半绝缘与全绝缘电压互感器
电压互感器原理及应用

图3 Figure 3
2019/3/20
电压互感器基本原理及基本参数
6.2、V-V、V-V-V接线图如下:
A B A B C
A a 图1
B b
A a
B A b a 图2
B b
11
2019/3/20
当二次侧短路时二次阻抗大大减小会出现很大的短路电流导致二次绕组严重发热而烧3二次绕组必须有一点接地为防止一二次绕组之间的绝缘击穿时高压窜入二次侧危及二次设备和人身安全所以二次绕组必须有一点接地而且只有一点接地
电压互感器基本原理及基本参数
总的来说,电压互感器的主要作用是将继电保护、测量仪表 和计量装置的电压回路与高压一次回路安全隔离,并取得固定 的100V或100/√3V二次标准电压。这样可以减小仪表和继电器 的尺寸,简化其规格,有利于这些设备小型化、标准化。 1、基本工作原理
2019/3/20
电压互感器基本原理及基本参数
在额定电压下,温升不超过标准GB1207规定的限值时,二次绕 组所能供给的最大功率。在极限输出状态下,误差可能超过标准值。 一般极限输出只能满足一个二次绕组。 10、执行标准 IEC60044.2&GB1207 若没有其他标准要求,只能确保满足IEC60044.2&GB1207标准。 11、功率因数 CosΦ =0.8 若没有特殊功率因数要求,均按照功率因数0.8设计。 12、公司名称、产品编号、生产日期
2、分类
(1)按用途分为:测量用与保护用电压互感器。 (2)按相数分为:单相与三相电压互感器。 (3)按变换原理分为:电磁式(VT)与电容式(CTV)。 (4)按绕组个数分为:双绕组、三绕组和四绕组电压互感器。 (5)按一次绕组对地状态分为:接地互感器与不接地互感器。 (6)按装置类型分为:户内型与户外型。 (7)按绝缘介质分为:液体介质(油浸式)互感器、气体介质 (SF6)互感器、固体介质(干式和浇注式)互感器。 (8)按绝缘水平分为:全绝缘(互感器高压绕组的两个出线端对 地具有相同的绝缘水平)与半绝缘(互感器高压绕组的两个出 线端具有不同的绝缘水平,其中一个的绝缘水平是降低了的。)
中压柜半绝缘电压互感器试验研究

中压柜半绝缘电压互感器试验研究摘要:电力行业是我国社会体系重要组成部分,也是推动我国社会发展的主要原动力之一,很多电力生产设备及其应用都直接关系到我国电力生产及发展,所以各种电力仪器、设备及技术的应用一直备受人们重视及关注。
压柜半绝缘电压互感器是近年来应用频率较高的一种电压互感仪器,具有很强的低压互感功能及控制工作,已经在各电力生产环节、电压管控环节得到了应用,并取得了良好的应用效果,减少了因为电压控制问题导致的各种电力生产事故发生率,提高了电力生产质量及效率,促进电力行业发展。
所以深入研究中压柜半绝缘电压互感器试验是非常重要和必要的。
关键词:中压柜半绝缘电压互感器;试验原理;试验步骤中压柜半绝缘电压互感器是电力生产中必不可少的一种电压互感仪器,同时也是用于电压控制的关键技术设备,很多电力生产企业及电压管控人员都非常重视中压柜半绝缘电压互感器的应用。
在应用中压柜半绝缘电压互感器前需要对其进行试验,只有试验通过后才能正式投入使用,这样既确保了中压柜半绝缘电压互感器的运行安全,还能够提高低压互感效率及管控效果,更在很大程度上提高了电力生产安全,对整个电力行业发展都起到了积极的促进作用。
对此,本文以13.8kV发电机出口PT及调速器PT柜电压互感器0911为例,对中压柜半绝缘电压互感器试验进行了简要研究,希望能够给相关工作者提供参考价值。
1中压柜半绝缘电压互感器及其分类中压柜半绝缘电压互感器实质上就是一种用于电压调控及互感的一种电压互感器,属于中压电压互感器,其应用原理在于利用电磁感应、电容分压等方式进行电压互感及调控,因此也分为电磁感应式电压互感器和电容分压式电压互感器两大类型。
