切线的判定与性质练习题
初中圆的切线判定和性质练习

圆的切线性质与判定测试题选择题1.下列命题正确的是( )A. 经过半径外端的直线是圆的切线B. 直线和圆有公共点,则直线和圆相交C. 过圆上一点有且只有一条圆的切线D. 圆的切线垂直于半径2. 下列图形一定有内切圆的是()A. 平行四边形 B矩形. C. 菱形 D. 梯形3. 已知半径为3的⊙O上一点P和圆外一点Q,如果OQ=5,PQ=4,则PQ和圆的位置关系是()A. 相交 B. 相切 C. 相离 D. 位置不定如图,PA切⊙O于点A,若∠APO=30°,OP=2,则⊙O半径是( )A. B. 1 C. 2 D. 45.如图,AB、AC分别与⊙O相切于B、C,∠A=50°,点P是圆上异于B,C的动点,则∠BPC的度数是( )A. 65° B. 115° C. 65°和115° D. 130°和150°6.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°`7.如图1,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为()A.B.C.D8.如图,CD切⊙O于B,CO的延长线交⊙O于A,若∠C=36°,则∠ABD的度数是( )A. 72°B. 63°C. 54°D. 36°9. 已知:PA、PB切⊙O于点A、B,连结AB,若AB=8,弦AB的弦心距3,则PA=()A. B. C. 5 D. 810. 已知:如图1直线MN与⊙O相切于C,AB为直径,∠CAB=40°,则∠MCA的度数()A. 50°B. 40°C. 60°D. 55°11. 圆内两弦相交,一弦长8cm 且被交点平分,另一弦被交点分为1:4,则另一弦长为( )A. 8cmB. 10cmC. 12cmD. 16cm12. 在△ABC 中,D 是BC 边上的点,AD ,BD =3cm ,DC =4cm ,如果E 是AD的延长线与△ABC 的外接圆的交点,那么DE 长等于( )A. B. C. D.13. 如图2,已知∠AOB=30°,M 为OB 边上任意一点,以M 为圆心,2cm 为半径作⊙M ,当OM=______cm 时,⊙M 与OA 相切.图214. ⊙O 中的两条弦AB 与CD 相交于E ,若AE =6cm ,BE =2cm ,CD =7cm ,那么CE =_________cm 。
圆的切线的性质和判定-练习题-含答案.doc

D.不能确定的切线的性质与判定副标题 题号 * 总分 得分一、选择题(本大题共2小题,共6.0分)1.己知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为() A.相离 B.相切 C.相交 D.无法确定【答案】C 【解析】解:半径r = 5,圆心到直线的距离d=3,v 5 > 3, BPr > d,二直线和圆相交,故选C.由直线和圆的位置关系:r>d,可知:直线和圆相交.本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系: 设。
的半径为厂,圆心。
到直线/的距离为丈 ①直线/和0。
相交②直线 /和。
相切od=r ;③直线/和。
0相离^d>r.2. 在中,zC= 90°, BC=3cm, AC=4cm,以点 C 为圆心,以2.5cm 为半径画圆,则。
C 与直线AB 的位置关系是() A,相交 B.相切 C.相离 【答案】A 【解析】解:过C 作CD LAB 于。
,如图所示: A ABC 中,L.C — 90, AC= 4, BC = 3, ・・・AB =、泌=5,7 A ABC^Jm=^-ACxBC=预8x CD, 2 2・•. 3 X 4 = 5 CD ,CD= 2.4<2.5, 即』< r, .••以2.5为半径的。
C 与直线AB 的关系是相交; 故选A.过C 作CD LAB 于C,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出 d<r,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此 题的关键是能正确作出辅助线,并进一步求出CO 的长,注意:直线和圆的位置关系有: 相离,相切,相交.二、填空题(本大题共3小题,共9.0分)3, 如图,已知。
是MBC 的内切圆,切点为。
、E 、 尸,如果AE=2, CD= 1, BF= 3,则内切圆的半 径『= .BD【答案】1【解析】解:・.・。
人教版九年级上《24.2.3切线的判定和性质》同步练习(含答案)

2022-2023人教版数学九年级上册同步练习24.2.3 切线的判定和性质一.选择题(共15小题)1.如图,在以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切,切点为C,若大圆的半径是13,AB=24,则小圆的半径是()A.4B.5C.6D.72.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是()A.1.5B.2C.2.5D.33.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是()A.25°B.65°C.50°D.75°4.如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为()A.1B.2C.D.25.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于()A.4B.3C.2D.16.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD 分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.37.