2006航天器动力学03-基本轨道解析
合集下载
航天器轨道动力学与控制(上)

常见卫星观测设备误差
多普勒测速仪
单脉冲雷达
干涉仪测角系统
目视光学望远镜和 光学摄像机
卫星观测预报
1. 卫星必须在地平线上 2. 天空就必须足够黑 3.对于不发光的卫星用光学设备 观测还需要太阳光能直射它。
3 工作映射
开普勒激光测速仪
MSE-FLD60型高速激光测距传感器在不使用 反射板的情况下,高速测量自然物体目标可 达30米。而使用合适的反射板,测量范围可 以达到250米。 MSE-FLD60是一款高速激光测距传感器,可以 高速触发实时测量,它的测量速率可达 30kHz。在250米的测量范围内可以达到厘米 级的精度。它所使用的激光是波长为905nm 的对人眼安全的红外激光。
脉冲雷达
干涉仪测角系统
PI-3D激光测量系统是市场上最先进的激光干 涉仪系统。它可以以前所未有的精度和分辨 率,可以用在产品研发实验室, 精确的机床补偿可以从根本上提升产品质量 。使用我们的系统,用户可以快捷精确地完 成补偿。基本套装可以测量位移,振动,速 度以及定位精度。3D系统为机床的垂直及水 平直线度测量提供了独特的测量功能,使直 线度测量变得简便省时。
航天轨道动力学与控制能干嘛?
航天器轨道动力学可构筑各种实用轨道 变轨控制和轨道机动 航天器轨道控制可 轨道保持 交会与对接 再入和着陆控制
2 课本知识
近地空间环境
地球大气
地球磁场
太阳电磁辐射
日心坐标系
地心坐标系
地面坐标系
轨道摄动
摄动指一个天体绕另一个天体按二 体问题的规律运动时,因受其它天体的 吸引或其他因素的影响,在轨道上产生 的偏差,这些作用与中心体的引力相比 是很小的,因此称为摄动。 天体在摄动作用下,其坐标、速度 或轨道要素都产生变化,这种变化成分 称为摄动项。
航天器轨道的基本特性

➢ 地心黄道坐标系
坐标原点:地球质心
−
0
地心赤道坐标系
( , , )
( , , )
=
黄赤交角
1
0
= 0
0
0
−
坐标系统和时间系统
地心坐标系
标准历元地心平赤道惯性坐标系
一种既具有均匀时间尺度又能反映地球自转特性的时间系统,其以原子
时的秒长为时间计量单位。协调世界时通常作为探测器从地面发射和飞行
跟踪的时间纪录标准。
儒略日 (Julian Date,JD)
一种以天数为单位计算两个日期之间相隔天数的记时法,其起始点为
公元前4713年1月1日世界时的12:00。由于儒略日的记数位较长,国家天
rE5 RM rE4
RM RY x p RX y p
RM 为极移旋转矩阵
x
p
, y p 为地极的瞬时坐标,由IERS的公报提供。
坐标系统和时间系统
J2000地心惯
性坐标系1
岁差
协议地球坐标系
瞬时平赤道地心惯性坐标系ຫໍສະໝຸດ 自转轴章动地球极移
地心固连坐标系
心动力学时采用国际原子时定义的秒长,主要用于太阳系中天体的星历描述。
坐标系统和时间系统
时间系统
世界时(Universal Time,UT)
基于地球自转运动的时间系统,对地球自转轴的极移效应进行修正后的世界
时称为一类世界时(UT1),一类世界时能够真实反映地球自转的统一时间。
协调世界时(Coordinated Universal Time,UTC)
器惟一可能的运动轨道。
➢ 中心引力体中心必定为圆锥曲线轨道的一个焦点。
空间飞行器动力学与控制第3课空间飞行器轨道动力学上

dt m
火箭在主动段飞行时,通常攻角都很小,所飞
越的地心角也很小,若略去不计,即得:
dv P D g sin
dt m m
(3-5)
其中火箭的推力 P 为
P mve ( pe pa )Se
代入式(3-5)得到
dv
ve
dm mdt
dt
1 m
Se (
pe
pa
)dt
D m
dt
g
s in dt
(3-6)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
积分上式,得到主动段终点的速度为:
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
把作用在火箭上所有的力,
投影到速度方向(
X
轴)上,
1
推力: 重力:
阻力:
升力:
得到运动方程为: dv 1 (P cos D) g sin( )
dt m
(3-4)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
dv 1 (P cos D) g sin( )
图3.3 CD与马赫数 Ma 和攻角 的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
图3.4
C
与马赫数
L
Ma和攻角
的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
“俯仰力矩”的产生