很多调查结果显示,绝大多数中压电压互感器的电压范围值都在3~20kV之间,所以中压柜半绝缘电压互感器的电压应控制在3~20kV[1]。
电磁感应式互感器与变压器结构相似,都是由铁芯、一次绕组、二次绕组组成,在电压互感及调控等方面的性能也相似,所以很多情况下电磁感应互感器都能够代替变压器执行相关工作。
浅谈中压柜半绝缘电压互感器试验

图2
4 试验步骤说明
(1)将 13.8kV 发电机出口 CT 及调速器 PT 柜 电 压 互 感 器 0911 摇 至 检 修。(2) 将 13.8kV 发 电 机 出口 CT 及调速器 PT 柜电压互感器 0911 放置到手车 上移除高压柜。(3)进行绝缘电阻测试(MΩ):使 用测试仪器:ZC-3 500V 兆欧表、ZC11D-10 2500V 兆欧表进行测试,其结果见表 1。
状态。 三倍频变压器是为了满足《电气设备预防性试
验规程》—1995 中三倍频感应耐压试验和局放试验而
设计。如图 2 所示,自耦调压器组成的三倍频原理,当
中国设备工程 2017.07(下) 223
Research and Exploration 研究与探索·探讨与创新
加入工频三相电压过励磁时,中性点处便流过含有丰富 的 3 次以上谐波零序电流。然后对这电流进行升压,便 得到了 3 倍频电压。
2016 年开展 1 号机组 A 级检修时为了检查 13.8kV 发电机出口 CT 及调速器 PT 柜电压互感器中,是否存 在电磁线圈制造不良、绝缘受潮、贯穿性缺陷、严重过 热老化等原因造成的主绝缘和从绝缘方面的缺陷,需 要对半绝缘电压互感器进行各项试验。根据大唐集团 电力设备交接和预防性试验规程中规定,我厂 13.8kV 发电机出口 CT 及调速器 PT 柜电压互感器额定电压 为 15kV,大修时耐压试验标准,一次侧需要加压至 50kV。由于半绝缘电压互感器特性,电压互感器在进 行绝缘耐压试验时,一次绕组 N 端不能和一次绕组首 端采用同一试验电压,只能使用 3 倍频耐压试验,即一 次 N 端对二次及地 3kV1min,在二次端加压(150Hz), 一次 N 端接地,A 端感应出 50kV。为避免半绝缘电压 互感器一次侧电压过高引起铁心饱引起励磁电流过大损 坏电压互感器,通常进行 3 倍频(150Hz)感应耐压试验。
电磁式电压互感器交流耐压的试验方法

电磁式电压互感器交流耐压的试验方法[摘要]根据相关的规程规范中的要求,测量用电压互感器检定需要做的绝缘强度试验。
绝缘强度试验有两种方法:工频耐压试验和感应耐压试验。
本人通过整理相关材料,结合实际工作中的经验,总结一下电磁式电压互感器耐压试验的方法和注意事项及常见的事故。
[关键词]工频耐压、感应耐压、全绝缘电压互感器、半绝缘电压互感器[引言]为了检查电压互感器是否存在电磁线圈质量问题(如露铜、漆膜脱落、绕组打结)等原因造成的主绝缘和纵绝缘的缺陷,需要进行电压互感器的耐压试验。
全绝缘电压互感器可以直接进行工频耐压试验,而半绝缘电压互感器需进行感应耐压试验。
一、电压互感器的绝缘分类电压互感器按照一次绕组两端的绝缘水平可以分为非接地电压互感器(全绝缘)和接地电压互感器(分级绝缘)。
非接地电压互感器是指包括接线端子在内的一次绕组各个部分都是按绝缘水平对地绝缘的电压互感器,其交流耐压试验包括工频耐压试验及感应耐压试验;接地电压互感器是指一次绕组的一端直接接地的单相电压互感器,其交流耐压试验通过倍频感应耐压试验进行。
电压互感器内部绝缘可分为主绝缘和纵绝缘。
主绝缘是一次绕组绕组及高压引线对二次绕组及地的绝缘;纵绝缘是电压互感器绕组内部匝间、层间、线段间的绝缘。
全绝缘单相电压互感器一次高压端有两个端子,一次绕组与二次绕组及地间的主绝缘需要做100%工频耐压试验。
