七年级数学下册因式分解单元综合测试题

合集下载

最新湘教版七年级下册因式分解单元测试题

最新湘教版七年级下册因式分解单元测试题

七年级下册因式分解单元测试题一、填空题1、分解因式:=-22y x .2、多项式42+-kx x 是一个完全平方式,则k = .3、++x x 412 =2)81(+x . 4、已知:︱b a -︳=1,则=+-222b ab a .5、已知:21=+x x ,则=+221xx . 6、分解因式:=++-y x y x 22 .7、已知:052422=+++-y y x x ,则=+y x .8、分解因式:=+-962x x .9、分解因式:=-x x 253 .10、若2=+b a ,1=ab ,则=+22b a .A.ab a b a a -=-2)(B.1)2(122+-=+-a a a aC.)1(2-=-x x x xD.)()(2222y x y x y x y x -+-=-+-12、若)3)(3)(9(812x x x x n -++=-,则n 的值为 ( )A.2B.3C.4D.613、y x xy xyz 22936-+-的公因式是 ( )A.x 3-B.xz 3C.yz 3D.xy 3-14、下列各式中不能用平方差公式分解因式的是 ( )A. 201.0x +-B.2216x y -C.2y x --D.42-x15、把412++ma a 分解因式得2)21(-a ,则m 的值是 ( ) A. 2- B.2 C.1 D.-116、22y x +是下列哪个多项式的因式 ( )A.44y x +B. ))((y x y x -+C.33xy y x -D.44y x -17、下列分解因式中完全正确的是 ( )A. ))((22a b a b b a -+=+-B. 1))((122--+=--y x y x y xC.))(()1()(2y x y x y y x -+=--+D.))((2224a a a a a a -+=-18、多项式224y x -与2244y xy x ++的公因式是( )A. 224y x -B.y x 2+C. y x 2-D.y x 4+19、若16)3(22+--x m x 是完全平方式,则m 为 ( )A. -5B.3C.7D.7或-120若k x x +-32是完全平方式,则k 的值为 ( ) A. 23 B.49 C.29 D.43三、解答下列各题21、分解因式 ①2241y x - ②a b b a 334-③412+-x x ④)()(2a b b a ---⑤2244y xy x +- ⑥1)2(22-+-y xy x⑦22216)4(x x -+ ⑧)()(2x y b y x a ---(9)b a b a 4422+-- (10) x 2-2xy+y 2-10x+10y+2522、已知:,0136422=+-+-y y x x 求x 、y 的值。

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。

浙教版七年级数学下册第4章因式分解 单元测试卷(word版、含答案)

浙教版七年级数学下册第4章因式分解 单元测试卷(word版、含答案)

第四章因式分解单元检测卷满分120分姓名:__________ 班级:__________一、选择题(共10题;每小题3分,共30分)1.代数式15ax 2﹣15a 与10x 2+20x+10的公因式是( )A. 5(x+1)B. 5a (x+1)C. 5a (x ﹣1)D. 5(x ﹣1) 2.下列因式分解完全正确的是( )A. ﹣2a 2+4a=﹣2a (a+2) B. ﹣4x 2﹣y 2=﹣(2x+y )2C. a 2﹣8ab+16b 2=(a+4b )2D. 2x 2+xy ﹣y 2=(2x ﹣y )(x+y ) 3.下列各式从左边到右边的变形是因式分解的是( )A. (a +1)(a -1)=a 2-1 B. a 2-6a +9=(a -3)2C. x 2+2x +1=x(x +2)+1 D. -18x 4y 3=-6x 2y 2•3x 2y4.下列各式能用完全平方公式进行分解因式的是( )A. x 2+1 B. x 2+2x ﹣1 C. x 2+x+1 D. x 2+4x+45.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b,x -y,x +y,a +b,x 2-y 2,a2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .中华游C .爱我中华D .美我中华 6.若x 2+12mx +k 是完全平方式,则k 的值是( )A .m 2B.14m 2C.116m 2D.13m 27.已知a 为实数,且a ³+a ²-a+2=0,则(a+1)2008+(a+1)2009+(a+1)2010的值是( )A. -3B. 3C. -1D. 1 8.已知x 2-x -1=0,则代数式x 3-2x +1的值为( )A ﹒-1B ﹒1C ﹒- 2D ﹒2 9.如图,边长为a 、b 的长方形的周长为14,面积为10, 则多项式a 3b +2a 2b 2+ab 3的值为( ) A ﹒490 B ﹒245 C ﹒140 D ﹒196010.已知:a =2017x +2015,b =2017x +2016,c =2017x +2017,则代数式a 2+b 2+c 2-ab -ac -bc 的值为( ) A ﹒0 B ﹒1 C ﹒2 D ﹒3 二、填空题(共8题;共24分)11.若x+y+z=2,x2﹣(y+z)2=8时,x﹣y﹣z=________.12.计算:(﹣2)100+(﹣2)99=________13.分解因式:18b(a﹣b)2﹣12(a﹣b)3=________.14.如果x﹣3是多项式2x2﹣11x+m的一个因式,则m的值________15.多项式﹣5mx3+25mx2﹣10mx各项的公因式是________.16.因式分解:xy3﹣x3y=________.17. 观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n的等式表示你所发现的规律:_ __.18.已知a=12+32+52+…+252,b=22+42+62+…+242,则a-b的值为________三、解答题(共5题;共66分)19.因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.20.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27 (2)x2﹣2xy﹣3y2.21.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.22.当a 为何值时,多项式x 2+7xy+ay 2﹣5x+43y ﹣24可以分解为两个一次因式的乘积.23.完成下列解答:(1) 已知15,8==+mn n m 求22n mn m +-的值 (2)已知012=-+a a 求2016223++a a 的值 (3)已知71=+aa ,求a a 1-的值参考答案一、选择题A DB DC CD D A D 二、填空题11. 4 12. 299 13. 6(a ﹣b )2(3﹣2a+2b ) 14. 15 15. 5mx 16. xy (x+y )(x ﹣y ) 17. (2n +1)2-(2n -1)2=8n 18. 325 三、解答题19.解:(1)x (x ﹣y )﹣y (y ﹣x ) =x (x ﹣y )+y (x ﹣y ) =(x+y )(x ﹣y );(2)a 2x 2y ﹣axy 2=axy (ax ﹣y )20.解:(1)原式=x 2﹣6x+9﹣36=(x ﹣3)2﹣36=(x ﹣3+6)(x ﹣3﹣6)=(x+3)(x ﹣9); (2)原式=x 2﹣2xy+y 2﹣4y 2=(x ﹣y )2﹣4y 2=(x ﹣y+2y )(x ﹣y ﹣2y )=(x+y )(x ﹣3y ). 21.答案:等边三角形解析:因为a ,b ,c 为△ABC 的三边长,所以2a 2+2b 2+2c 2=2ab +2ac +2bc022*******=+-++-++-c bc b c ac a b ab a ,所以()()()0222=-+-+-c b c a b a ,所以b a =且c a =且c b =,所以三角形为等边三角形。