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3B.2C.5D.9.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于()时,PA与⊙O相切.A.20°B.25°C.30°D.40°10.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1B.3C.5D.1或511.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.12.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC 相交于点D、E、F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线13.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D 是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=CD;(4)弧AC=弧AD.其中正确的个数为()A.1个B.2个C.3个D.4个14.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.直线MN与l1相交于M;与l2相交于N,⊙O的半径为1,∠1=60°,直线MN从如图位置向右平移,下列结论①l1和l2的距离为2 ②MN=③当直线MN与⊙O相切时,∠MON=90°④当AM+BN=时,直线MN与⊙O相切.正确的个数是()A.1B.2C.3D.415.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B 的方向移动,那么()秒钟后⊙P与直线CD相切.A.4B.8C.4或6D.4或8二.填空题(共6小题)16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x 轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为.17.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,若∠ABC=25°,则∠P的度数为.18.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB=;(2)当OA=2时,AP=.19.如图所示,直线y=x﹣2与x轴、y轴分别交于M,N两点,⊙O的半径为1,将⊙O以每秒1个单位的速度向右作平移运动,当移动s时,直线MN 恰好与圆O相切.20.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向以0.5个单位/秒的速度平移,使⊙P与y轴相切,则平移的时间为秒.21.已知,如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆于G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是(只需填序号)三.解答题(共9小题)22.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD ⊥CF于为点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD.(2)若DC=8,BE=4,求圆的直径.23.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B (0,4),C(0,16),求该圆的直径.24.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线.25.如图,▱ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.(1)求证:AE=CD;(2)求证:直线AB是⊙O的切线.26.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.27.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.(1)求证:CD是⊙O的切线.(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.28.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.29.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.30.如图,AB是半径为2的⊙O的直径,直线m与AB所在直线垂直,垂足为C,OC=3,点P是⊙O上异于A、B的动点,直线AP、BP分别交m于M、N两点.(1)当点C为MN中点时,连接OP,PC,判断直线PC与⊙O是否相切并说明理由.(2)点P是⊙O上异于A、B的动点,以MN为直径的动圆是否经过一个定点,若是,请确定该定点的位置;若不是,请说明理由.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵AB=24,OB=OA=13,∴BC=12;在Rt△OCB中,∴OC==5.故选:B.2.【解答】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB﹣AP=5﹣3=2.故选:B.3.【解答】解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∠COD=2∠A=40°,∴∠C=90°﹣40°=50°,故选:C.4.【解答】解:∵直线AB与⊙O相切于点A,连接OA则∠OAB=90°.∵OA=1,∴OB=.故选:B.5.【解答】解:设直线AM与⊙O相切于点K,连接OK.