半绝缘单相电压互感器是一次绕组的一端直接接地,电压互感器一次绕组与二次绕组及地间的主绝缘承受的电压很低,一次高压端为独立端子,应进行倍频感应耐压试验。
二、电压互感器交流耐压的目的交流耐压试验是鉴定电气设备绝缘强度最直接的办法,它对于判断电气设备是否能投入运行具有决定性的意义。
也是保证设备的绝缘水平,避免绝缘发生事故的重要手段。
交流耐压试验是破坏性试验,被试品的绝缘电阻等常规试验结果合格后才能进行交流耐压试验,如发现被试品的绝缘不良时(如受潮、局部缺陷等),应先进行处理合格后再进行交流耐压试验,避免造成被试品的绝缘击穿现象。
对35kV电压互感器异常烧毁事故的分析与防范措施

对35kV电压互感器异常烧毁事故的分析与防范措施摘要:在不接地系统中,电压互感器在运行中存在问题较多,PT 烧毁、一次保险熔断等现象时有发生,其原因多种多样,如电压互感器质量存在问题、避雷器与电压互感器匹配不当导致雷击或操作过电压损坏设备、谐振等。
文章通过对实例对35kV 电压互感器异常燃烧事故的原因进行分析,并提出了改进建议。
关键词:35KV;电压互感器;异常烧毁;措施1. 35kV半绝缘电压互感器的异常烧毁事故1.1 故障发生现象故障一:110kV某变电站35kVII母电压互感器投运时,连续两次烧毁A相保险管,致使II母电压互感器无法按时投运,后台II母电压无法进行监控;故障二:110kV某变电站监控显示I母电压UB:1.9kV、UA:36.21kV、UC:38.32kV、3U0:105.45V。
15分钟后,后台显示I母UB:0kV、UA:20.38kV、UC:20.53kV、3U0:4V。
后台重合闸动作,初步判断B相有瞬间接地现象。
1.2 现场事故排查分析对于故障一进行现场检查,发现A、B、C三相电压互感器外观均完好,每相的避雷器和放电计数器外观检查也均完好;故障二进行现场检查,发现A、C相电压互感器外观均完好,B相电压互感器外壳有放电烧蚀的痕迹。
故对两个故障均进行了现场试验,数据如表1所示。
1.3 事故发生的原因分析从试验数据得出,故障互感器的一次绕组均已烧断,内部绝缘损毁严重。
发生此类故障的原因主要是由于线路发生了单相接地故障,导致非接地相电压升高,电压互感器的电压也随之升高,电流增大,互感器的铁芯出现饱和现象,一旦满足系统的wL=1/wc谐振条件时,就会产生谐振过电压。
各相感抗发生变化,中性点位漂移,产生零序电压。
半绝缘电压互感器在系统出现不对称时,也很容易出现高幅值的铁磁谐振过电压。
谐振过电压引起电压互感器励磁电流剧增,产生几十倍额定电流的过电流,而铁芯处于过饱和状态下,互感器二次电压变化很小,巨大的一次电流引起保险与互感器一次绕组烧断。
电压互感器全绝缘和半绝缘的区别

半绝缘
三、防谐措施不同
全绝缘电压互感器除了可以采取上述措施外,还可以在高压中性点串联电阻消谐。全绝缘电压互感器由于正常运行处于降压运行状态,励磁性能比较好。有效防止压变铁磁谐振过电压,必须多管齐下、多种措施并用才能奏效。
半绝缘电压互感器采用二次开口三角绕组上加装专用消谐器,或并联灯泡,或并联电阻抗谐振;
电压互感器全绝缘与半绝缘的区别
一、外形区别
全绝缘
半绝缘
二、接线方式不同
全绝缘电压互感器可以直接接地运行,也可以间接(接电阻、零序压变等)接地运行,还可以V形接线不接地运行。
半绝缘电压互感器高压N极必须直接接地运行,在配电系统中变电站、开闭站、高压用户终端等需要安装电压互感器,诸多的半绝缘电压互感器的并联运行,在系统稍有不对称时,很容易激发形成高幅值的铁磁谐振过电压,并联数越多越容易发生;
全绝缘
半绝缘
四、单相接地承受的电压不同
全绝缘电压互感器在系统单相接地时,承受的是额定电压。
半绝缘电压互感器在系统单相接地时,需要承受线电压的冲击,一般运行不得超过2 h,长期运行可能造Байду номын сангаас击穿故障;