浙教版七年级下册数学第四章 因式分解单元测试卷及答案

浙教版七年级下册数学第四章 因式分解单元测试卷及答案

浙教版初中数学七年级下册第四章因式分解单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式属于因式分解的是()A.(3x+1)(3x﹣1)=9x2﹣1B.x2﹣2x+4=(x﹣2)2C.a4﹣1=(a2+1)(a+1)(a﹣1)D.9x2﹣1+3x=(3x+1)(3x﹣1)+3x2.(3分)下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣63.(3分)若多项式﹣6ab+18abx+24aby的一个因式是﹣6ab,那么另一个因式是()A.1﹣3x﹣4y B.﹣1﹣3x﹣4y C.1+3x﹣4y D.﹣1﹣3x+4y4.(3分)若(a﹣b﹣2)2+|a+b+3|=0,则a2﹣b2的值是()A.﹣1B.1C.6D.﹣65.(3分)若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣16.(3分)下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个7.(3分)多项式x2+7x﹣18因式分解的结果是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)8.(3分)把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)9.(3分)下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣110.(3分)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3二.填空题(共6小题,满分24分,每小题4分)11.(4分)多项式15m3n2+5m2n﹣20m2n的公因式是.12.(4分)已知x+y=8,xy=2,则x2y+xy2=.13.(4分)若多项式x2﹣mx﹣21可以分解为(x+3)(x﹣7),则m=.14.(4分)通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:a2+3ab+2b2=.15.(4分)因式分解:a2b2﹣a2﹣b2+1=.16.(4分)已知a2+a﹣1=0,则a3+2a2+2018=.三.解答题(共8小题,满分66分)17.(6分)把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),求c.18.(6分)已知ab2=﹣1,求(﹣ab)(a3b7﹣ab3﹣b)的值?19.(8分)分解因式:(1)x2y﹣9y;(2)﹣m2+4m﹣4.20.(8分)已知x+y=8,xy=12,求:①x2y+xy2;②x2﹣xy+y2;③x﹣y的值.21.(8分)阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(10分)(1)请用两种不同的方法列代数式表示图1的面积方法1,方法2;(2)若a+b=7,ab=15,根据(1)的结论求a2+b2的值;(3)如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小长方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形.①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽.②把一个长为m,宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为.24.(10分)若一个正整数a可以表示为连续的两个奇数的平方差的形式,如:8=32﹣12,16=52﹣32,24=72﹣52,……,我们则称形如8,16,24这样的正整数a为“奇特数”.(1)请写出最小的三位“奇特数”,并表示成连续的两个奇数的平方差的形式;(2)求证:任意一个“奇特数”都是8的倍数;(3)若一个三位数b为“奇特数”,其百位和个位上的数字相同,十位上的数字比个位上的数字大m(m为正整数),求满足条件的所有三位“奇特数”.参考答案一.选择题(共10小题,满分30分,每小题3分)1.C2.B3.A4.D5.A6.B7.D8.B9.D10.D 二.填空题(共6小题,满分24分,每小题4分)11.5m2n12.1613.414.(a+2b)(a+b)15.(a+1)(a﹣1)(b+1)(b﹣1)16.2019三.解答题(共8小题,满分66分)17.解:(x+1)(x+2)=x2+3x+2,∴c=2.18.解:原式=﹣a4b8+a2b4+ab2=﹣(ab2)4+(ab2)2+ab2,当ab2=﹣1时,原式=﹣(﹣1)3+(﹣1)2﹣1=1.19.解:(1)原式=y(x2﹣32)=y(x+3)(x﹣3).(2)原式=﹣(m2﹣4m+4)=﹣(m﹣2)2.20.解:①∵x+y=8,xy=12,∴原式=xy(x+y)=96;②∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=64﹣36=28;③(x﹣y)2=(x+y)2﹣4xy=64﹣48=16,∴x﹣y=±4.21.解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)22.解:(1)∵(x2﹣4x+4)2=(x﹣2)4,∴该同学因式分解的结果不彻底.(2)设x2﹣2x=y原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.故答案为:不彻底.23.解:(1)方法1,图1可看作是边长为(a+b)的正方形面积,即(a+b)2方法2,图1可看作是边长分别为a和b的2个正方形面积加上2个长为a宽为b的矩形面积,即a2+2ab+b2故答案为:(a+b)2;a2+2ab+b2(2)∵a+b=7∴(a+b)2=49,即a2+2ab+b2=49又∵ab=15∴a2+b2=49﹣2ab=19故答案为:19(3)①设宽为x,由题意可得:(x+3)2=216+32因为x>0,解得x=12.故答案为:12②由题可知:去掉小正方形的边长是原长方形长与宽差的一半故答案为:24.(1)解:最小的三位奇特数是:104104=(2)证明:设m=∵m=8k+8∴m =8(k +1)∴r 任意一个“奇特数”都是8的倍数(3)设个位上的数字为:x ,则十位数字为:(m +x ),百位数字为:x 则b =100x +10(m +x )+x =100x +10m +10x +x =111x +10m ∵b 为奇特数∴b 是8的倍数=13x +m +又∵ 是整数 ∴也是整数且1≤x <10,1≤(x +m )<10∴,,(舍),(舍)(舍)∴b 的值为:232 464 696。