∵AM是⊙O的切线,∴OK⊥AK,∴∠AKO=90°∵∠A=30°,∴AO=2OK=4,∵OD=2,∴AD=OA﹣OD=2,故选:C.6.【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.7.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.8.【解答】解:如图所示:MK=,故选:B.9.【解答】解:∵PA是⊙O的切线,∴∠PAO=90°,∴∠AOP=90°﹣∠P=50°,∵OB=OC,∴∠AOP=2∠B,∴∠B=∠AOP=25°,故选:B.10.【解答】解:当圆P在y轴的左侧与y轴相切时,平移的距离为3﹣2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选:D.11.【解答】解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.12.【解答】解:A、如图1,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确;B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图2,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图2,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.13.【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,∵AB是⊙O的直径,CD不是直径,∴AB≠CD,∴PO≠DC,故(3)错误;(4)由(2)证得四边形PCBD是菱形,∴∠ABC=∠ABD,∴弧AC=弧AD,故(4)正确;故选:C.14.【解答】解:如图1,∵⊙O与l1和l2分别相切于点A和点B,∴OA⊥l1,OB⊥l2,∵l1∥l2,∴点A、B、O共线,∴l1和l2的距离=AB=2,所以①正确;作NH⊥AM,如图1,则四边形ABNH为矩形,∴NH=AB=2,在Rt△MNH中,∵∠1=60°,∴MH=NH=,∴MN=2MH=,所以②正确;当直线MN与⊙O相切时,如图2,∠1=∠2,∠3=∠4,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴∠MON=90°,所以③正确;过点O作OC⊥MN于C,如图2,=S△OAM+S△OMN+S△OBN,∵S四边形ABNM∴•1•AM+•1•BN+MN•OC=(BN+AM)•2,即(AM+BN)+MN•OC=AM+BN,∵AM+BN=,MN=,∴OC=1,而OC⊥MN,∴直线MN与⊙O相切,所以④正确.故选:D.15.【解答】解:由题意CD与圆P1相切于点E,点P1只能在直线CD的左侧,∴P1E⊥CD又∵∠AOD=30°,r=1cm∴在△OEP1中OP1=2cm又∵OP=6cm∴P1P=4cm∴圆P到达圆P1需要时间为:4÷1=4(秒),或P1P=8cm∴圆P到达圆P1需要时间为:8÷1=8(秒),∴⊙P与直线CD相切时,时间为4或8秒.故选:D.二.填空题(共6小题)16.【解答】解:若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(﹣1,0)或(1,0),而﹣1﹣(﹣4)=3,1﹣(﹣4)=5,所以点P的运动距离为3或5.故答案为3或5.17.【解答】解:由圆周角定理得,∠AOP=2∠ABC=50°,∵PA是⊙O的切线,AB是过切点A的直径,∴∠PAO=90°,∴∠P=90°﹣∠AOP=40°,故答案为:40°.18.【解答】解:(1)∵在△ABO中,OA=OB,∠OAB=30°,∴∠AOB=180°﹣2×30°=120°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,∴在四边形OAPB中,∠APB=360°﹣120°﹣90°﹣90°=60°,故答案为:60°.(2)如图,连接OP;∵PA、PB是⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°,又∵在Rt△OAP中,OA=3,∠APO=30°,∴AP===2,故答案为:2.19.【解答】解:作EF平行于MN,且与⊙O切,交x轴于点E,交y轴于点F,如图所示.设直线EF的解析式为y=x+b,即x﹣y+b=0,∵EF与⊙O相切,且⊙O的半径为1,∴b2=×1×|b|,解得:b=或b=﹣,∴直线EF的解析式为y=x+或y=x﹣,∴点E的坐标为(,0)或(﹣,0).令y=x﹣2中y=0,则x=2,∴点M(2,0).∵根据运动的相对性,且⊙O以每秒1个单位的速度向右作平移运动,∴移动的时间为2﹣秒或2+秒.故答案为:2﹣或2+.20.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为2或1021.【解答】解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故答案为:①②④.三.解答题(共9小题)22.【解答】(1)证明:连结OC,如图,∵CD为切线,∴OC⊥CD,∵BD⊥DF,∴OC∥BD,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴BC平分∠ABD;(2)解:连结AE交OC于G,如图,∵AB为直径,∴∠AEB=90°,∵OC∥BD,∴OC⊥CD,∴AG=EG,易得四边形CDEG为矩形,∴GE=CD=8,∴AE=2EG=16,在Rt△ABE中,AB==4,即圆的直径为4.23.【解答】解:过圆心O′作y轴的垂线,垂足为D,连接O′A,∵O′D⊥BC,∴D为BC中点,∴BC=16﹣4=12,OD=6+4=10,∵⊙O′与x轴相切,∴O′A⊥x轴,∴四边形OAO′D为矩形,半径O′A=OD=10,24.