火箭发动机工作时,推进剂在不断消耗,所以火 箭质心位置随时在变。
同时,气动阻力和升力也随飞行速度和大气条件 而变化,所以压心也随之变化。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
第三种方案:与第二方案基本相同,只是要求自由飞行 段要绕地球半圈,即自由飞行段起点和终点正好在地心 的连线上。
火箭在主动段飞行时,通常攻角都很小,所飞
越的地心角也很小,若略去不计,即得:
dv P D g sin
dt m m
(3-5)
其中火箭的推力 P 为
P mve ( pe pa )Se
代入式(3-5)得到
dv
ve
dm mdt
dt
1 m
Se (
pe
pa
)dt
D m
dt
g
s in dt
(3-6)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
积分上式,得到主动段终点的速度为:
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
把作用在火箭上所有的力,
投影到速度方向(
X
轴)上,
1
推力: 重力:
阻力:
升力:
得到运动方程为: dv 1 (P cos D) g sin( )
dt m
(3-4)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
dv 1 (P cos D) g sin( )
图3.3 CD与马赫数 Ma 和攻角 的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
图3.4
C
与马赫数
L
Ma和攻角
的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
“俯仰力矩”的产生
火箭发动机工作时,推进剂在不断消耗,所以火 箭质心位置随时在变。
同时,气动阻力和升力也随飞行速度和大气条件 而变化,所以压心也随之变化。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
第三种方案:与第二方案基本相同,只是要求自由飞行 段要绕地球半圈,即自由飞行段起点和终点正好在地心 的连线上。
航天飞行动力学 pdf

航天飞行动力学是研究航天器和运载器在飞行中所受的力及其在力作用下的运动的学科,也称为航天器动力学。
它是建立航天器设计、发射和运行控制的重要基础。
航天飞行动力学的研究内容包括航天器的轨道运动、姿态运动以及推力控制等。
其中,轨道运动是指航天器在地球或其他天体周围绕行运动的规律,包括圆轨道、椭圆轨道、抛物线轨道等;姿态运动是指航天器绕自身轴线旋转或摆动的运动,包括自旋稳定、三轴稳定等。
推力控制是指通过施加推力来改变航天器的运动状态,包括轨道机动、姿态控制等。
航天飞行动力学的研究目的是为航天器的设计、发射和运行控制提供理论支持,确保航天器的安全、可靠和经济性。
在实际应用中,航天飞行动力学也是制定发射窗口、规划轨道转移、进行精确导航定位等的重要依据。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询相关学者。
(优选)航天器动力学基本轨道

问题: (1)如果参数不适当,航天器可能会撞上地球! (2)如何得到希望的轨道?
一些尝试
假设引力公式为
F
G msm r
r r
其中η不一定为2;Gη为相应的引力常数。
你估计会出现什么现象?
η=1.0
η=2.0 我们的世界
你对 此有 何看 法?
η=1.5 η=2.5
§1.3 航天器运动微分方程的积分
(优选)航天器动力学基本轨 道
2020年9月20日星期日
Page 1
航天器的开普勒三大定律
面积定律:航天器与地球中 心的连线在相同的时间内扫 过的面积相等。
航天器的开普勒三大定律
谐和定律:航天器轨道半长 轴的三次方同轨道周期的平 方成正比。
a3 T2
k
a 是轨道半长轴
T 是航天器的运行周期
k 是与轨道无关的常数
S
p
r
O
P
c
a
p a(1 e2) b 1 e2
c ae
轨道的微分描述
设 Oxyz 为参考坐标系,O为
z
地球中心,xyz 指向三颗恒星。
设 me 为地球质量,m为航天器
质量,r为航天器的矢径。
E
O
ma
d2r m dt2
F
Gmem r2
r r
x
FS
r
y
d 2r dt 2
r
r3
G 6.671011m3 / kg s2 万有引力常数 Gme 3.99105 km3 / s2 地心引力常数
由于已经知道航天器的轨道是圆锥曲线,根据 第(2)点,E<0时r有界,因此是椭圆轨道。
根据第(1)点,E>0时r可以无界,因此是 双曲线轨道。
一些尝试
假设引力公式为
F
G msm r
r r
其中η不一定为2;Gη为相应的引力常数。
你估计会出现什么现象?