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析含有详细分析

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析含有详细分析

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析一、选择题1、下列等式从左到右的变形,属于因式分解的是()A.a(x-y)=ax-ay B.(x+1)(x+3)=x2+4x+3C.x3﹣x=x(x+1)(x-1) D.x2+2x+1=x(x+2)+12、下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2﹣2x﹣15=(x+3)(x﹣5)C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+4)3、如果二次三项式可分解为,那么a+b的值为( )A.-2 B.-1 C.1 D.24、边长为a,b的长方形,它的周长为14,面积为10,则a b+ab的值为( )A.35 B.70 C.140 D.2805、把多项式(a﹣2)+m(2﹣a)分解因式等于().A.(a﹣2)(+m)B.(a﹣2)(﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)6、能被下列数整除的是( )A.3 B.5 C.7 D.97、下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2-2abC.D.8、把分解因式,其结果为( )A.()()B.()C.D.()9、将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+aC.(a+1)2-a-1 D.(a-2)2+2(a-2)+110、一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)二、填空题11、因式分解:-x= .12、分解因式:x2+2(x﹣2)﹣4=______.13、在实数范围内分解因式:a3﹣5a= .14、多项式6x2y-2xy3+4xyz的公因式是__________.15、已知x+y=6,xy=4,则x2y+xy2的值为.16、把多项式ax2+2a2x+a3分解因式的结果是.17、利用整式乘法公式计算104×96时,通常将其变形为__________________时再计算18、若,且,则___.19、分解因:=______________________.20、已知58-1能被20--30之间的两个整数整除,则这两个整数是。