【解答】解:(1)BD=DC.理由如下:连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴,∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=75°,∴∠DEC=75°,∴∠EDC=180°﹣75°﹣75°=30°,∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,∵OB=OP,∴∠OBP=∠OPB=45°,∴∠BOP=90°;(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=,又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线;25.【解答】解:(1)∵四边形ABCD是平行四边形∴AB=CD,∠B=∠ADC∵四边形ADCE是⊙O内接四边形∴∠ADC+∠AEC=180°∵∠AEC+∠AEB=180°∴∠ADC=∠AEB∴∠B=∠AEB∴AE=CD(2)如图:连接AO,并延长AO交⊙O交于点F,连接EF.∵AF是直径∴∠AEF=90°∴∠AFE+∠EAF=90°∵∠BAE=∠ECA,∠AFE=∠ACE∴∠AFE=∠BAE∴∠BAE+∠EAF=90°∴∠BAF=90°且AO是半径∴直线AB是⊙O的切线26.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.27.【解答】(1)证明:如图1,连结OC,∵点O为直角三角形斜边AB的中点,∴OC=OA=OB.∴点C在⊙O上,∵BD=OB,∴AB=DO,∵CD=CA,∴∠A=∠D,∴△ACB≌△DCO,∴∠DCO=∠ACB=90°,∴CD是⊙O的切线;(2)解:如图2,在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,∵∠ABC=90°﹣∠A=90°﹣30°=60°,∴BE=BCcos60°=8×=4.28.【解答】(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,29.【解答】解:(1)如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.30.【解答】解:(1)直线PC与⊙O相切,理由是:如图1,∵AC⊥MN,∴∠ACM=90°,∴∠A+∠AMC=90°,∵AB是⊙O的直径,∴∠APB=∠NPM=90°,∴∠PNM+∠AMC=90°=∠A+∠ABP,∴∠ABP=∠AMC,∵OP=OB,∴∠ABP=∠OPB,Rt△PMN中,C为MN的中点,∴PC=CN,∴∠PNM=∠NPC,∴∠OPC=∠OPB+∠NPC=∠ABP+∠PNM=∠AMC+∠PNM=90°,即OP⊥PC,∴直线PC与⊙O相切;(2)如图2,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴,即DC2=MC•NC∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC•NC=AC•BC;即AC•BC=DC2,∵AC=AO+OC=2+3=5,BC=3﹣2=1,∴DC2=5,∴DC=,∵MN⊥DD',∴D'C=DC=,∴以MN为直径的一系列圆经过两个定点D和D',此定点在C的距离都是.。
圆的切线综合练习题与答案完整版

圆的切线综合练习题与答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O 的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
与圆有关的位置关系-切线的判定与性质专题复习练习题

与圆有关的位置关系-切线的判定与性质专题复习练习题1.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是( )A.AB=4,AT=3,BT=5 B.∠B=45°,AB=ATC.∠B=55°,∠TAC=55° D.∠ATC=∠B2. 如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠C =40°,则∠ABO的度数是( )A.50° B.40° C.25° D.20°3. 如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连结OB交⊙O 于点C.若AB=12,OA=5,则BC的长为( )A.5 B.6 C.7 D.84. 如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为( )A.12B.22C.32D.335. 如图,⊙O 过正方形ABCD 的顶点A 、B ,且与CD 相切,若正方形ABCD 的边长为2,则⊙O 的半径为( )A .1 B.52 C.43 D.546. 如图所示,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于______时,AC 才能成为⊙O 的切线.7. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,∠DCB=30°,过点D 作⊙O 的切线交AB 的延长线于点E ,若AB =4,则DE 的长为_______.8. 如图,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连结OC.若∠BCD =50°,则∠AOC 的度数为_______9. 如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF∥AB,则EF 的长度为______.10. 