η=1.0
η=2.0 我们的世界
你对 此有 何看 法?
η=1.5 η=2.5
§1.3 航天器运动微分方程的积分
(优选)航天器动力学基本轨 道
2020年9月20日星期日
Page 1
航天器的开普勒三大定律
面积定律:航天器与地球中 心的连线在相同的时间内扫 过的面积相等。
航天器的开普勒三大定律
谐和定律:航天器轨道半长 轴的三次方同轨道周期的平 方成正比。
a3 T2
k
a 是轨道半长轴
T 是航天器的运行周期
k 是与轨道无关的常数
S
p
r
O
P
c
a
p a(1 e2) b 1 e2
c ae
轨道的微分描述
设 Oxyz 为参考坐标系,O为
z
地球中心,xyz 指向三颗恒星。
设 me 为地球质量,m为航天器
质量,r为航天器的矢径。
E
O
ma
d2r m dt2
F
Gmem r2
r r
x
FS
r
y
d 2r dt 2
r
r3
G 6.671011m3 / kg s2 万有引力常数 Gme 3.99105 km3 / s2 地心引力常数
由于已经知道航天器的轨道是圆锥曲线,根据 第(2)点,E<0时r有界,因此是椭圆轨道。
根据第(1)点,E>0时r可以无界,因此是 双曲线轨道。
航天器动力学基本轨道

2018年11月25日星期日
机械能守恒 角动量守恒
是否存在其它 积分?为什么 要求积分?
Page 10
1、能量积分
d 2r r 3 2 dt r
方程两边点乘 v r
v v
vv
r
3
r r
rr 利用 r r
v2 积分后为 E 2 r
2018年11月25日星期日 Page 6
算例
为解决这 些问题, 需要对轨 道进行深 入研究
问题: (1)如果参数不适当,航天器可能会撞上地球! (2)如何得到希望的轨道?
2018年11月25日星期日 Page 7
一些尝试
假设引力公式为
G ms m r F r r
其中η 不一定为2;Gη为相应的引力常数。 你估计会出现什么现象?
a k 2 T
3
a
T
是轨道半长轴 是航天器的运行周期
k
是与轨道无关的常数
a
a
Page 3
2018年11月25日星期日
轨道的几何描述
O为地球的质心, 也是椭圆的一个焦点. S为航天器的质心.
S
b A
p
r
O
P
P 是近地点 (perigee) A 是远地点 (apogee) a 是半长轴 (semi-major axis) b 是半短轴 (semi-minor axis) p 是半通径 (semi-parameter) e 是偏心率 (eccentricity) c 是半焦距 (semi-focus)
航天器的开普勒三大定律
椭圆定律:航天器绕地球运 动的轨道为一椭圆,地球位 于椭圆的一个焦点上。
2018年11月25日星期日
机械能守恒 角动量守恒
是否存在其它 积分?为什么 要求积分?
Page 10
1、能量积分
d 2r r 3 2 dt r
方程两边点乘 v r
v v
vv
r
3
r r
rr 利用 r r
v2 积分后为 E 2 r
2018年11月25日星期日 Page 6
算例
为解决这 些问题, 需要对轨 道进行深 入研究
问题: (1)如果参数不适当,航天器可能会撞上地球! (2)如何得到希望的轨道?
2018年11月25日星期日 Page 7
一些尝试
假设引力公式为
G ms m r F r r
其中η 不一定为2;Gη为相应的引力常数。 你估计会出现什么现象?
a k 2 T
3
a
T
是轨道半长轴 是航天器的运行周期
k
是与轨道无关的常数
a
a
Page 3
2018年11月25日星期日
轨道的几何描述
O为地球的质心, 也是椭圆的一个焦点. S为航天器的质心.
