上海五年级数学讲义1数学2-学生-行程问题之环形跑道问题
奥数行程问题讲解及训练(讲义)- 数学五年级下册

小学高部奥数行程问题讲解及训练一、弄清思路行程问题是小学奥数题的重要组成部分,那么如何学好行程问题?下面由多年从教经验的老师来回答这个问题:因为行程的复杂,所以很多同学一开始就会有畏难心理。
因此,学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。
我们要知道,学习奥数有四种境界:第一种:课堂理解。
就是说能够听懂老师讲解的题目;第二种:能够解题。
就是说同学听懂了还能做出作业。
第三种:能够讲题。
就是不仅自己会做,还要能够讲给家长或同学听。
第四种:能够编题。
就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。
这也是解决向数题的最高境界了。
其实大部分同学学习奥数都只停留在第一种境界,有的甚至还达不到,能够达到第三种境界的同学考取重点中学实验班基本上没有什么问题了。
而要想在行程上一点问题没有,则要求同学达到第四种境界。
即系统学习,还要能深刻理解,刻苦钻研。
而这四种境界则是学习行程的四个阶段或者说好的方法。
二、基本公式1、一般行程问题公式平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
2、列车过桥问题公式(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
3、同向行程问题公式追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
4、反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
5、行船问题公式(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
小学五年级奥数专题讲座25行程问题(二)

第25讲行程问题(二)本讲重点讲相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
例1甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
分析与解:先画示意图如下:图中C点为相遇地点。
因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是(40+60)×2=200(千米)。
例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。
有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分)。
例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。
已知火车全长342米,求火车的速度。
分析与解:在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。
由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),从而求出火车的速度为19-2=17(米/秒)。
例4 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
行程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。
要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是总结的10种经典行程问题的相关解法。
一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
思维拓展第12讲《行程问题(二)》(教案)五年级上册数学人教版

思维拓展第12讲《行程问题(二)》教案一、教学目标1. 知识与技能目标:使学生掌握行程问题的基本概念和解题方法,能够运用速度、时间和路程的关系解决实际问题。
2. 过程与方法目标:通过引导学生观察、分析、归纳,培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的合作意识和创新精神。
二、教学内容1. 行程问题的基本概念:速度、时间和路程的关系。
2. 行程问题的解题方法:利用速度、时间和路程的关系式解决问题。
3. 行程问题的实际应用:解决生活中的行程问题。
三、教学重点与难点1. 教学重点:行程问题的基本概念和解题方法。
2. 教学难点:行程问题的实际应用。
四、教学过程1. 导入新课:通过提问的方式引导学生回顾已学的行程问题知识,为新课的学习做好铺垫。
2. 新课讲解:a. 行程问题的基本概念:速度、时间和路程的关系。
b. 行程问题的解题方法:利用速度、时间和路程的关系式解决问题。
c. 行程问题的实际应用:解决生活中的行程问题。
3. 例题解析:通过讲解典型例题,使学生掌握行程问题的解题方法和技巧。
4. 课堂练习:让学生独立完成练习题,巩固所学知识。
5. 小组讨论:分组讨论行程问题的解题方法,培养学生的合作意识和创新精神。
6. 课堂小结:总结本节课所学内容,强调重点和难点。
7. 课后作业:布置与行程问题相关的作业,巩固所学知识。
五、教学反思本节课通过讲解、练习、讨论等多种教学手段,使学生掌握了行程问题的基本概念和解题方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。
同时,要注重培养学生的合作意识和创新精神,提高学生的综合素质。
六、板书设计思维拓展第12讲《行程问题(二)》1. 行程问题的基本概念:速度、时间和路程的关系。
2. 行程问题的解题方法:利用速度、时间和路程的关系式解决问题。
3. 行程问题的实际应用:解决生活中的行程问题。
五年级奥数精品讲义 第9讲行程问题(有精讲,有分层精炼)