七年级数学下册 第四章因式分解单元综合测试 试题

七年级数学下册 第四章因式分解单元综合测试  试题

第四章因式分解单元测试一.单项选择题〔一共10题;一共30分〕1.把代数式mx2-6mx+9m分解因式,以下结果中正确的选项是〔〕A. m〔x+3〕2B. m〔x+3〕〔x-3〕C. m〔x-4〕2D. m 〔x-3〕22.以下各式由左到右变形中,是因式分解的是〔〕A. a(x+y)=ax+ayB. x2-4x+4=x(x-4)+4C. 10x2-5x=5x(2x-1)D. x2-16+3x=(x-4)(x+4)+3x3.以下等式从左到右的变形是因式分解的是〔〕A. 〔x+2〕〔x﹣2〕=x2﹣4 B. 2x2﹣8x+1=2〔x2﹣4x〕+1C. 6a3b=2a3•3bD. 2ab﹣2b2=2b〔a﹣b〕4.在以下分解因式的过程中,分解因式正确的选项是〔〕A. ﹣xz+yz=﹣z 〔x+y〕B. 3a2b﹣2ab2+ab=ab〔3a﹣2b〕C. 6xy2﹣8y3=2y2〔3x﹣4y〕 D. x+3x﹣4=〔x+2〕〔x﹣2〕+3x5.将x2﹣16分解因式正确的选项是〔〕A. 〔x﹣4〕2B. 〔x﹣4〕〔x+4〕C. 〔x+8〕〔x﹣8〕D. 〔x﹣4〕2+8x6.以下式子中,从左到右的变形是因式分解的是〔〕A. 〔x﹣1〕〔x﹣2〕=x2﹣3x+2B. x2﹣3x+2=〔x﹣1〕〔x﹣2〕C. x2+4x+4=x〔x﹣4〕+4D.x2+y2=〔x+y〕〔x﹣y〕7.以下等式从左到右的变形中,属于因式分解的是〔〕A. x2﹣6x+9=〔x﹣3〕2B. 〔x+3〕〔x﹣1〕=x2+2x﹣3C. x2﹣9+6x=〔x+3〕〔x﹣3〕+6xD. 6ab=2a•3b8.以下式子变形是因式分解的是〔〕A. x2+5x+6=x〔x+5〕+6 B . x2﹣5x+6=〔x﹣2〕〔x﹣3〕C. 〔x﹣2〕〔x﹣3〕=x﹣5x+6D. x2﹣5x+6=〔x+2〕〔x+3〕9.以下各式由左边到右边的变形中,是分解因式的为〔〕A. a〔x+y〕=ax+ayB. x2﹣4x+4=x〔x﹣4〕+4C. 10x2﹣5x=5x〔2x﹣1〕D. x2﹣16+3x=〔x﹣4〕〔x+4〕+3x10.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做得不够完好的一题是〔〕A. x2﹣y2=〔x﹣y〕〔x+y〕B.x2﹣2xy+y2=〔x﹣y〕2C. x2y﹣xy2=xy〔x﹣y〕D. x3﹣x=x〔x2﹣1〕二.填空题〔一共8题;一共28分〕11.多项式x2+mx+5因式分解得〔x+5〕〔x+n〕,那么m=________ ,n=________ .12.分解因式:x2y﹣y3=________ .13.分解因式:ab﹣b=________.14.以下从左到右的变形中,是因式分解的有________.①24x2y=4x•6xy;②〔x+5〕〔x﹣5〕=x2﹣25 ;③x2+2x﹣3=〔x+3〕〔x﹣1〕;④9x2﹣6x+1=3x〔3x﹣2〕+1 ;⑤x2+1=x〔x+〕;⑥3x n+2+27x n=3x n 〔 x2+9〕15.①6m2n与2mn2的公因式是________;②2a〔m﹣n〕与36〔n﹣m〕的公因式是________.16.代数式﹣8a3b2与12ab3的公因式为________.17.多项式﹣3x2y3z+9x3y3z﹣6x4yz2的公因式是________.18.因式分解:ax2﹣a=________.三.解答题〔一共6题;一共42分〕19.因式分解:x3﹣2x2+x.2﹣12xy2+8xy3.21.在多项式x+1,x+2,x+3,x2+2x﹣3,x2+2x﹣1,x2+2x+3中,哪些是多项式〔x2+2x〕4﹣10〔x2+2x〕2+9的因式?22.因式分解:〔x2+3x〕﹣3〔x+3〕23.〔1〕计算:a〔a﹣1〕〔2〕分解因式:m2﹣3m.24.关于x的二次三项式x2+mx+n有一个因式〔x+5〕,且m+n=17,试求m、n的值.励志赠言经典语录精选句;挥动**,放飞梦想。

第4章 因式分解 浙教版数学七年级下册单元练习卷(含答案)

第4章 因式分解 浙教版数学七年级下册单元练习卷(含答案)