S
b A
p
r
O
P
P 是近地点 (perigee) A 是远地点 (apogee) a 是半长轴 (semi-major axis) b 是半短轴 (semi-minor axis) p 是半通径 (semi-parameter) e 是偏心率 (eccentricity) c 是半焦距 (semi-focus)
航天器的开普勒三大定律
椭圆定律:航天器绕地球运 动的轨道为一椭圆,地球位 于椭圆的一个焦点上。
2018年11月25日星期日
【PPT课件】航天器的轨道与轨道力学

G
n j 1
mj rj3i
(
ji )
ji
(2.13)
不失一般性,假定m2为一个绕地球运行的航天器,m1为地
球,而余下的 m3, m4,L mn 可以是月球、太阳和其他行 星。于是对i=1的情况,写出方程式(2.13)的具体形式,
得到
&rr& rr 1
G
n j2
mj rj31
(
j1 )
第二运动定律 动量变化速率与作用力成正比,且与作 用力的方向相同。
第三运动定律 对每一个作用,总存在一个大小相等的 反作用。
万有引力定律:
任何两个物体间均有一个相互吸引的力,这个力与
它们的质量乘积成正比,与两物体间距离的平方成反比。
数学上可以用矢量形式把这一定律表示为
r Fg
GMm r2
rr
r
第二章 航天器的轨道与轨道力学
2.1航天器轨道的基本定律 2.2二体轨道力学和运动方程 2.3航天器轨道的几何特性 2.4航天器的轨道描述 2.5航天器的轨道摄动
第二章 航天器的轨道与轨道力学
“1642年圣诞节,在柯斯特沃斯河畔的沃尔索普庄 园,诞生了一个非常瘦小的男孩。如同孩子的母亲后来 告诉他的那样,出生时他小得几乎可以放进一只一夸脱 的杯子里,瘦弱得必须用一个软垫围着脖子来支起他的 头。这个不幸的孩子在教区记事录上登记的名字是 ‘伊 萨克和汉纳·牛顿之子伊萨克 ’。虽然没有什么贤人哲 士盛赞这一天的记录,然而这个孩子却将要改变全世界 的思想和习惯。”
d dt
(mivri
)
r F总
(2.9) (2.10)
把对时间的导数展开,得到
哈工大航天学院课程空间飞行器动力学与控制空间飞行器轨道控制上课件

被动控制方法
利用航天器的特殊构型或附加质量等特性,通过改变航天器的重心 位置或转动惯量等方式,实现轨道控制。
组合控制方法
将主动控制和被动控制相结合,利用各自的优势,实现更高效、精确 的轨道控制。
轨道控制应用实例
卫星轨道转移
将卫星从一个圆轨道转移到一个椭圆轨道,或从一个椭圆轨道转 移到另一个椭圆轨道,实现卫星的变轨任务。
哈工大航天学院 课 程空间飞行器动力 学与控制空间飞行 器轨道控制上课件
contents
目录
• 课程简介 • 空间飞行器动力学基础 • 空间飞行器控制基础 • 轨道控制技术 • 课程实践环节
01
课程简介
课程目标
掌握空间飞行器动力 学与控制的基本原理 和关键技术。
培养学生在空间飞行 器设计、开发和运行 方面的实践能力和创 新思维。
实验内容与要求
实验内容
学生需要掌握卫星轨道测量、控制的 基本原理和方法,通过实际操作,掌 握卫星轨道控制技术。
实验要求
学生需要独立完成实验,并撰写实验 报告,同时需要掌握实验过程中的安 全操作规范。
实验报告撰写规范
实验目的
学生需要清晰阐述实验的目的和意义。
实验过程
学生需要详细记录实验过程,包括实验步骤、数据记录等。
描述了作用在空间飞行器上的控制力矩,是实现空间飞行器姿态 控制的重要手段。
03
空间飞行器控制基础
控制基本概念
控制系统
由控制器、受控对象和传感器等组成的整体,以分为开环控制和闭 环控制。
控制品质
评价控制系统性能的指标,包括稳定性、快速性和准 确性。
动量定理
描述了物体动量的变化与 作用力的关系,是理解动 力学行为的重要基础。
利用航天器的特殊构型或附加质量等特性,通过改变航天器的重心 位置或转动惯量等方式,实现轨道控制。
组合控制方法
将主动控制和被动控制相结合,利用各自的优势,实现更高效、精确 的轨道控制。
轨道控制应用实例
卫星轨道转移
将卫星从一个圆轨道转移到一个椭圆轨道,或从一个椭圆轨道转 移到另一个椭圆轨道,实现卫星的变轨任务。
哈工大航天学院 课 程空间飞行器动力 学与控制空间飞行 器轨道控制上课件
contents
目录
• 课程简介 • 空间飞行器动力学基础 • 空间飞行器控制基础 • 轨道控制技术 • 课程实践环节
01
课程简介
课程目标
掌握空间飞行器动力 学与控制的基本原理 和关键技术。
培养学生在空间飞行 器设计、开发和运行 方面的实践能力和创 新思维。
实验内容与要求
实验内容