如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是_______.11. 如图,△ABC 中,AB =AC ,O 是BC 的中点,⊙O 与AB 相切于点D ,求证:AC 是⊙O 的切线.12. 如图,AB 是⊙O 的直径,点C 在⊙O 上(异于A 、B 两点),AD⊥CD. (1)若BC =3,AB =5,求AC 的长;(2)若AC是∠DAB的平分线,求证:直线CD与⊙O相切.13. 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.答案:1---5 DCDAD6. 60°7. 2 38. 80°.9. 2 310. 2 211. 证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD.∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∴AC是⊙O的切线.12. 解:(1)∵AB是⊙O的直径,∴∠ACB=90°.∵BC=3,AB=5,∴AC=AB2-BC2=52-32=4.(2)证明:∵AC是∠DAB的平分线,∴∠DAC=∠BAC.∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴直线CD与⊙O相切.13. 解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4.∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴NB=AB2-AN2=43,∴B(43,2).(2)证明:连结MC,NC,∵AN是⊙M的直径,∴∠ACN=∠NCB=90°.在Rt△NCB中,D为NB的中点,∴CD=12NB=ND,∴∠CND=∠NCD. ∵MC=MN,∴∠MCN=∠MNC.∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.。
中考数学分类汇总5.切线的判定与性质

注意请用页面视图显示,才可以看到完整试题! 5.切线的判定与性质第1题. 已知:如图,AB 是⊙O 的直径,AD 是弦,OC 垂直AD 于F 交⊙O 于E ,连结DE 、BE ,且∠C =∠BED .(1)求证:AC 是⊙O 的切线; (2)若OA =10,AD =16,求AC 的长.答案:(1)证明:∵∠BED =∠BAD ,∠C =∠BED∴∠BAD =∠C ∵OC ⊥AD 于点F∴∠BAD +∠AOC =90o ∴∠C +∠AOC =90o ∴∠OAC =90o ∴OA ⊥AC∴AC 是⊙O 的切线. (2)∵OC ⊥AD 于点F ,∴AF =21AD =8 在Rt △OAF 中,OF=22AF OA -=6 ∵∠AOF =∠AOC ,∠OAF =∠C ∴△OAF ∽△OCA ∴OAOFOC OA = 即 OC =35061002==OF OA 在Rt △OAC 中,AC =34022=-OAOC .第2题. 如图,PA 为O ⊙的切线,A 为切点.直线PO 与O ⊙交于B C 、两点,30P ∠=°,连接AO AB AC 、、.求证:ACB APO △≌△.C ED A F O B AOBPC答案:证明:PA 为O 的切线,90PAO ∴∠=°. 又30P ∠= °,60AOP ∴∠=°,1302C AOP ∴∠=∠=°, C P ∴∠=∠, AC AP ∴=.又BC 为O 直径,90CAB PAO ∴∠=∠=°, ACB APO ∴△≌△(ASA ).第3题. 已知,如图,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数.答案:解:∵DE 是O 的直径∴90DBE =︒∠ ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ∵AC 是O 的切线 ∴90CAO =︒∠又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠第4题. 如图,AC 是O ⊙的直径,P A ,PB 是O ⊙的切线,A ,B 为切点,AB =6,P A =5. 求(1)O ⊙的半径; (2)sin BAC ∠的值.EC答案:解:(1)连接PO OB ,.设PO 交AB 于D . PA PB ,是O ⊙的切线. ∴90PAO PBO ∠=∠=°,PA PB =,APO BPO ∠=∠. ∴3AD BD ==,PO AB ⊥.∴4PD ==.在Rt PAD △和Rt POA △中,tan AD AOAPD PD PA==∠. ∴·351544AD PA AO PD ⨯===,即O ⊙的半径为154. (2)在Rt AOD △中,94DO ===.∴934sin 1554OD BAC AO ∠===.第5题. 如图,MP 切O ⊙于点M ,直线PO 交O ⊙于点A 、B ,弦AC MP ∥,求证:MO BC ∥.答案:证:∵AB 是⊙O 的直径,∴∠ACB =90° ∵MP 为⊙O 的切线,∴∠PMO =90° ∵MP ∥AC ,∴∠P =∠CAB ∴∠MOP =∠BCP 第16题图从而,MO ∥BC .第6题. 如图,PA 是O ⊙的切线,切点为A ,36APO ∠=°,则AOP ∠的度数为()A .54°B .64°C .44°D .36°答案:A第7题. 如图,在Rt ABC △中,斜边1230BC C =∠=,°,D 为BC 的中点,ABD △的外接圆O ⊙与AC 交于F 点,过A 作O ⊙的切线AE 交DF 的延长线于E 点. (1)求证:AE DE ⊥;(2)计算:AC AF ·的值.答案:(1)证明:在Rt ABC △中,9030BAC C D ∠=∠=°,°,为BC 的中点, 60ABD AD BD DC ∴∠===°,.ABD ∴△为等边三角形.O ∴点为ABD △的中心(内心,外心,垂心三心合一).