2023年浙教版数学七年级下册《因式分解》单元练习卷一、选择题1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣252.把多项式(m+1)(m-1)+(m-1)分解因式,一个因式是(m-1),则另一个因式是( )A.m+1B.2mC.2D.m+23.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A.962×95+962×5=962×(95+5)=962×100=96200B.962×95+962×5=962×5×(19+1)=962×(5×20)=96200C.962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D.962×95+962×5=91390+4810=962004.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5aB.(x+y)2C.5(x+y)2D.5a(x+y)25.若实数a,b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.506.把多项式4a2﹣1因式分解,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)27.把代数式ax2﹣4ax+4a因式分解,下列结果中正确的是( )A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)8.△ABC的三边长分别a,b,c,且a+2ab=c+2bc,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.计算(﹣2)2025+22024等于()A.22025B.﹣22025C.﹣22024D.2202410.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c的值为()A.0B.10C.12D.2211.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为( )A.0B.1C.5D.1212.已知a=2025x+2024,b=2025x+2025,c=2025x+2026,那么a2+b2+c2—ab-bc -ca的值等于( )A.0B.1C.2D.3二、填空题13.若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a________ ,b=________.14.﹣xy2(x+y)3+x(x+y)2的公因式是;15.已知a=2,x+2y=3,则3ax+6ay=.16.已知ab=2,a-2b=-3,则a3b-4a2b2+4ab3的值为________.17.将x n+3-x n+1因式分解,结果是18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=27,y=3时,用上述方法产生的密码是:(写出一个即可).三、解答题19.因式分解:2x2﹣8x20.因式分解:2x3(a-1)+8x(1-a).21.因式分解:3x3+6x2y﹣3xy2.22.因式分解:x n+4-169x n+2 (n是自然数);23.已知x2+x=6,将下式先化简,再求值:x(x2+2)-x(x+1)2+3x2-7的值.24.给出三个多项式:2a2+3ab+b2,3a2+3ab,a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式.25.仔细阅读下面例题,解答问题:例题,已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值.解:设另一个因式为(x +n),得x 2-4x +m=(x +3)(x +n),则x 2-4x +m=x 2+(n +3)x +3n.∴⎩⎨⎧n +3=-4,m =3n , 解得n=-7,m=-21,∴另一个因式为(x -7),m 的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式3x 2+5x -m 有一个因式是(3x -1),求另一个因式以及m 的值.26.先阅读下列材料,再解答下列问题:材料:因式分解:(x +y)2+2(x +y)+1.解:将“x +y”看成整体,令x +y=A ,则原式=A 2+2A +1=(A +1)2.再将“A”还原,得原式=(x +y +1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x -y)+(x -y)2=_______________;(2)因式分解:(a +b)(a +b -4)+4;(3)求证:若n 为正整数,则式子(n +1)(n +2)(n 2+3n)+1的值一定是某一个整数的平方.答案1.B.2.D3.A4.D5.A6.B7.A8.B9.C10.C11.C12.D13.答案为:3 2;12.14.答案为:x(x+y)2;15.答案为:1816.答案为:1817.答案为:x n-1(x+1)(x-1);18.答案为:273024或27243019.解:原式=2x2﹣8x=2x(x﹣4);20.解:原式=2x(a-1)(x-2)(x+2).21.解:原式=﹣3x(x﹣y)2.22.解:原式=x n+2(x+13)(x-13).23.解:原式=-1.24.解:本题答案不唯一;选择加法运算有以下三种情况:(2a2+3ab+b2)+(3a2+3ab)=5a2+6ab+b2=(a+b)(5a+b);(2a2+3ab+b2)+(a2+ab)=3a2+4ab+b2=(a+b)(3a+b);(3a2+3ab)+(a2+ab)=4a2+4ab=4a(a+b).选择减法运算有六种情况,选三种供参考:(2a 2+3ab +b 2)-(3a 2+3ab)=b 2-a 2=(b +a)(b -a); (2a 2+3ab +b 2)-(a 2+ab)=a 2+2ab +b 2=(a +b)2;(3a 2+3ab)-(a 2+ab)=2a 2+2ab =2a(a +b).25.解:设另一个因式为(x +n),则3x 2+5x -m=(3x -1)(x +n).则3x 2+5x -m=3x 2+(3n -1)x -n.∴⎩⎨⎧3n -1=5,-n =-m ,解得n=2,m=2,∴另一个因式为(x +2),m 的值为2.26.解:(1)(x -y +1)2;(2)令A=a +b ,则原式变为A(A -4)+4=A 2-4A +4=(A -2)2,故(a +b)(a +b -4)+4=(a +b -2)2.(3)证明:(n +1)(n +2)(n 2+3n)+1=(n 2+3n)[(n +1)(n +2)]+1 =(n 2+3n)(n 2+3n +2)+1=(n 2+3n)2+2(n 2+3n)+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n)+1的值一定是某一个整数的平方.。

2022年浙教版初中数学七年级下册第四章因式分解综合测试试卷(含答案解析)

2022年浙教版初中数学七年级下册第四章因式分解综合测试试卷(含答案解析)