五年级奥数讲义第九讲行程问题一、学法指导有关距离、速度、时间三个量之间的关系问题称为行程问题,即有:距离=速度×时间1.相遇问题相遇距离=速度和×相遇时间2.追及问题追及距离=速度差×追及时间二、例题:例1、甲乙两人分别驾车从A、B两地相向而行,第一次相遇时甲行了全程的五分之三,相遇后两人继续前进。
甲和乙分别到达B、A两地后立即又以原速返回。
第二次相遇地点和第一次相遇地点相距120千米,到第二次相遇时甲驾车一共走了几千米?例2、两条船分别从长江南北两岸相对开出,在离岸260米处相遇后继续前进,各自到达对岸后立即返回,又在离岸200米处相遇,问大江有多宽?例3、小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线。
解完题时两针正好第一次重合。
问:小华解这道题用了多长时间?例4、从甲城到乙城的铁路线上每隔10千米有一个小车站,一列慢车上午9点整以每小时45千米的速度由甲开往乙,另一列快车上午9点30分以每小时60千米的速度也由甲开往乙,铁路部门规定,同方向的两列火车前进时相距不能小于8千米,问这列慢车最迟应在离甲城多远的小车站停车,让快车超过?例5、甲、乙自A地同时出发,同向而行,甲骑自行车,乙骑三轮车。
15分钟后丙发现甲忘带钱,于是骑车从A地出发去追甲,丙追上并把钱交给甲后立即按原速沿原路返回,掉头行了3千米时又遇到乙。
已知乙的速度是每小时6千米,而丙的速度是乙的2倍。
求甲的速度。
例6、甲、乙、丙三人行路,甲每分钟走60米、乙每分钟走50米、丙每分钟走40米。
甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟与丙相遇,求A、B 两地间的距离。
例7、甲、乙两人沿铁路相向而行,速度相同。
一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲、乙两人相遇?三、练习A卷、基本能力训练1.晶晶每天早上从家步行去学校,如果每分钟走60米,则要迟到5分钟,如果每分钟走75米,则可提前2分钟到校。
五年级奥数—环形路上的行程问题

7.在 300 米的环形跑道上,甲,乙两从同时从起跑线出发反向而跑,甲每秒跑 4 米,乙每 秒跑 6 米,当他们第一次相遇在起跑点时,他们已在途中想遇多少次?
3
12.甲,乙两人绕周长为 1000 米的环形广场竞走,已知甲分钟走 125 米,乙的速度是甲的 2 倍。现在甲在乙的后面 250 米,乙追上甲需要多少分钟?
13.小红和小月两人骑车从同一地点出发,沿着长 4000 米环行湖堤行驶。如果小红,小月 同向行驶,小红每隔 20 分钟追上小月,如果反向行驶,两人经过 4 分钟相遇。问:小红, 小月两人的速度各是多少?
4
5
2
4.在一个长 800 米的环行湖边上,小明,小张两人同时从同一点出发,反向跑步,5 分钟两 人第一次相遇,小明每分钟跑 100 米,张静每分钟跑多少米?如果两人同时从同一点出发, 同向跑步,多少分钟后小明能追上张静?
5.有一条长 400 米的环形跑道,甲乙二人同时同地出发,反向而行,1 分钟后第一次相遇, 若二人同时同地出发,同向而行,则 10 钟后第一次相遇,若甲比乙快,那第甲乙二人的速 度分别是多少米?
19.小明在 330 米长的环形跑道上跑了一圈,已知他前一半的时间每秒跑 6 米,后一半的时 间每秒跑 5 米,那么后一半路程小明跑了( )秒
20.甲乙两人分别从圆的直径两端同时出发,沿圆周行进。若逆向行行走则 50 秒相遇,若 同向行走则甲追上乙需 300 秒。甲的速度是乙的速度的多少倍?(把圆的半周长看作 300 个单位)
五年级下册数学试题-奥数专题:行程问题之环形跑道问题学生版