∴连接OA ,OB ,30BAO OAD ∠=∠=°.60OAC ∴∠=°.又AE 为O ⊙的切线,90OA AE OAE ∴⊥∠=,°. 30EAF AE BC ∴∠=∴.∥.又四边形ABDF 内接于圆O .90AEF FDC ∴∠=∠=°.即AE DE ⊥.(2)解:由(1)知,ABD △为等边三角形.60ADB ∴∠=°.30ADF C FAD DAC ∴∠=∠=∠=∠°,.ADF ACD ∴△∽△,则AD AFAC AD =.2AD AC AF ∴=·.又16362AD BC AC AF ==∴=.·.O P图90FDC BAC ∴∠=∠=°.第8题. 如图,在ABC △中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O ⊙交BC 于点G ,交AB 于点F ,FB 恰为O ⊙的直径. (1)求证:AE 与O ⊙相切;(2)当14cos 3BC C ==,时,求O ⊙的半径.答案:(1)证明:连结OM ,则OM OB =. ∴12∠=∠.∵BM 平分ABC ∠. ∴13∠=∠. ∴23∠=∠. ∴OM BC ∥.∴AMO AEB ∠=∠.在ABC △中,AB AC =,AE 是角平分线, ∴AE BC ⊥. ∴90AEB ∠=°. ∴90AMO ∠=°. ∴OM AE ⊥. ∴AE 与O ⊙相切.(2)解:在ABC △中,AB AC =,AE 是角平分线,∴12BE BC ABC C =∠=∠,. ∵14cos 3BC C ==,, ∴11cos 3BE ABC =∠=,. 在ABE △中,90AEB ∠=°,∴6cos BEAB ABC==∠. 设O ⊙的半径为r ,则6AO r =-. ∵OM BC ∥,∴AOM ABE △∽△. ∴OM AOBE AB =. ∴626r r -=. 解得32r =.B∴O ⊙的半径为32.第9题. 如图,已知点E 在△ABC 的边AB 上,以AE 为直径的⊙O 与BC 相切于点D ,且AD 平分∠BAC . 求证:AC ⊥BC .答案:证明:连接OD∵OA = OD ,∴∠1 =∠3;∵AD 平分∠BAC ,∴∠1 =∠2; ∴∠2 =∠3; ∴OD ∥AC , ∵BC 是⊙O 的切线 ∴OD ⊥BC ∴AC ⊥BC .第10题. 如图,O ⊙是Rt ABC △的外接圆,点O 在AB 上,BD AB ⊥,点B 是垂足,OD AC ∥,连接CD . 求证:CD 是O ⊙的切线.答案:证明:连接CO OD AC COD ACO CAO DOB ∴∠=∠∠=∠ ∥.,ACO CAO COD DOB ∠=∠∴∠=∠又OD OD OC OB ==,. COD BOD ∴△≌△D BA O C90OCD OBD ∴∠=∠=°OC CD ∴⊥,即CD 是O ⊙的切线第11题. 如右图,已知△ABC 中,AB=AC ,DE ⊥AC 于点E ,DE 与半⊙O 相切于点D . 求证:△ABC 是等边三角形.答案:证明:连结OD ∵DE 切半⊙O 于D∴DE OD ⊥ ∴︒=∠90ODE ∵AC DE ⊥ ∴︒=∠90DEA∴=∠ODE DEA ∠∴OD ∥AC ∴C DOB ∠=∠∵AC AB = ∴DOB C B ∠=∠=∠ ∴OD BD =∵OB OD = ∴BOD △是等边三角形 ∴︒=∠60B∵AC AB = ∴ABC △是等边三角形第12题. 如图,直线AB 与⊙O 相切于点A ,⊙O的半径为2,若∠OBA = 30°,则OB 的长为( ) A . B .4C .D .2答案:BBBO第13题. 如图,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°,∠C = 30°. (1)判断直线CD 是否是⊙O 的切线,并说明理由;(2)若CD = 33 ,求BC 的长.答案:(1)CD 是⊙O 的切线. 证明:连接OD . ∵∠ADE =60°,∠C =30°,∴∠A =30°. ∵OA=OD ,∴∠ODA=∠A =30°. ∴∠ODE=∠ODA+∠ADE =30°+60°=90°,∴OD ⊥CD . ∴CD 是⊙O 的切线.(2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33. ∵tan C =CDOD, ∴OD=CD ·tan C =33×33=3. ∴OC=2OD =6.∵OB=OD =3,∴BC=OC -OB =6-3=3.第14题. 如图 ,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.图10C B答案:(1)①65②法一:在矩形ABCD 中,AD BC =,ADE BCE ∠=∠,又CE DE =, ∴ADE BCE △≌△,得AE BE EAB EBA =∠=∠,,连OF ,则OF OA =, ∴OAF OFA ∠=∠, OFA EBA ∠=∠, ∴OF EB ∥, ∵FG BE ⊥, ∴FG OF ⊥, ∴FG 是O ⊙的切线(法二:提示:连EF DF ,,证四边形DFBE 是平行四边形.参照法一给分.) (2)法一:若BE 能与O ⊙相切, ∵AE 是O ⊙的直径, ∴AE BE ⊥,则90DEA BEC ∠+∠=°,又90EBC BEC ∠+∠=°, ∴DEA EBC ∠=∠,∴Rt Rt ADE ECB △∽△, ∴AD DE EC BC =,设DE x =,则53EC x AD BC =-==,,得353xx =-, 整理得2590x x -+=.∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切.法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°,设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=,∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分)第15题. 