初中数学七年级下册第四章因式分解综合测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列多项式因式分解正确的是( )A.24(4)x x x x -+=-+B.2()x xy x x x y ++=+C.2()()()x x y y y x x y -+-=-D.22()()(2)()x y x z x y z y z +--=+--2、已知3ab =-,2a b +=,则22a b ab +的值是( )A.6B.﹣6C.1D.﹣13、将边长为m 的三个正方形纸片按如图1所示摆放并构造成边长为n 的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m 和n 的长方形时,所得长方形的面积为35.则图2中长方形的周长是( )A.24B.26C.28D.304、下列因式分解正确的是( )A.3p 2-3q 2=(3p +3q )(p -q )B.m 4-1=(m 2+1)(m 2-1)C.2p +2q +1=2(p +q )+1D.m 2-4m +4=(m -2)25、下列因式分解正确的是( )A.2p +2q +1=2(p +q )+1B.m 2﹣4m +4=(m ﹣2)2C.3p 2﹣3q 2=(3p +3q )(p ﹣q )D.m 4﹣1=(m ²+1)(m ²﹣1)6、若2a b +=,则224a b b -+的值为( )A.2B.3C.4D.67、多项式x 2y (a ﹣b )﹣y (b ﹣a )提公因式后,余下的部分是( )A.x 2+1B.x +1C.x 2﹣1D.x 2y +y8、把多项式﹣x 2+mx +35进行因式分解为﹣(x ﹣5)(x +7),则m 的值是()A.2B.﹣2C.12D.﹣129、下列因式分解正确的是( )A.x 2﹣4=(x +4)(x ﹣4)B.4a 2﹣8a =a (4a ﹣8)C.a 2+2a +2=(a +1)2+1D.x 2﹣2x +1=(x ﹣1)210、下列各式由左边到右边的变形,是因式分解的是( )A.22()()x y x y x y -+=-B.241254(3)5x x x x +-=+-C.22()()x y x x y x y x -+=+-+D.2224484()x y xy x y +-=-11、下列各组式子中,没有公因式的是( )A.﹣a 2+ab 与ab 2﹣a 2bB.mx +y 与x +yC.(a +b )2与﹣a ﹣bD.5m (x ﹣y )与y ﹣x12、下列因式分解正确的是( )A.()()2999x x x -=-+B.()322a a a a a a -+=-C.()()()2212111x x x ---+=-D.()22228822x xy y x y -+=- 13、下列各式中,因式分解正确的是( )A.()22121x x x x ++=++B.()()22a b a b a b +=+-C.()222412923a ab b a b ++=+D.()231x x x x -=- 14、下列分解因式正确的是( )A.222()m n m n +=+B.22164(4)(4)m n m n m n -=-+C.3223(3)a a a a a a -+=-D.22244(2)a ab b a b -+=-15、下列各选项中因式分解正确的是( )A.x 2-1=(x -1)2B.a 3-2a 2+a =a 2(a -2) C.-2y 2+4y =-2y (y +2) D.a 2b -2ab +b =b (a -1)2 二、填空题(10小题,每小题4分,共计40分)1、若多项式x 2+ax +b 可分解为(x +1)(x +4),则a =________,b =________.2、分解因式:xy ﹣3x +y ﹣3=______.3、分解因式:228m m --=______.4、因式分解:4224100x x y -=________.5、若25,3x y xy -==,则222x y xy -=________.6、因式分解:2()x y x y --+= ___________.7、已知a =2b ﹣5,则代数式a 2﹣4ab +4b 2﹣5的值是_____.8、若20x y +-=,则代数式224x y y +-的值等于________.9、已知x +y =﹣2,xy =4,则x 2y +xy 2=______10、因式分解:3a a -=________.三、解答题(3小题,每小题5分,共计15分)1、分解因式:2225()4()a b a b +--.2、因式分解:x 2+4y 2+4xy ﹣1.3、因式分解:(1)3312x x -(2)()()223a b b a b ------------参考答案-----------一、单选题1、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. ()()()()222x y x z x y z y z +--=+-+,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2、B【分析】首先将22a b ab + 变形为()ab a b +,再代入计算即可.【详解】解:∵32ab a b =-+=,,∴22a b ab +()ab a b =+ 32=-⨯6=- ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.3、A【分析】由题意:按如图1所示摆放并构造成边长为n 的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m 和n 的长方形时,所得长方形的面积为35,列出方程组,求出3m =7,n =5,即可解决问题.【详解】依题意,由图1可得,32m n =+,由图2可得,335mn =(2)35n n ∴+=即22136n n ++=解得5n =或者7n =-(舍)5n ∴=时,37m =则图2中长方形的周长是()232(75)24m n +=⨯+=.故选A.【点睛】本题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.4、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A :3p 2−3q 2=3(p 2−q 2)=3(p +q )(p −q ),不符合题意; 选项B :m 4−1=(m 2+1)(m 2−1)=m 4−1=(m 2+1)(m +1)(m −1),不符合题意; 选项C :2p +2q +1不能进行因式分解,不符合题意;选项D :m 2−4m +4=(m −2)2,符合题意. 故选:D .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A 、2p +2q +1不能进行因式分解,不符合题意;B 、m 2-4m +4=(m -2)2,符合题意;C 、3p 2-3q 2=3(p 2-q 2)=3(p +q )(p -q ),不符合题意;D 、m 4-1=(m 2+1)(m 2-1)=m 4-1=(m 2+1)(m +1)(m -1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、C【分析】把224a b b -+变形为()()4a b a b b -++,代入a +b =2后,再变形为2(a +b )即可求得最后结果.【详解】解:∵a +b =2,∴a 2-b 2+4b =(a -b )(a +b )+4b ,=2(a -b )+4b ,=2a -2b +4b ,=2(a +b ),=2×2,=4.故选:C .【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.7、A【详解】直接提取公因式y(a﹣b)分解因式即可.【解答】解:x2y(a﹣b)﹣y(b﹣a)=x2y(a﹣b)+y(a﹣b)=y(a﹣b)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8、B【分析】根据整式乘法法则进行计算﹣(x﹣5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:∵﹣(x﹣5)(x+7)=2235--+,x x∴2m=-,故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.9、D各式分解得到结果,即可作出判断.【详解】解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 10、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.11、B公因式的定义:多项式ma mb mc ++中,各项都含有一个公共的因式m ,因式m 叫做这个多项式各项的公因式.【详解】解:A 、因为2()a ab a b a -+=-,22()ab a b ab b a -=-,所以2a ab -+与22ab a b -是公因式是()a b a -,故本选项不符合题意;B 、mx y +与x y +没有公因式.