学生需要掌握卫星轨道测量、控制的 基本原理和方法,通过实际操作,掌 握卫星轨道控制技术。
实验要求
学生需要独立完成实验,并撰写实验 报告,同时需要掌握实验过程中的安 全操作规范。
实验报告撰写规范
实验目的
学生需要清晰阐述实验的目的和意义。
实验过程
学生需要详细记录实验过程,包括实验步骤、数据记录等。
描述了作用在空间飞行器上的控制力矩,是实现空间飞行器姿态 控制的重要手段。
03
空间飞行器控制基础
控制基本概念
控制系统
由控制器、受控对象和传感器等组成的整体,以分为开环控制和闭 环控制。
控制品质
评价控制系统性能的指标,包括稳定性、快速性和准 确性。
动量定理
描述了物体动量的变化与 作用力的关系,是理解动 力学行为的重要基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos E e cos f 1 e cos E
见章仁为“卫星轨道姿 态动力学与控制”,p5 -7
根据上式可由平近点角 M 迭代求出偏近点角 E 、 再求出真近点角 f。 从而确定航天器的运动。
a(1 e ) r 1 e cos f
2
2018年10月8日星期一
因此,利用轨道根数可以很直观地 表示航天器的运动,并且只需求解 代数方程。
p h2
πab 1 A h T 2 2π ab T p
p a(1 e2 ) b 1 e2
T 2π
a3
2π 因此轨道平均角速度 n 为: n f 3 T a
2018年10月8日星期一 Page 27
定义:
平近点角M :航天器从 近地点开始按平均角速 度 n 转过的角度。
航天器的开普勒三大定律
谐和定律:航天器轨道半长 轴的三次方同轨道周期的平 方成正比。
a k 2 T
3
a
T
是轨道半长轴 是航天器的运行周期
k
是与轨道无关的常数
a
a
Page 4
2018年10月8日星期一
轨道的几何描述
O为地球的质心, 也是椭圆的一个焦点. S为航天器的质心.
S
b A
p
r
O
P
P 是近地点 (perigee) A 是远地点 (apogee) a 是半长轴 (semi-major axis) b 是半短轴 (semi-minor axis) p 是半通径 (semi-parameter) e 是偏心率 (eccentricity) c 是半焦距 (semi-focus)
2018年10月8日星期一 Page 20
1、问题的提出
如果用航天器的初始位置和速度 ( x0 , y0 , z0 , x 0 , y 0 , z 0 ) 来描述航天器的运动,则在任一时刻,需要求解 微分方程才能确定航天器的位置,不方便。 另一方面,我们已知航天器在某一个平面内的运动 轨迹为圆锥曲线,如果已知: (1)轨道平面在空间惯性坐标系中的方位; (2)圆锥曲线的方向(长半轴方向); (3)在某一时刻航天器在轨道的某一个点上, 则可以通过求解代数方程确定任一时刻航天器的位 置。
d2r r 3 2 dt r
x x r3 0 y y 3 0 r z z r3 0
r x y z
2 2
2
如果给定初始条件:
x0 , y0 , z0 , x0 , y0 , z0
就可以计算出以后任意时刻航天器的位置和速度。
2018年10月8日星期一 Page 7
再利用
p
p3
可得到
t
0
dt (1 e cos ) 2
r
E
S
(过程略)
e
物理意义: 为积分常数,表示矢径 r 与 e 重合的 时刻,称为过近地点时间。
2018年10月8日星期一 Page 19
§1.4 航天器的轨道要素
前面介绍了航天器轨道的特点及积分情况, 导出了一些积分常数( E , h, e, ),根据轨道 运动方程,只有六个参数是独立的。 原则上,要唯一确定航天器的轨道,六个独 立的参数可以有多种选取方法,比如取航天器的 初始位置和速度:( x0 , y0 , z0 , x 0 , y 0 , z 0 ) ,也可以取 E, h, e, 。 但在航天领域,一般习惯用另外的六个独立 参数来描述轨道的状况。
2018年10月8日星期一 Page 21
解决方案:
已知航天器的运动轨迹为圆锥曲线,而圆锥 曲线的统一方程为:
p r 1 e cos
除了p、e 外再引入四个量,可以用这六个独立变 量来描述航天器的轨道运动。 在航天领域,一般习惯用下面的六个独立参数 来描述轨道的状况: i、Ω 、ω 、p、e、τ 。 这些 量称为轨道要素,或轨道根数。
r3
[rr ] r r 2 r
Page 15
v h
r
3
[rr ] r r r
2
积分后为
e的方向
1
(v h
r
r 1 v h [ 2 r r ] 0 r r
?) e r
?
