35个疑问吧一直都听别人说变频器能省电,说的人多了也就接受了,但一直没弄懂变频器为什么能省电,同时又能省多少,是高频省的多还是低频省的多?而且还有如下几个疑问:1、如果两个一模一样的电机都工作在50HZ的工频状态下,一个使用变频器,一个没有,同时转速和扭矩都在电机的额定状态下,那么变频器还能省电吗?能省多少呢?2、如果这两个电机的扭矩没有达到电机的额定扭矩状态下工作(频率,转速还是一样50HZ),有变频器的那个能省多少电?3、同样的条件,空载状态下能省多少,这三种状态下哪个省的更多?答:变频器可以省电这是不可磨灭的事实,在某些情况下可以节电40%以上,但是某些情况还会比不接变频器浪费!变频器是通过轻负载降压实现节能的,拖动转距负载由于转速没有多大变化,即便是降低电压,也不会很多,所以节能很微弱,但是用在风机环境就不同了,当需要较小的风量时刻,电机会降低速度,我们知道风机的耗能跟转速的1.7次方成正比,所以电机的转距会急剧下降,节能效果明显。
如果我们用在油井上,就会因为在返程使用制动电阻白白浪费很多电能反而更废电。
当然,如果环境要求必须调速,变频器节能效果还是比较明显的。
不调速的场合变频器不会省电,只能改善功率因数。
1、如果两个一模一样的电机都工作在50HZ的工频状态下,一个使用变频器,一个没有,同时转速和扭矩都在电机的额定状态下,那么变频器还能省电吗?能省多少呢?答:对于这种情况,变频器只能改善功率因数,并不能节省电力。
2、如果这两个电机的扭矩没有达到电机的额定扭矩状态下工作(频率,转速还是一样50HZ),有变频器的那个能省多少电?答:如果使用了自动节能运行,这个时刻变频器能降压运行,可以节省部分电能,但是节电不明显。
3、同样的条件,空载状态下能省多少,这三种状态下哪个省的更多?答:拖动型负载空载状态也节省不了多大的电能。
比如关于“闭环控制”如是说。
我认为有讨论的空间。
变频器工作原理及接线

一、变频器的直接作用:通过改变电动机的电压和频率,使电机的速度可以无极调节。
软启动节能,功率因数补偿节能变频器的间接作用:1.节能(节电)。
风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。
当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
降低电耗。
2提高生产设备自动化程度.当前有很多品牌的变频器,如:杭州奥圣电气有限公司代理的日业变频器CM530系列在满足客户通用需求的前提下,通过扩展设计可以灵活地满足客户个性化要求、行业性要求满足各种复杂高精度传动的要求,同时为设备制造业客户提供高集成度的一体化解决方案,二、变频器原理变频器工作原理主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
整流器最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。
也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。
平波回路在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。
为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。
装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。
逆变器同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。
以电压型pwm逆变器为例示出开关时间和电压波形。
控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。
变频节电原理

变频节电原理
变频器是一种能够改变电机运行频率的设备,通过调整电机的运行频率,可以
实现电机的速度调节,从而实现节能的目的。
变频器在工业生产中得到了广泛的应用,其节能效果显著,对于提高生产效率、降低能耗具有重要意义。
首先,我们来了解一下变频节电的原理。
在传统的电机控制系统中,电机的运
行频率是固定的,而变频器可以根据实际需要来调节电机的运行频率,从而控制电机的转速。
当电机的负载较轻时,可以降低电机的运行频率,减少能耗;当电机的负载较重时,可以提高电机的运行频率,保证生产效率。