故本选项符合题意;C 、因为()a b a b --=-+,所以2()a b +与a b --的公因式是()a b +,故本选项不符合题意;D 、因为5()5()m x y m y x -=--,所以5()m x y -与y x -的公因式是()y x -,故本选项不符合题意; 故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.12、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a ,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x 2-9=(x -3)(x +3),故此选项不合题意;B.a 3-a 2+a =a (a 2-a +1),故此选项不合题意;C.(x -1)2-2(x -1)+1=(x -2)2,故此选项不合题意;D.2x 2-8xy +8y 2=2(x -2y )2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.13、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2221(1)x x x ++=+,故此选项不合题意;B .22a b +,无法分解因式,故此选项不合题意;222.4129(23)C a ab b a b ++=+,故此选项符合题意;D .32(1)(1)(1)x x x x x x x -=-=-+,故此选项不合题意;故选:C .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.14、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m 2+n 2,不能因式分解;B.16m 2−4n 2=4(4m −2n )(4m +2n ),原因式分解错误;C. a 3−3a 2+a =a (a 2−3a +1),原因式分解错误;D.4a 2−4ab +b 2=(2a −b )2,原因式分解正确. 故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.15、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A 、()()21=11x x x -+-,选项错误;B 、()()23222211a a a a a a a a -+=-+=-,选项错误; C 、2242(2)y y y y -+=-- ,选项错误;D 、2222(21)(1)a b ab b b a a b a -+=-+=-,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.二、填空题1、5 4【分析】把(x +1)(x +4)展开,合并同类项,可确定a 、b 的值.【详解】解:∵(x +1)(x +4),=244x x x +++,=254x x ++,∴54a b ==,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.2、(y ﹣3)(x +1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy ﹣3x +y ﹣3=x (y ﹣3)+(y ﹣3)=(y ﹣3)(x +1).故答案为:(y ﹣3)(x +1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.3、(2)(4)m m +-【分析】根据十字相乘法分解因式,即可得到答案.【详解】228m m --=(2)(4)m m +-故答案为:(2)(4)m m +-.【点睛】本题考查了分解因式的知识;解题的关键是熟练掌握十字相乘法分解因式的性质,从而完成求解. 4、24(5)(5)x x y x y +-【分析】先提公因式,再用平方差公式分解即可.【详解】422222241004(25)4(5)(5)x x y x x y x x y x y -=-=+-故答案为:24(5)(5)x x y x y +-【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.5、15【分析】将原式首先提取公因式xy ,进而分解因式,将已知代入求出即可.【详解】解:∵x −2y =5,xy =3,∴()22225315x y xy xy x y -=-=⨯= .故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.6、()(1)x y x y ---【分析】利用提公因式法分解即可.【详解】解:22()()()()(1)x y x y x y x y x y x y --+=---=---故答案为:()(1)x y x y ---【点睛】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.7、20【分析】将a =2b -5变为a -2b =-5,再根据完全平方公式分解a 2-4ab +4b 2-5=(a -2b )2-5,代入求解.【详解】解:∵a =2b -5,∴a -2b =-5,∴a 2-4ab +4b 2-5=(a -2b )2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.8、4【分析】直接利用已知代数式将原式得出x +y =2,再将原式变形把数据代入求出答案.【详解】解:∵x +y -2=0,∴x +y =2,则代数式x 2+4y -y 2=(x +y )(x -y )+4y=2(x -y )+4y=2(x +y )=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.9、-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:()22x y xy xy x y +=+ ∵x +y =﹣2,xy =4,∴()22428x y xy +=⨯-=-.故答案为:8- .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.10、a (a +1)(a -1)【分析】先找出公因式a ,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:3a a -()2=1a a -(1)(1)a a a =+-故答案为:(1)(1)a a a +-.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.三、解答题1、(73)(37)a b a b ++【分析】利用平方差公式因式分解即可【详解】原式()()222252a b a b =+-- ,()()2252a b a b =+--⎡⎤⎡⎤⎣⎦⎣⎦ ,()()225522a b a b =+-- , ()()()()55225522a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦ ,[][]55225522a b a b a b a b =++-+-+(73)(37)a b a b =++【点睛】本题考查了因式分解-运用公式法,熟练掌握平方差公式是解题关键.2、(x +2y +1)(x +2y -1)【分析】前三项使用完全平方公式,然后再使用平方差公式即可.【详解】解:原式=(x +2y )2-12=(x +2y +1)(x +2y -1).【点睛】本题考查了分组分解法分解因式,解题的关键是把1看作12.3、(1)()()31212x x x +-;(2)()22a b - 【分析】(1)原式提取公因式3x ,然后利用平方差公式分解即可;(2)原式利用完全平方公式和单项式乘以多项式的计算法则展开合并,然后再运用完全平方公式分解即可.【详解】(1)3312x x -解:原式()2314x x =- ()()31212x x x =+-(2)()()223a b b a b ---解:原式222223a ab b ab b =-+-+2244a ab b =-+ ()22a b =-.【点睛】本题主要考查了因式分解,整式的混合运算,解题的关键在于能够熟练掌握相关知识进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期因式分解单元测试卷
班级____________学号_____________姓名_____________
一、填空题:(每小题2分,共20分)
1、 y x x 2
2
255-的公因式是 ;
2、 填上适当的式子,使等式成立:)(222⋅=-+xy xy y x xy
3、 在括号前面填上“+”或“-”号,使等式成立: (1)22)()(y x x y -=
-; (2))2)(1()2)(1(--=
--x x x x 。