已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,不必证明); (2)A ∠=30°,CDO ⊙的半径r .答案:(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△,BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等 (每写出一个正确结论得1分,满分4分.) (2)解:AB 是O ⊙的直径90ADB ∴∠=° 又30E ∠= ° 30A ∴∠=°12BD AB r ∴== 又BC 是O ⊙的切线 90CBA ∴∠=° 60C ∴∠=︒在Rt BCD △中,3CD =tan 602BD rDC ∴==° 2r ∴=第16题. 如图,已知AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC .(1)求证:ABC POA △∽△; (2)若2OB =,72OP =,求BC 的长.答案:(1)证明:BC OP ∥ AOP B ∴∠=∠ AB 是直径 90C ∴∠=°PA 是O ⊙的切线,切点为A90OAP ∴∠=° C OAP ∠=∠ABC POA ∴△∽△(2)ABC POA △∽△ BC AB OA PO∴= 722OB PO == ,24OA AB ∴==, 4722BC ∴=716827BC BC ∴==,第17题. 如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且60=∠AEB ,则=∠P __ ___度.答案:60第18题. 如图,AB 是O ⊙的直径,10AB DC =,切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E . (1)求证:AC 平分BAD ∠;(4分)(2)若3sin 5BEC ∠=,求DC 的长.(4分)PBA答案:(1)证明:连结OC由DC 是切线得OC DC ⊥ 又AD DC ⊥ AD OC ∥∴DAC ACO ∠=∠又由OA OC =得BAC ACO ∠=∠D A C B A C ∴∠=∠ 即AC 平分BAD ∠(2)解:方法一:AB 为直径∴90ACB ∠=°又BAC BEC ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=··8AC ∴==又DAC BAC BEC ∠=∠=∠ 且AD DC ⊥24sin sin 5CD AC DAC AC BEC ∴=∠=∠=·· 方法一:AB 为直径 90ACB ∴∠=°又BAC BEC ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=··8AC ∴==又90DAC BAC D ACB ∠=∠∠=∠= ,° ADC ACB ∴△∽△DC AC CB AB =,即8610DC = 解得245DC =第19题. 如图,AB 是圆O 的直径,AC 是圆O 的切线,A 为切点,连结BC 交圆O 于点D ,连结AD ,若45ABC ∠=°,则下列结论正确的是( )A .12AD BC = B .12AD AC = C .AC AB > D .AD DC >BA答案:A第20题. 如图,在直角梯形ABCD 中,AB CD ∥,90B ∠= ,AB =AD ,∠BAD 的平分线交BC 于E ,连接DE .(1)说明点D 在△ABE 的外接圆上;(2)若∠AED =∠CED ,试判断直线CD 与△ABE 外接圆的位置关系,并说明理由.答案:(1)证法一:∵∠B =90°,∴AE 是△ABE 外接圆的直径. 取AE 的中点O ,则O 为圆心,连接OB 、OD . ∵AB =AD ,∠BAO =∠DAO ,AO =AO , ∴△AOB ≌△AOD . ∴OD =OB .∴点D 在△ABE 的外接圆上. 证法二:∵∠B =90°,∴AE 是△ABE 外接圆的直径. ∵AB =AD ,∠BAE =∠DAE ,AE =AE , ∴△ABE ≌△ADE . ∴∠ADE =∠B =90°.取AE 的中点O , 则O 为圆心,连接OD ,则OD =12AE .∴点D 在△ABE 的外接圆上.(2)证法一:直线CD 与△ABE 的外接圆相切.理由:∵AB ∥CD , ∠B =90°. ∴∠C =90°. ∴∠CED +∠CDE =90°. 又∵OE =OD , ∴∠ODE =∠OED . 又∠AED =∠CED , ∴∠ODE =∠DEC .∴ODC ∠=∠CDE +∠ODE =∠CDE +∠CED =90°. ∴CD 与△ABE 的外接圆相切. 证法二: 直线CD 与△ABE 的外接圆相切. 理由:∵AB ∥CD , ∠B =90°. ∴∠C =90°. 又∵OE =OD , ∴∠ODE =∠OED . 又∠AED =∠CED ,∴∠ODE =∠DEC . ∴OD ∥BC .∴90ODC ∠= . ∴CD 与△ABE 的外接圆相切.第21题. 如图,AB 是O ⊙的直径,O ⊙交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的个数是( )AD BC ⊥① EDA B ∠=∠② 12OA AC =③ ④DE 是O ⊙的切线 A .1个 B .2个 C .3个 D .4个答案:D第22题. 如图,O ⊙与AB 相切于点A ,BO 与O ⊙交于点C ,26B ∠=°,则OCA ∠= 度.答案:58第23题. 如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°,B(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为3,求 BC 的长.