其次,变频器通过改变电机的运行频率,还可以实现电机的软启动和软停车,
减少了电机启动时的冲击,延长了电机的使用寿命。
同时,变频器还可以实现电机的无级调速,提高了生产的精度和稳定性。
这些优点使得变频器在各种工业生产中得到了广泛的应用。
另外,变频器还可以通过优化电机的运行状态,减少了电机的运行损耗,提高
了电机的效率。
在一些需要频繁启停的场合,变频器可以有效地减少了电机的启动次数,降低了设备的维护成本。
通过变频器的应用,不仅可以实现节能减排的目的,还可以提高生产的稳定性和可靠性。
总的来说,变频节电的原理是通过改变电机的运行频率,实现电机的节能调速,从而提高了生产效率,降低了能耗,延长了设备的使用寿命。
变频器作为一种节能环保的设备,在工业生产中发挥着重要的作用,对于实现可持续发展具有重要意义。
通过对变频节电原理的深入了解,我们可以更好地应用变频器,实现节能减排
的目标,推动工业生产向着更加智能、高效、环保的方向发展。
希望本文能够为大家对变频节电原理有所帮助,促进工业生产的可持续发展。
变频器的工作原理

变频器的工作原理1、变频器的定义和作用变频器是将工频电源转换成任意频率、任意电压交流电源的1种电气设备,变频器的使用主要是调整电动机的功率、实现电动机的变速运行。
变频器的组成主要包括控制电路和主电路2个部分,其中主电路还包括整流器和逆变器等部件,以下介绍变频器的作用。
(1)变频节能变频器节能主要表现在风机、水泵的应用上。
变频器在工频下运行,具有节电功能。
但是前提条件如下:①大功率并且为风机/泵类负载。
①装置本身具有节电功能(软件支持)。
①长期连续运行。
(2)功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,且浪费严重。
使用变频调速装置后,由于变频器内部滤波电容的作用,从而减少了无功损耗,增加了电网的有功功率。
(3)软起动节能电机硬起动对电网造成严重的冲击,而且还会对电网容量要求过高。
起动时产生的大电流和振动时对挡板和阀门的损害极大。
而使用变频节能装置后,利用变频器的软起动功能将使起动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。
2、变频器的工作原理及分类主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为2类:电压型,是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型,是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
变频器由3部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
变频器的分类方法很多,下面简单介绍几种主要的分类方法。
(1)按变换环节分类①交-交变频器交-交变频器的主要优点是没有中间环节,变换效率高,但其连续可调的频率范围较窄,输出频率一般只有额定频率的1/2以下,电网功率因素较低,主要应用于低速大功率的拖动系统。
变频器节能节电原理及其应用

变频器节能节电原理及其应用变频器是一种电力设备,其原理是通过控制电机的转速,实现对电力消耗的调控。
变频器通过改变电机的输入电压和频率,使电机能够根据负载的需求来进行转速调节,从而达到节能节电的目的。
1.调速控制:传统电机的转速往往是固定的,当负载变化时,输出功率的需求也可能不同。
而变频器可以根据负载的需求,通过调节电机的转速来实现输出功率的调节,避免了转子过早磨损和能量的浪费。
2.高效率工作:普通电机往往工作在额定功率下,当负载小于额定功率时,电机的效率会大大降低。
而变频器通过调节电机的输入电压和频率,使电机能够工作在最佳工作点,提高电机的效率,最大程度地减少损耗。
3.节约能源:传统电机在启停过程中需要一定的起动电流,而变频器可以通过控制启停过程,减少起动电流,从而节约了能源的使用。
此外,由于变频器可以实现电机在不同负载下的转速调节,使电机在工作时始终保持高效率,减少能源的浪费。
4.降低峰值需求:变频器还可以通过调节电机的输出功率,降低电网的峰值需求。
电网通常需要满足峰值负荷,而变频器可以根据负载的实际需求来调节电机的输出功率,减少电网的负荷需求,从而减轻了电网的负担。