1 r e h (v h) h (r v ) 0 r
E
(3)如果E=0,临界情况,满足 v p
抛物线
由于已经知道航天器的轨道是圆锥曲线,根据 第(2)点,E<0时r有界,因此是椭圆轨道。 根据第(1)点,E>0时r可以无界,因此是 双曲线轨道。
2018年10月8日星期一 Page 13
2、动量矩积分
d 2r r 3 2 dt r
0 方程两边叉乘 r: r v
数学概念:微分方程的定解由初始条件确定;而方程的积分常数 是初始条件的某种组合。因此方程独立的积分常数数目不超过初 始条件的数目。在轨道问题中,积分常数不超过6个。
因此可能还存在另1个积分常数…
2018年10月8日星期一 Page 18
4、时间积分
利用 h r
2
及 r
h2
p 1 e cos
M n(t )
a
3
(t )
E O f
S
偏近点角 E :椭圆轨道 存在内、外接圆,航天 器在内、外接圆上的投 影点与椭圆中心对应的 夹角。如图。
2018年10月8日星期一
Page 28
各角度的关系
M
a
3
(t )
求微分方程 与求代数方 程的比较?
M E e sin E
e的大小
e2 e e 1
2 Eh2
2
所以 e 在轨道平面内,且只有一个独立的量。 物理意义此处还不太明确。
关于e的大小,你有何直觉? 椭圆轨道: E 0 e [0, 1)
2018年10月8日星期一 Page 16
e
1
(v h
r
r
)
v r
E
S e
e的物理意义 两边叉乘r
算例
为解决这 些问题, 需要对轨 道进行深 入研究
问题: (1)如果参数不适当,航天器可能会撞上地球! (2)如何得到希望的轨道?
2018年10月8日星期一 Page 8
一些尝试
假设引力公式为
G ms m r F r r
其中η 不一定为2;Gη为相应的引力常数。 你估计会出现什么现象?
er 1
(v h) r
er 0 可以看出,在一般情况下,
但如果r与v垂直,则 e r 0 所以,e平行于椭圆长轴方向,再根据其大小,e 指向近地点。
2018年10月8日星期一 Page 17
思考
我们已找到了5个积分常数E, h, e。 问题是:当我们求出常数E,h,并为其中所 使用的技巧而得意时,拉普拉斯利用更复杂的技巧 又找到了一个积分常数e…… 那么我们是否求出了微分方程全部的积分常数? 难到这些微分方程的积分常数会没完没了吗?
2018年10月8日星期一 Page 1
航天器的开普勒三大定律
椭圆定律:航天器绕地球运 动的轨道为一椭圆,地球位 于椭圆的一个焦点上。
2018年10月8日星期一
Page 2
航天器的开普勒三大定律
面积定律:航天器与地球中 心的连线在相同的时间内扫 过的面积相等。
2018年10月8日星期一
Page 3
2018年10月8日星期一
c
a
p a(1 e2 ) b 1 e2 c ae
Page 5
轨道的微分描述
设 Oxyz 为参考坐标系,O为 地球中心,xyz 指向三颗恒星。 设 me 为地球质量,m为航天器 质量,r为航天器的矢径。
Gme m r d2r ma m 2 F 2 dt r r
Page 29
算例
a(1 e2 ) r 1 e cos f
2018年10月8日星期一 Page 22
2、地球赤道惯性坐标系
为了定义轨道根数,有必要先介绍地球赤道惯性坐标系。
定义地球赤道惯性坐标系OXYZ:O在地球中心,X 轴沿地球赤道面与黄道面的交线,Z轴指向北极星。
Z (指向北极星)
黄道面
太 阳
X
春分点方向:春天的头一天地心 与日心的连线
2018年10月8日星期一
x z
F rySE NhomakorabeaO
d2r r 3 2 dt r
G 6.67 1011 m3 / kg s 2
万有引力常数
Gme 3.99 105 km3 / s 2 地心引力常数
这就是航天器绕地球运动的运动微分方程。
2018年10月8日星期一 Page 6
如果在直角坐标系中进行计算:
2018年10月8日星期一
Z
h i
O
r
ω
N
S
e t=τ
Y
Ω
X
Page 25