全绝缘
半绝缘
全绝缘型与半绝缘型电压互感器的区别

全绝缘型与半绝缘型电压互感器的区别[摘要]:参照GB1207-2006《电磁式电压互感器》标准中接地电压互感器与不接地电压互感器的定义,提出了全绝缘型电压互感器与半绝缘型电压互感器的概念。
本文从产品外观以及结构两个方面分析了全绝缘和半绝缘电压互感器的区别,并针对两种电压互感器的特点简单分析10kv配电系统应该选择全绝缘电压互感器还是半绝缘电压互感器。
[关健词]:电压互感器,全绝缘,半绝缘0.引言电压互感器是电力系统中供测量和保护用的重要设备,它的主要作用是给测量仪器、仪表或继电保护、控制装置提供信息;使测量、保护和控制装置与高电压隔离。
电压互感器作为一种公用的一次设备在电力系统中发挥着重要的作用。
目前,我国35KV 及以下级电力系统中,开关柜厂、国家电网及广大电力用户选择电压互感器时,经常询问电压互感器的绝缘结构形式是全绝缘还是半绝缘,如何区分两种电压互感器,对照相关标准及书籍均未给出全绝缘型与半绝缘型电压互感器的明确定义。
本文提出了全绝缘型电压互感器与半绝缘型电压互感器的概念,分析了两者间的区别。
1. 全绝缘型电压互感器与半绝缘型电压互感器的概念在配电网络中都要安装电压互感器获取电压的量值,是为了电压的测量、电能的计量和保护的需要。
电压互感器按运行承受的电压不同,可分为半绝缘和全绝缘电压互感器。
半绝缘电压互感器在正常运行中只承受相电压,全绝缘电压互感器运行中可以承受线电压。
国家标准GB1207-2006 《电磁式电压互感器》中3.1通用定义中仅针对“不接地电压互感器”及“接地电压互感器”给出了明确定义。
不接地电压互感器定义:它是一种包括接线端子在内的一次绕组各个部分都是按绝缘水平对地绝缘的电压互感器。
接地电压互感器定义:它是一次绕组的一端直接接地的单相电压互感器,或一次绕组的星形联结点为直接接地的三相电压互感器。
从以上两个定义中并不能明确的区别出全绝缘型与半绝缘型电压互感器。
要区别首先了解电压互感器的内部绝缘方式,其可分为主绝缘和纵绝缘。
全绝缘和半绝缘电压互感器的区别

电压互感器按其运行承受的电压不同,可分为半绝缘和全绝缘电压互感器。
半绝缘电压互感器在正常运行中只承受相电压,全绝缘电压互感器运行中可以承受线电压。
不同之处:(1) 接线方式不同。
半绝缘电压互感器高压N极必须直接接地运行,在配电系统中变电站、开闭站、高压用户终端等需要安装电压互感器,诸多的半绝缘电压互感器的并联运行,在系统稍有不对称时,很容易激发形成高幅值的铁磁谐振过电压,并联数越多越容易发生;全绝缘电压互感器可以直接接地运行,也可以间接(接电阻、零序压变等)接地运行,还可以V形接线不接地运行。
(2) 防谐措施不同。
半绝缘电压互感器采用二次开口三角绕组上加装专用消谐器,或并联灯泡,或并联电阻抗谐振;全绝缘电压互感器除了可以采取上述措施外,还可以在高压中性点串联电阻消谐。
全绝缘电压互感器由于正常运行处于降压运行状态,励磁性能比较好。
有效防止压变铁磁谐振过电压,必须多管齐下、多种措施并用才能奏效。
(3) 单相接地承受的电压不同。
半绝缘电压互感器在系统单相接地时,需要承受线电压的冲击,一般运行不得超过2 h,长期运行可能造成击穿故障;全绝缘电压互感器在系统单相接地时,承受的是额定电压。
(4) 安全运行的效果不同。
我局的10多个35 kV变电站在20世纪80年代末90年代初,对全绝缘电压互衅鞑扇《慰谌侨谱樯喜⒘?00 W灯泡,中性点串接ZG11-250-11k-I电阻的消谐振措施,10多年来偶然发生过压变熔丝熔断故障,并且大多是电阻损坏或断线等原因引起的。
但是我局近年来新建的几个110 kV变电站,采用半绝缘电压互感器运行状况不好,故障不断。