变频器的应用主要有以下几个方面:1.电机驱动:变频器可以应用在各种电机驱动系统中,如电梯、空调、风机等,通过调节电机的转速来满足负载的需求,并实现节能节电的效果。
2.照明系统:变频器可以应用在照明系统中,通过调节灯具的亮度,实现对照明系统的能耗控制。
3.水泵系统:变频器可以应用在水泵系统中,通过调节水泵的转速,控制水流量,实现节能节水的效果。
4.风力发电:变频器可以应用在风力发电系统中,通过调节风机的转速,使其在不同风速下保持最佳工作状态,提高风力发电的效率。
总的来说,变频器通过调节电机的转速,实现对电力消耗的调控,达到节能节电的目的。
其应用广泛,不仅可以应用在各种电机驱动系统中,还可以应用在照明系统、水泵系统和风力发电系统等领域,为节约能源、减少能源浪费做出了重要贡献。
变频器节能原理

变频器节能原理
节能原理:
1、变频节能:为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。
电机不能在满负荷下运行,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费,在压力偏高时,可降低电机的运行速度,使其在恒压的同时节约电能。
当电机转速从 N1 变到 N2时,其电机轴功率(P)的变化关系如下:P2
/ P1 = (N2/N1)3 ,由此可见降低电机转速可得到立方级的节能效果。
2、动态调整节能:迅速适应负载变动,供给最大效率电压。
变频调速器在软件上设
有 5000次/秒的测控输出功能,始终保持电机的输出高效率运行。
3、通过变频自身的V/F功能节电:在保证电机输出力矩的情况下,可自动调节V/F曲线。
减少电机的输出力矩,降低输入电流,达到节能状态。
4、变频自带软启动节能:在电机全压启动时,由于电机的启动力矩需要,要从电网吸收 7 倍的电机额定电流,而大的启动电流即浪费电力,对电网的电压波动损害也很大,增加了线损和变损。
采用软启动后,启动电流可从0 -- 电机额定电流,减少了启动电流对电网的冲击,节约了电费,也减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。
5、提高功率因数节能:电动机由定子绕组和转子绕组通过电磁作用而产生力矩。
绕组由于其感抗作用。
对电网而言,阻抗特性呈感性,电机在运行时吸收大量的无功功率,造成功率因数很低。
采用变频节能调速器后,由于其性能已变为:AC-- DC --AC,在整流滤波后,负载特性发生了变化。
变频调速器对电网的阻抗特性呈阻性,功率因数很高,减少了无功损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的节电原理
常常听人说变频器能省电,说的人多了也就接受了,但一直没弄懂变频器为什么能省电,同时又能省多少,是高频省的多还是低频省的多?有用户还有如下几个疑问:
a、如果两个一模一样的电机都工作在50HZ的工频状态下,一个使用变频器,一个没有,同时转速和扭矩都在电机的额定状态下,那么变频器还能省电吗?能省多少呢?
b、如果这两个电机的扭矩没有达到电机的额定扭矩状态下工作(频率,转速还是一样50HZ),有变频器的那个能省多少电?
c、同样的条件,空载状态下能省多少,这三种状态下哪个省的更多?
爱德利变频器答:变频器可以省电这是不可磨灭的事实,在某些情况下可以节电40%以上,但是某些情况还会比不接变频器浪费!
变频器是通过轻负载降压实现节能的,拖动转距负载由于转速没有多大变化,即便是降低电压,也不会很多,所以节能很微弱,但是用在风机环境就不同了,当需要较小的风量时刻,电机会降低速度,我们知道风机的耗能跟转速的1.7次方成正比,所以电机的转距会急剧下降,节能效果明显。
如果我们用在油井上,就会因为在返程使用制动电阻白白浪费很多电能反而更废电。
当然,如果环境要求必须调速,变频器节能效果还是比较明显的。
不调速的场合变频器不会省电,只能改善功率因数。
1、如果两个一模一样的电机都工作在50HZ的工频状态下,一个使用变频器,一个没有,同时转速和扭矩都在电机的额定状态下,那么变频器还能省电吗?能省多少呢?
答:对于这种情况,变频器只能改善功率因数,并不能节省电力。
2、如果这两个电机的扭矩没有达到电机的额定扭矩状态下工作(频率,转速还是一样50HZ),有变频器的那个能省多少电?
答:如果使用了自动节能运行,这个时刻变频器能降压运行,可以节省部分电能,但是节电不明显。
3、同样的条件,空载状态下能省多少,这三种状态下哪个省的更多?
