分治法的步骤

合集下载

启发式规则_分治法汉诺塔4

启发式规则_分治法汉诺塔4

汉诺塔问题可以通过以下三个步骤实现: (1)将塔A上的n-1个碟子借助塔C先移到塔B上。 (2)把塔A上剩下的一个碟子移到塔C上。 (3)将n-1个碟子从塔B借助塔A移到塔C上。 显然,这是一个递归求解的过程
Hanoi塔问题, 算法分析如下,设A上有n个盘子。 如果n=1,则将圆盘从A直接移动到C。 如果n=2,则: (1)将A上的n-1(等于1)个圆盘移到B上; (2)再将A上的一个圆盘移到C上; (3)最后将B上的n-1(等于1)个圆盘移到C上。 如果n=3,则: A)将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步 骤如下: (1)将A上的n`-1(等于1)个圆盘移到C上。 (2)将A上的一个圆盘移到B。 (3)将C上的n`-1(等于1)个圆盘移到B。 B)将A上的一个圆盘移到C。 C)将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤 如下: (1)将B上的n`-1(等于1)个圆盘移到A。 (2)将B上的一个盘子移到C。 (3)将A上的n`-1(等于1)个圆盘移到C。到此,完成了三个圆盘的 移动过程。
5, 3, A, B, C ⑴
5, 2, A, C, B 5, 3, A, B, C
⑹ 7, 1, A, B, C 7, 2, B, A, C 5, 3, A, B, C ⑾
5, 3, A, B, C ⑺
7, 2, B, A, C 5, 3, A, B, C

7, 2, B, A, C 5, 3, A, B, C ⑽
4.2 递 归
4.2.1 递归的定义
4.2.2 递归函数的运行轨迹
4.2.3 递归函数的内部执行过程
4.2.1 递归的定义
递归(Recursion)就是子程序(或函数)直 接调用自己或通过一系列调用语句间接调用自己, 是一种描述问题和解决问题的基本方法。 递归有两个基本要素: ⑴ 边界条件:确定递归到何时终止; ⑵ 递归模式:大问题是如何分解为小问题的。

分治法解决问题的步骤

分治法解决问题的步骤

分治法解决问题的步骤一、基础概念类题目(1 - 5题)题目1:简述分治法解决问题的基本步骤。

解析:分治法解决问题主要有三个步骤:1. 分解(Divide):将原问题分解为若干个规模较小、相互独立且与原问题形式相同的子问题。

例如,对于排序问题,可将一个大的数组分成两个较小的子数组。

2. 求解(Conquer):递归地求解这些子问题。

如果子问题规模足够小,则直接求解(通常是一些简单的基础情况)。

对于小到只有一个元素的子数组,它本身就是有序的。

3. 合并(Combine):将各个子问题的解合并为原问题的解。

在排序中,将两个已排序的子数组合并成一个大的有序数组。

题目2:在分治法中,分解原问题时需要遵循哪些原则?解析:1. 子问题规模更小:分解后的子问题规模要比原问题小,这样才能逐步简化问题。

例如在归并排序中,不断将数组对半分,子数组的长度不断减小。

2. 子问题相互独立:子问题之间应该尽量没有相互依赖关系。

以矩阵乘法的分治算法为例,划分后的子矩阵乘法之间相互独立进行计算。

3. 子问题与原问题形式相同:方便递归求解。

如二分查找中,每次查找的子区间仍然是一个有序区间,和原始的有序区间查找问题形式相同。

题目3:分治法中的“求解”步骤,如果子问题规模小到什么程度可以直接求解?解析:当子问题规模小到可以用简单的、直接的方法(如常量时间或线性时间复杂度的方法)解决时,就可以直接求解。

例如,在求数组中的最大最小值问题中,当子数组只有一个元素时,这个元素既是最大值也是最小值,可以直接得出结果。

题目4:分治法的“合并”步骤有什么重要性?解析:1. 构建完整解:它将各个子问题的解组合起来形成原问题的解。

例如在归并排序中,单独的两个子数组排序好后,只有通过合并操作才能得到整个数组的有序排列。

2. 保证算法正确性:如果合并步骤不正确,即使子问题求解正确,也无法得到原问题的正确答案。

例如在分治算法计算斐波那契数列时,合并不同子问题的结果来得到正确的斐波那契数是很关键的。

分治法

分治法
分 治 法
顾铁成
1
引例:称硬币
如果给你一个装有16枚硬币的袋子,其中有一
枚是假的,并且其重与真硬币不同。你能不能 用最少的比较次数,找出这个假币?