例如,110 kV石门变电站2001年9月投产至2003年7月间共发生单相、二相、三相熔丝熔断26次,110 kV乌镇变电站2001年7月至2003年9月间共发生单相、二相、三相熔丝熔断21次,且在2003-09-09,10 kV 2号压变烧毁引起柜内短路(整柜烧坏)事故;110 kV河山变电站也发生过压变击穿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压互感器按其运行承受的电压不同,可分为半绝缘和全绝缘电压互感器。
半绝缘电压互感器在正常运行中只承受相电压,全绝缘电压互感器运行中可以承受线电压。
不同之处:(1) 接线方式不同。
半绝缘电压互感器高压N极必须直接接地运行,在配电系统中变电站、开闭站、高压用户终端等需要安装电压互感器,诸多的半绝缘电压互感器的并联运行,在系统稍有不对称时,很容易激发形成高幅值的铁磁谐振过电压,并联数越多越容易发生;全绝缘电压互感器可以直接接地运行,也可以间接(接电阻、零序压变等)接地运行,还可以V形接线不接地运行。
(2) 防谐措施不同。
半绝缘电压互感器采用二次开口三角绕组上加装专用消谐器,或并联灯泡,或并联电阻抗谐振;全绝缘电压互感器除了可以采取上述措施外,还可以在高压中性点串联电阻消谐。
全绝缘电压互感器由于正常运行处于降压运行状态,励磁性能比较好。
有效防止压变铁磁谐振过电压,必须多管齐下、多种措施并用才能奏效。
(3) 单相接地承受的电压不同。
半绝缘电压互感器在系统单相接地时,需要承受线电压的冲击,一般运行不得超过2 h,长期运行可能造成击穿故障;全绝缘电压互感器在系统单相接地时,承受的是额定电压。
(4) 安全运行的效果不同。
我局的10多个35 kV变电站在20世纪80年代末90年代初,对全绝缘电压互衅鞑扇《?慰?谌?侨谱樯喜⒘?00 W灯泡,中性点串接ZG11-250-11k-I电阻的消谐振措施,10多年来偶然发生过压变熔丝熔断故障,并且大多是电阻损坏或断线等原因引起的。
但是我局近年来新建的几个110 kV变电站,采用半绝缘电压互感器运行状况不好,故障不断。
例如,110 kV石门变电站2001年9月投产至2003年7月间共发生单相、二相、三相熔丝熔断26次,110 kV乌镇变电站2001年7月至2003年9月间共发生单相、二相、三相熔丝熔断21次,且在2003-09-09,10 kV 2号压变烧毁引起柜内短路(整柜烧坏)事故;110 kV河山变电站也发生过压变击穿。
在这期间我们也采取多种形式的消谐措施,但均未收到效果。
对此,2004年初开始对6座110 kV变电站的半绝缘电压互感器改造为全绝缘电压互感器,采取了与35 kV变电站同样的消谐措施,经过夏季雷雨气候的运行考验未发生过一次断熔丝故障。
综上所述,半绝缘电压互感器在中性点不接地的10 kV配电系统运行中,容易发生铁磁谐振过电压,熔断压变熔丝,烧毁电压互感器,甚至引发系统事故,严重影响计量的正确性,使测量数据丢失,危及继电保护和自动装置的正确动作等。
由此可见,10 kV配电系统中不宜选用半绝缘电压互感器,应当选择全绝缘电压互感器,有利于采取多种形式的消谐措施,有效防止铁磁谐振过电压,确保设备安全运行。
选择全绝缘电压互感器应尽可能考虑选择大容量电压互感器。
当然,全绝缘电压互感器与半绝缘电压互感器相比,投资要增加,体积要增大。
先讲“全绝缘电压互感器”吧:电压互感器的一次引出线都有一定的绝缘等级,没有一根是直接接地的。
再讲“半绝缘电压互感器”:电压互感器的一根线在内部直接接地,在其内部的绕组(层间)做法是分压的。
也就是说,半绝缘电压互感器(的一次)只有接相线的线。
全绝缘电压互感器:电压互感器的一次引出线都是对地绝缘的.
半绝缘电压互感器: 电压互感器的一次N端直接接地.。