答:拖动型负载空载状态也节省不了多大的电能。
比如关于“闭环控制”如是说。
我认为有讨论的空间。
文中的闭环概念太狭义了。
闭环控制不仅仅是转速传感器反馈才算数。
矢量控制时的频率控制就是闭环控制,而且是装置内部的闭环控制,V/F控制才属于开环控制,另外还有温度、压力、流量等等物理量的PID调节器反馈控制,都是闭环控制的范畴。
而且都是可以通过变频器调节实现的。
不应该将闭环控制概念解释得那么窄。
再比如,制动的概念,那种解释就象废话一样,玩弄文字游戏,说了等于没说一样。
1.变频不是到处可以省电,有不少场合用变频并不一定能省电。
2.作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。
3.变频器在工频下运行,具有节电功能,是事实。
但是他的前提条件是:
第一,大功率并且为风机/泵类负载;
第二,装置本身具有节电功能(软件支持);
第三,长期连续运行。
这是体现节电效果的三个条件。
除此之外,无所谓节不节电,没有什么意义。
如果不加前提条件的说变频器工频运行节能,就是夸大或是商业炒作。
知道了原委,你会巧妙的利用他为你服务。
一定要注意使用场合和使用条件才好正确应用,否则就是盲从、轻信而“受骗上当”。
4. 采用变频器运转时,电机的起动电流、起动转矩怎样?
采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。
采用变频器传动可以平滑地起动(起动时间变长)。
起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。
5. 在同一工厂内大型电机一起动,运转中变频器就停止,这是为什么?
电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转。
6. 装设变频器时安装方向是否有限制。
变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。
7.不采用软起动,将电机直接投入到某固定频率的变频器时是否可以?
在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。
将流过大的起动电流(6~7倍额定电流),由于变频器切断过电流,电机不能起动。
8.电机超过60Hz运转时应注意什么问题?
(1) 机械和装置在该速下运转要充分可能(机械强度、噪声、振动等)。
(2) 电机进入恒功率输出范围,其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意)。
(3) 产生轴承的寿命问题,要充分加以考虑。
(4) 对于中容量以上的电机特别是2极电机,在60Hz以上运转时要与厂家仔细商讨。
9.变频器可以传动齿轮电机吗?
根据减速机的结构和润滑方式不同,需要注意若干问题。
在齿轮的结构上通常可考虑70~80Hz为最大极限,采用油润滑时,在低速下连续运转关系到齿轮的损坏等。
10.变频器能用来驱动单相电机吗?可以使用单相电源吗?
机基本上不能用。
对于调速器开关起动式的单相电机,在工作点以下的调速范围时将烧毁
辅助绕组;对于电容起动或电容运转方式的,将诱发电容器爆炸。
变频器的电源通常为3相,但对于小容量的,也有用单相电源运转的机种。
11.变频器本身消耗的功率有多少?
它与变频器的机种、运行状态、使用频率等有关,但要回答很困难。
不过在60Hz以下的变频器效率大约为94%~96%,据此可推算损耗,但内藏再生制动式(FR-K)变频器,如果把制动时的损耗也考虑进去,功率消耗将变大,对于操作盘设计等必须注意。
12.为什么不能在6~60Hz全区域连续运转使用?
一般电机利用装在轴上的外扇或转子端环上的叶片进行冷却,若速度降低则冷却效果下降,因而不能承受与高速运转相同的发热,必须降低在低速下的负载转矩,或采用容量大的变频器与电机组合,或采用专用电机。
13.使用带制动器的电机时应注意什么?
制动器励磁回路电源应取自变频器的输入侧。
如果变频器正在输出功率时制动器动作,将造成过电流切断。
所以要在变频器停止输出后再使制动器动作。
14.想用变频器传动带有改善功率因数用电容器的电机,电机却不动,清说明原因
变频器的电流流入改善功率因数用的电容器,由于其充电电流造成变频器过电流(OCT),所以不能起动,作为对策,请将电容器拆除后运转,甚至改善功率因数,在变频器
的输入侧接入AC电抗器是有效的。
15.变频器的寿命有多久?
变频器虽为静止装置,但也有像滤波电容器、冷却风扇那样的消耗器件,如果对它们进行定期的维护,可望有10年以上的寿命。