为了帮助你完成这个任务,将提供一台可用来 比较两组硬币重量的仪器,利用这台仪器,可
以知道两组硬币的重量是否相同。
2
引例:称硬币
常规的解决方法是先将这些硬币分成两
15
当 k = 1 时,各种可能的残缺棋盘
16
三格板的四个不同方向
17
【输入】
第一行输入棋盘 的总行数,第二 行输入残缺棋盘 的格子坐标。
【样例输入】 4
4 1
【样例输出】 2 2 3 3 2 1 1 3 4 4 1 5
【输出】
覆盖的矩阵图。
0 4 5 5
18
问题分析
很明显,当K=0时,是不需要三格板的,而当
24
【样例输入】 5 3 23 8 91 56 4 【样例输出】 1
25
问题分析
对于一组混乱无序的数来说,要找到第k
小的元素,通常要经过两个步骤才能实 现:
第一步:将所有的数进行排序; 第二步:确定第k个位置上的数。
26
问题分析
传统的排序算法(插入排序、选择排序
、冒泡排序等)大家都已经很熟悉了, 但已学过的排序方法无论从速度上பைடு நூலகம்还 是从稳定性方面,都不是最佳的。


将7作为一个参照数;
将这个数组中比7大的数放在7的左边; 比7大的数放在7的右边;

这样,我们就可以得到第一次数组的调整:
[ 4 2 6 6 1 ] 7 [ 10 22 9 8 ]
29

分治算法

分治算法

65 97
13 76
38 49 65 97
13 27 76
13 27 38 49 65 76 97
黑盒划分典型问题—合并排序
合并排序算法改进
从分治过程入手,容易消除mergeSort算法中的递归 调用
49 38 65 97 76 13 27
38 49
65 97
13 76
27
38 49 65 97
题的解,自底向上逐步求出原来问题的解。
T(n)
=
n
递归的概念
由分治法产生的子问题往往是原问题的较小模式,这 就为使用递归技术提供了方便。在这种情况下,反复 应用分治手段,可以使子问题与原问题类型一致而其 规模却不断缩小,最终使子问题缩小到很容易直接求 出其解。这自然导致递归过程的产生。
直接或间接地调用自身的算法称为递归算法。用函数 自身给出定义的函数称为递归函数。
黑盒划分典型问题—合并排序
【例5】合并排序
任务描述:任意给定一包含n个整数的集合,把n个整数按升序排列。 输入:每测试用例包括两行,第一行输入整数个数,第二行输入n个整 数,数与数之间用空格隔开。最后一行包含-1,表示输入结束。 输出:每组测试数据的结果输出占一行,输出按升序排列的n个整数。 样例输入:
13 27 76
13 27 38 49 65 76 97
黑盒划分典型问题—合并排序
黑盒划分典型问题—合并排序
合并排序算法改进
从分治过程入手,容易消除mergeSort算法中的递归调用 自然合并排序
49 38 65 97 76 13 27
49
38 65 97
76
13 27
38 49 65 97
黑盒划分典型问题—逆序对问题

分治算法知识点总结

分治算法知识点总结

分治算法知识点总结一、基本概念分治算法是一种递归的算法,其基本思想就是将原问题分解成多个相互独立的子问题,然后分别解决这些子问题,最后将子问题的解合并得到原问题的解。