4、 直接写出因式分解的结果: (1)=
-2
2
2
y y x ;(2)=
+-3632
a a 。

5、 若。


,,则b a b b a =
=+-+-01222
6、 若()2
2
416-=+-x mx x ,那么m=________。

7、 如果。

,则=
+=
+-==+2
22
2,7,
0y x xy y x xy y x 8、 利用因式分解简便计算:。

-=2271.229.7 9、如果2a+3b=1,那么3-4a-6b= 。

10、已知正方形的面积是2
269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长
的代数式 。

二、选择题:(每小题3分,共24分)
1、下列各式从左到右的变形中,是因式分解的为( ) A 、bx ax b a x -=-)(
B 、2
2
2)1)(1(1y x x y x ++-=+- C 、)1)(1(12
-+=-x x x
D 、c b a x c bx ax ++=++)(
2、一个多项式分解因式的结果是)2)(2(3
3b b -+,那么这个多项式是( )
A 、46
-b
B 、6
4b -
C 、46
+b
D 、46
--b
3、下列各式是完全平方式的是( )
A 、4
1
2
+
-x x B 、2
1x +
C 、1++xy x
D 、122
-+x x
4、把多项式)2()2(2
a m a m -+-分解因式等于(

A ))(2(2
m m a +- B ))(2(2
m m a --
C 、m(a-2)(m-1)
D 、m(a-2)(m+1)
5、2
2
2
2
)(4)(12)(9b a b a b a ++-+-因式分解的结果是(

A 、2
)5(b a - B 、2
)5(b a + C 、)23)(23(b a b a +-
D 、2
)25(b a -
6、分解因式14
-x 得( ) A 、)1)(1(2
2
-+x x
B 、2
2
)1()1(-+x x C 、)1)(1)(1(2
++-x x x
D 、3
)1)(1(+-x x
7、已知多项式c bx x ++2
2分解因式为)1)(3(2+-x x ,则c b ,的值为( )
A 、1,3-==c b
B 、2,6=-=c b
C 、4,6-=-=c b
D 、6,4-=-=c b
8、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )。

把余下的部分剪拼成一个矩形(如
图)。

通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A 、))((2
2
b a b a b a -+=-
B 、2
222)(b ab a b a ++=+ C 、2
2
2
2)(b ab a b a +-=-
D 、)(2
b a a ab a -=-
三、将下列各式分解因式(本题共27分,) (1)x 2y-2xy 2 (2)t 2-16
(3)a 2-4a+4 (4)3123x x -
(5)2
1
222++x x (6)2m(a-b)-3n(b-a)
(7)x 2-2xy+y 2-1 (8)(a 2+b 2)2-4a 2b 2
(9)b a b a 4422+--
四、(本题6分)已知22==+ab b a ,,求32232
1
21ab b a b a ++的值。

五、(本题5分)计算:(9x 3-x )÷(3x-1)
六、(本题6分)解方程:4x 2=(2x+1)2
七、(本题6分)一个正方形的边长增加2厘米,面积增加12平方厘米,求这个正方
形的边长.
八、阅读题:(本题6分)
阅读下列因式分解的过程,再回答所提出的问题: 1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)] =(1+x )2(1+x ) =(1+x )3
(1)上述分解因式的方法是 ,共应用了 次.
(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 .
(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).。

相关文档
最新文档