行程问题之环形跑道问题2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?6、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?求此圆形场地的周长?举一反三1、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C 点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.2、如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行.它们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点处6厘米的D点,问,这个圆周的长是多少?第一次相遇第二次相遇DCBA3、A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?二、环形跑道——变道问题【例 1】如图是一个跑道的示意图,沿ACBEA走一圈是400米,沿ACBDA走一圈是275米,其中A到B的直线距离是75米.甲、乙二人同时从A点出发练习长跑,甲沿ACBDA的小圈跑,每100米用24秒,乙沿ACBEA的大圈跑,每100米用21秒,问:⑴乙跑第几圈时第一次与甲相遇?⑵发多长时间甲、乙再次在A相遇?相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。
小学思维数学:行程问题之环形跑道问题-带详解

1、 掌握如下两个关系: (1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试知识精讲 教学目标环形跑道问题【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学辅导讲义学员学校:年级:小五课时数:2学员姓名:辅导科目:数学学科教师:学科组长签名组长备注课题行程问题之环形跑道问题授课时间:备课时间:教学目标理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力重点、难点1、环形跑道问题中的数量关系及解题思路的分析2、理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈,正确将环形跑道问题转化成追及问题。
考点及考试要求应用题教学内容知识精要本次课中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S行程问题之环形跑道问题解题关键是:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。
1、掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题热身练习1、环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?6、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?精解名题【例1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?举一反三1、小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【例2】(2008年第八届“春蕾杯”小学数学邀请赛决赛)上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?举一反三1、一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?2、小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?【例3】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?举一反三1、在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?2、两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?3、(第4届希望杯培训题)在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?【例4】(难度等级※)两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇举一反三1、(难度等级※)一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【例 6】(难度等级※※)周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走米就回到出发点。
【例 7】(难度等级※※※)在 400 米的环行跑道上,A,B 两点相距 100 米。
甲、乙两人分别从A,B 两点同时出发,按逆时针方向跑步。
甲甲每秒跑 5 米,乙每秒跑 4 米,每人每跑 100 米,都要停 10 秒钟。
那么甲追上乙需要时间是多少秒?【例 8】在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人跑一圈各需要几分钟?【例 9】(难度等级※※※※)有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚在跑道上同一处?【例 10】(难度等级※※※)甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?【例 11】(难度等级※)林琳在450米长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒?举一反三1、某人在360米的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,则他后一半路程跑了多少秒?【例 12】(难度等级※※)甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米,乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇。
那么绕湖一周的行程是多少?【例 13】(难度等级※※)甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。
求此圆形场地的周长?举一反三1、如图,A 、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点6O 米.求这个圆的周长.2、如图,有一个圆,两只小虫分别从直径的两端A 与C 同时出发,绕圆周相 向而行.它们第一次相遇在离A 点8厘米处的B 点,第二次相遇在离C 点处6厘米的D 点,问,这个圆周的长是多少?第一次相遇第二次相遇DC BA3、A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?二、环形跑道——变道问题【例 1】如图是一个跑道的示意图,沿ACBEA 走一圈是400米,沿ACBDA 走一圈是275米,其中A 到B 的直线距离是75米.甲、乙二人同时从A 点出发练习长跑,甲沿ACBDA 的小圈跑,每100米用24秒,乙沿ACBEA 的大圈跑,每100米用21秒,问:⑴ 乙跑第几圈时第一次与甲相遇? ⑵ 发多长时间甲、乙再次在A 相遇?EC D BA【例 5】 如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?乙甲乙甲AB 乙甲乙甲A三、环形跑道——变速问题【例 1】(难度等级 ※※)甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。
求甲原来的速度。
【例 2】(2003年迎春杯)甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的2.5倍,当乙第一次追上甲时,甲的速度立即提高25%,而乙的速度立即减少20%,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是米.B CA巩固练习1、(难度等级※※※)两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?2、(难度等级※※※)周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?3、(难度等级※※※)在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?4、(难度等级※※※)(2000年华校入学试题)甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?5、二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。