4、轨道要素描述的公式及计算方法
p r 1 e cos( )
p h
2
S
b
p
O
r
根据几何关系有
a(1 e ) r 1 e cos f
2
ae a
f
N
其中 f 是真近点角:航天器相对于椭圆长轴的极角。 真近点角 f 的变化就是航天器的轨道角速度。
Z
h i
O
r ω
N
S
e t=τ
Y
Ω
见章仁为“卫星轨道姿 态动力学与控制”,p5 -7
根据上式可由平近点角 M 迭代求出偏近点角 E 、 再求出真近点角 f。 从而确定航天器的运动。
a(1 e ) r 1 e cos f
2
2018年10月8日星期一
因此,利用轨道根数可以很直观地 表示航天器的运动,并且只需求解 代数方程。
p h2
πab 1 A h T 2 2π ab T p
p a(1 e2 ) b 1 e2
T 2π
a3
2π 因此轨道平均角速度 n 为: n f 3 T a
2018年10月8日星期一 Page 27
定义:
平近点角M :航天器从 近地点开始按平均角速 度 n 转过的角度。
航天器的开普勒三大定律
谐和定律:航天器轨道半长 轴的三次方同轨道周期的平 方成正比。
a k 2 T
3
a
T
是轨道半长轴 是航天器的运行周期
k
是与轨道无关的常数
a
a
Page 4
2018年10月8日星期一
轨道的几何描述
O为地球的质心, 也是椭圆的一个焦点. S为航天器的质心.
S
b A
p
r
O
P
P 是近地点 (perigee) A 是远地点 (apogee) a 是半长轴 (semi-major axis) b 是半短轴 (semi-minor axis) p 是半通径 (semi-parameter) e 是偏心率 (eccentricity) c 是半焦距 (semi-focus)
2018年10月8日星期一 Page 20
1、问题的提出
如果用航天器的初始位置和速度 ( x0 , y0 , z0 , x 0 , y 0 , z 0 ) 来描述航天器的运动,则在任一时刻,需要求解 微分方程才能确定航天器的位置,不方便。 另一方面,我们已知航天器在某一个平面内的运动 轨迹为圆锥曲线,如果已知: (1)轨道平面在空间惯性坐标系中的方位; (2)圆锥曲线的方向(长半轴方向); (3)在某一时刻航天器在轨道的某一个点上, 则可以通过求解代数方程确定任一时刻航天器的位 置。
d2r r 3 2 dt r
x x r3 0 y y 3 0 r z z r3 0
r x y z
2 2
2
如果给定初始条件:
x0 , y0 , z0 , x0 , y0 , z0
就可以计算出以后任意时刻航天器的位置和速度。
2018年10月8日星期一 Page 7
再利用
p
p3
可得到
t
0
dt (1 e cos ) 2
r
E
S
(过程略)
e
物理意义: 为积分常数,表示矢径 r 与 e 重合的 时刻,称为过近地点时间。
2018年10月8日星期一 Page 19
§1.4 航天器的轨道要素
前面介绍了航天器轨道的特点及积分情况, 导出了一些积分常数( E , h, e, ),根据轨道 运动方程,只有六个参数是独立的。 原则上,要唯一确定航天器的轨道,六个独 立的参数可以有多种选取方法,比如取航天器的 初始位置和速度:( x0 , y0 , z0 , x 0 , y 0 , z 0 ) ,也可以取 E, h, e, 。 但在航天领域,一般习惯用另外的六个独立 参数来描述轨道的状况。
2018年10月8日星期一 Page 21
解决方案:
已知航天器的运动轨迹为圆锥曲线,而圆锥 曲线的统一方程为:
p r 1 e cos
除了p、e 外再引入四个量,可以用这六个独立变 量来描述航天器的轨道运动。 在航天领域,一般习惯用下面的六个独立参数 来描述轨道的状况: i、Ω 、ω 、p、e、τ 。 这些 量称为轨道要素,或轨道根数。
r3
[rr ] r r 2 r
Page 15
v h
r
3
[rr ] r r r
2
积分后为
e的方向
1
(v h
r
r 1 v h [ 2 r r ] 0 r r
?) e r
?