分治算法的核心思想可以用一句话概括:分而治之,分即是将原问题分解成若干个规模较小的子问题,治即是解决这些子问题,然后将子问题的解合并起来得到原问题的解。

分治算法通常包括三个步骤:(1)分解:将原问题分解成若干个规模较小的子问题;(2)解决:递归地解决这些子问题;(3)合并:将子问题的解合并起来得到原问题的解。

分治算法的典型特征包括递归和合并。

递归指的是将原问题分解成若干个规模较小的子问题,然后递归地解决这些子问题;合并指的是将子问题的解合并得到原问题的解。

通常来说,分治算法的递归实现方式很容易编写,但有时可能会面临大量的重复计算,因此需要合并操作来避免这种情况。

二、原理分治算法的原理可以通过一个简单的例子来说明。

我们以计算数组中的最大值为例,具体的步骤如下:(1)分解:将数组分解成两个规模相等的子数组;(2)解决:递归地在这两个子数组中分别找到最大值;(3)合并:比较这两个子数组的最大值,得到原数组的最大值。

从这个例子可以看出,分治算法将原问题分解成两个子问题:分别在左边子数组和右边子数组中找到最大值,然后将这两个子问题的解合并起来得到原数组的最大值。

这种将问题分解成若干个规模较小的子问题,然后合并子问题的解得到原问题的解的方法正是分治算法的核心原理。

分治算法的优势在于它可以将原问题分解成多个规模较小的子问题,然后并行地解决这些子问题,最后合并子问题的解得到原问题的解。

这种并行的设计思路使得分治算法非常适合于并行计算,能够有效地提高计算效率。

三、应用分治算法在计算机科学领域有着广泛的应用,包括排序、搜索、图论、动态规划等多个方面。

下面我们将以排序算法和搜索算法为例,来介绍分治算法在实际应用中的具体情况。

1. 排序算法排序算法是计算机科学领域中一个重要的问题,分治算法在排序算法中有着广泛的应用。

《算法分治法》课件

《算法分治法》课件
分治算法的原理还体现在将一个复杂的问题分解为若干个相 互关联、相互依赖的小问题,这些小问题之间存在着一定的 规律和联系,通过解决这些小问题,可以找出原问题的解决 方案。
分治算法的步骤
分治算法的步骤还包括对问题进行归纳和分类,确定 问题的规模和复杂度,选择合适的分治策略和算法实 现方式等。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文 ,单击此处添加正文,文字是您思想的提炼,为了最 终呈现发布的良好效果单击此4*25}
分治算法的核心思想是将一个复杂的问题分解为若干个规模较小、相互独立、与 原问题形式相同的子问题,递归地解这些子问题,然后再将子问题的解合并,以 求得原问题的解。
分治算法的原理
分治算法的原理是利用问题的相似性,将大问题分解为小问 题,将复杂问题转化为简单问题,从而降低问题的难度,提 高解决问题的效率。
探索分治算法与其他算法(如贪心算法、动态规划等)的结合
,实现更高效的算法设计。
分治算法的理论基础研究
02
深入探讨分治算法的理论基础,为算法设计和优化提供理论支
持。
分治算法在实际问题中的应用研究
03
针对实际问题,研究分治算法的应用场景和解决方案,推动算
法的实际应用。
THANKS
感谢观看
对于可以并行处理的子问题,可以使 用多线程或分布式计算等技术进行并 行处理,进一步提高算法效率。
动态规划
动态规划是一种常用的优化技术,通 过将子问题存储在表格中并逐步更新 ,可以避免重复计算,提高算法效率 。
分治算法在实际项目中的应用案例
归并排序
归并排序是一种典型的分治算法,通过递归地将数组分解为若干个子数组,然后合并子数 组得到有序数组。在实际应用中,归并排序广泛应用于各种排序场景。

贪心算法和动态规划以及分治法的区别?

贪心算法和动态规划以及分治法的区别?