1 r e h (v h) h (r v ) 0 r
E
(3)如果E=0,临界情况,满足 v p
抛物线
由于已经知道航天器的轨道是圆锥曲线,根据 第(2)点,E<0时r有界,因此是椭圆轨道。 根据第(1)点,E>0时r可以无界,因此是 双曲线轨道。
2018年10月8日星期一 Page 13
2、动量矩积分
d 2r r 3 2 dt r
0 方程两边叉乘 r: r v
数学概念:微分方程的定解由初始条件确定;而方程的积分常数 是初始条件的某种组合。因此方程独立的积分常数数目不超过初 始条件的数目。在轨道问题中,积分常数不超过6个。
因此可能还存在另1个积分常数…
2018年10月8日星期一 Page 18
4、时间积分
利用 h r
2
及 r
h2
p 1 e cos
M n(t )
a
3
(t )
E O f
S
偏近点角 E :椭圆轨道 存在内、外接圆,航天 器在内、外接圆上的投 影点与椭圆中心对应的 夹角。如图。
2018年10月8日星期一
Page 28
各角度的关系
M
a
3
(t )
求微分方程 与求代数方 程的比较?
M E e sin E
e的大小
e2 e e 1
2 Eh2
2
所以 e 在轨道平面内,且只有一个独立的量。 物理意义此处还不太明确。
关于e的大小,你有何直觉? 椭圆轨道: E 0 e [0, 1)
2018年10月8日星期一 Page 16
e
1
(v h
r
r
)
v r
E
S e
e的物理意义 两边叉乘r
算例
为解决这 些问题, 需要对轨 道进行深 入研究
问题: (1)如果参数不适当,航天器可能会撞上地球! (2)如何得到希望的轨道?
2018年10月8日星期一 Page 8
一些尝试
假设引力公式为
G ms m r F r r
其中η 不一定为2;Gη为相应的引力常数。 你估计会出现什么现象?
er 1
(v h) r
er 0 可以看出,在一般情况下,
但如果r与v垂直,则 e r 0 所以,e平行于椭圆长轴方向,再根据其大小,e 指向近地点。
2018年10月8日星期一 Page 17
思考
我们已找到了5个积分常数E, h, e。 问题是:当我们求出常数E,h,并为其中所 使用的技巧而得意时,拉普拉斯利用更复杂的技巧 又找到了一个积分常数e…… 那么我们是否求出了微分方程全部的积分常数? 难到这些微分方程的积分常数会没完没了吗?
2018年10月8日星期一 Page 1
航天器的开普勒三大定律
椭圆定律:航天器绕地球运 动的轨道为一椭圆,地球位 于椭圆的一个焦点上。
2018年10月8日星期一
Page 2
航天器的开普勒三大定律
面积定律:航天器与地球中 心的连线在相同的时间内扫 过的面积相等。
2018年10月8日星期一
Page 3
2018年10月8日星期一
c
a
p a(1 e2 ) b 1 e2 c ae
Page 5
轨道的微分描述
设 Oxyz 为参考坐标系,O为 地球中心,xyz 指向三颗恒星。 设 me 为地球质量,m为航天器 质量,r为航天器的矢径。
Gme m r d2r ma m 2 F 2 dt r r
Page 29
算例
a(1 e2 ) r 1 e cos f
2018年10月8日星期一 Page 22
2、地球赤道惯性坐标系
为了定义轨道根数,有必要先介绍地球赤道惯性坐标系。
定义地球赤道惯性坐标系OXYZ:O在地球中心,X 轴沿地球赤道面与黄道面的交线,Z轴指向北极星。
Z (指向北极星)
黄道面
太 阳
X
春分点方向:春天的头一天地心 与日心的连线
2018年10月8日星期一
x z
F rySE NhomakorabeaO
d2r r 3 2 dt r
G 6.67 1011 m3 / kg s 2
万有引力常数
Gme 3.99 105 km3 / s 2 地心引力常数
这就是航天器绕地球运动的运动微分方程。
2018年10月8日星期一 Page 6
如果在直角坐标系中进行计算:
2018年10月8日星期一
Z
h i
O
r
ω
N
S
e t=τ
Y
Ω
X
Page 25
4、轨道要素描述的公式及计算方法
p r 1 e cos( )
p h
2
S
b
p
O
r
根据几何关系有
a(1 e ) r 1 e cos f
2
ae a
f
N
其中 f 是真近点角:航天器相对于椭圆长轴的极角。 真近点角 f 的变化就是航天器的轨道角速度。
Z
h i
O
r ω
N
S
e t=τ
Y
Ω