贪⼼算法和动态规划以及分治法的区别?
贪⼼算法顾名思义就是做出在当前看来是最好的结果,它不从整体上加以考虑,也就是局部最优解。

贪⼼算法从上往下,从顶部⼀步⼀步最优,得到最后的结果,它不能保证全局最优解,与贪⼼策略的选择有关。

动态规划是把问题分解成⼦问题,这些⼦问题可能有重复,可以记录下前⾯⼦问题的结果防⽌重复计算。

动态规划解决⼦问题,前⼀个⼦问题的解对后⼀个⼦问题产⽣⼀定的影响。

在求解⼦问题的过程中保留哪些有可能得到最优的局部解,丢弃其他局部解,直到解决最后⼀个问题时也就是初始问题的解。

动态规划是从下到上,⼀步⼀步找到全局最优解。

(各⼦问题重叠)
分治法(divide-and-conquer):将原问题划分成n个规模较⼩⽽结构与原问题相似的⼦问题;递归地解决这些⼦问题,然后再合并其结果,就得到原问题的解。

(各⼦问题独⽴)
分治模式在每⼀层递归上都有三个步骤:
分解(Divide):将原问题分解成⼀系列⼦问题;
解决(conquer):递归地解各个⼦问题。

若⼦问题⾜够⼩,则直接求解;
合并(Combine):将⼦问题的结果合并成原问题的解。

例如归并排序。

分治法

分治法

{ tmpa[k]=a[i]; i++; k++; }
while (j<=high)
//将第2子表余下部分复制到tmpa
{ tmpa[k]=a[j]; j++; k++; }
for (k=0,i=low;i<=high;k++,i++) //将tmpa复制回a中
a[i]=tmpa[k];
free(tmpa);
QuickSort(a,s,i-1); //对左子序列递归排序
QuickSort(a,i+1,t); //对右子序列递归排序
}
}
【算法分析】快速排序的时间主要耗费在划分操作上,对长度为n的
区间进行划分,共需n-1次关键字的比较,时间复杂度为O(n)。
对n个记录进行快速排序的过程构成一棵递归树,在这样的递归树中, 每一层至多对n个记录进行划分,所花时间为O(n)。
divide-and-conquer(P)
{ if |P|≤n0 return adhoc(P);
将P分解为较小的子问题 P1,P2,…,Pk;
for(i=1;i<=k;i++)
//循环处理k次
yi=divide-and-conquer(Pi); return merge(y1,y2,…,yk); }
2,5,1,7,10, 6,9,4,3,8 顶
2,5,1,7,10
6,9,4,3,8
分解
2,5,1 7,10 6,9,4 3,8
2,5 1 7 10 6,9 4 3 8
合并
25
7,10 6 9
底 3,8
2,5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分治法的步骤
分治法是一种常见的算法设计策略,它将问题分解成更小的子问题,然后递归地解决每个子问题,最后将这些子问题的解合并起来得到原问题的解。

下面将详细介绍分治法的步骤。

一、分治法的定义和基本思想
分治法是一种算法设计策略,它将一个大问题分解成若干个相互独立且结构相同的小问题,递归地求解这些小问题,并将它们的结果组合起来得到原问题的解。

在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。

二、分治法的步骤
1. 分解:首先将原问题划分为若干个规模较小、结构相似且独立的子问题。

这个过程通常称为“分解”(divide)。

2. 解决:对每个子问题进行递归求解。

如果子问题足够小而可以直接求解,则直接求解。

这个过程通常称为“解决”(conquer)。

3. 合并:将所有子问题的结果合并成原问题的结果。

这个过程通常称
为“合并”(combine)。

三、应用场景
1. 排序算法:例如归并排序、快速排序等。

2. 查找算法:例如二分查找。

3. 图论算法:例如最大子数组、矩阵乘法、汉诺塔等。

四、分治法的优缺点
1. 优点:分治法可以有效地解决一些具有重复性质或者可以通过递归实现的计算任务,具有较高的效率和可扩展性。

2. 缺点:分治法需要额外的空间来存储子问题的结果,而且在递归过程中可能会出现栈溢出等问题,需要进行合理的优化。

同时,如果分解得不够合理或者子问题之间存在依赖关系,则可能会导致算法效率下降。

五、总结
分治法是一种常见的算法设计策略,它将一个大问题划分为若干个规
模较小、结构相似且独立的子问题,并递归地求解这些子问题。

在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。

虽然分治法具有较高的效率和可扩展性,但也存在额外空间开销和栈溢出等问题,需要进行合理优化。

相关文档
最新文档