(结果保留π)答案:(1)证明:连结OC , 30AC CD D =∠= ,°, 30A D ∴∠=∠=° OA OC = ,230A ∴∠=∠=°, 160∴∠=°, 90OCD ∴∠=°.CD ∴是O ⊙的切线. (2)160∠= °,BC∴的长=π60π3π180180n R ⨯⨯==. 答: BC的长为π第24题. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,∠C =20°. 求∠CDA 的大小.答案:解:∵连接OD∵CD 与⊙O 相切于点D ,∴∠CDO =90° ∵∠C =20°,∴∠COD =90°-20°=70° ∵OD =OA ,∴∠A =∠ADO又∵∠ADO =∠A =21∠COD =35° ∴∠CDA =∠CDO +∠ADO =125°第25题. 如图,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.答案:3第26题. 如图,两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .答案:60°第27题. 如图所示,已知AB 是半圆O 的直径,弦106CD AB AB CD ==∥,,,E 是AB 延长线上一点,103BE =.判断直线DE 与半圆O 的位置关系,并证明你的结论.答案:直线DE 与半圆O 相切. 证明:法一:连接OD ,作OF CD ⊥于点F .∵6CD =,∴132DF CD ==. ∵1025533OE OB BE =+=+=. ∴35325553DF OD OD OE ===,,A∴DF ODOD OE=. ∵CD AB ∥,∴CDO DOE ∠=∠. ∴DOF OED △∽△, ∴90ODE OFD ∠=∠=°, ∴OD DE ⊥∴直线DE 与半圆O 相切.法二:连接OD ,作OF CD ⊥于点F ,作DG OE ⊥于点G .∵6CD =,∴132DF CD ==.在Rt ODF △中,4OF = ∵CD AB ∥,DG AB OF CD ⊥,⊥, ∴四边形OFDG 是矩形,∴43DG OF OG DF ====,. ∵1025533OE OB BE =+=+=,2516333GE OE OG =-=-=, 在Rt DGE △中,203DE ===.∵2222025533⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴222OD DE OE += ∴CD DE ⊥.∴直线DE 与半圆O 相切.第28题. 如图,PA ,PB 切⊙O 于A ,B 两点,若60APB =∠,⊙O 的半径为3,则阴影部分的面积为 .答案:3πP第29题. 如图,在Rt △ABC 中,∠C=90°,以BC 为直径作⊙O 交AB 于点D ,取AC 的中点E ,连结DE 、OE .(1)求证:DE 是⊙O 的切线;(2)如果⊙O 的半径是23cm ,ED=2cm ,求AB 的长.答案:证明:(1)连结OD .由O 、E 分别是BC 、AC 中点得OE ∥AB . ∴∠1=∠2,∠B =∠3,又OB=OD . ∴∠2=∠3. 而OD=OC ,OE=OE ∴△OCE ≌△ODE . ∴∠OCE=∠ODE .又∠C=90°,故∠ODE =90°. ∴DE 是⊙O 的切线. (2)在Rt △ODE 中,由32OD =,DE =2 得52OE =又∵O 、E 分别是CB 、CA 的中点∴AB =2·5252OE =⨯=∴所求AB 的长是5cm .第30题. 如图,︒=∠30MAB ,P 为AB上的点,且BADOCEB6=AP ,圆P 与AM 相切,则圆P 的半径为 .答案:3第31题. 如图,PA 、PB 是半径为1的O ⊙的两条切线,点A 、B 分别为切点,60APB OP AB C O D ∠=°,与弦交于点,与⊙交于点.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).答案:解:(1)ACO BCO APC BPC PAO PBO △≌△,△≌△,△≌△ (2)PA 、PB 为O ⊙的切线PO ∴平分90APB PA PB PAO ∠=∠=,,° PO AB ∴⊥∴由圆的对称性可知:AOD S S =阴影扇形在Rt PAO △中,11603022APO APB ∠=∠=⨯=︒°90903060AOP APO ∴∠=-∠=-︒=︒°°260π1360AODS S ⨯⨯∴==阴影扇形π6=第32题. 已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.答案:解:(1)∵∠ABC =90°,∴OB ⊥BC . ∵OB 是⊙O 的半径, ∴CB 为⊙O 的切线. 又∵CD 切⊙O 于点D , ∴BC =CD ;(2)∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠ADE +∠CDB =90°. 又∵∠ABC =90°, ∴∠ABD +∠CBD =90°.由(1)得BC =CD ,∴∠CDB =∠CBD . ∴∠ADE =∠ABD ;(3)由(2)得,∠ADE =∠ABD ,∠A =∠A .∴△ADE ∽△ABD . ∴AD AB =AEAD. ∴21BE+=12,∴BE =3, ∴所求⊙O 的直径长为3.第33题. 如图,PA 是O ⊙的切线,切点为30A PA APO =∠=,°,则O ⊙的半径长为 .∙ABCD EO∙ABCD EO答案:2第34题. 如图,射线PQ 是O ⊙相切于点A ,射线PO 与O ⊙相交于B 、C 两点,连接AB ,若12PB BC :=:上,则PAB ∠的度数等 于( )A .26°B .30°C .32°D .45°答案:B第35题. 在平面直角坐标系中,已知(40)A -,,(10)B ,,且以AB 为直径的圆交y 轴的正半轴于点(02)C ,,过点C 作圆的切线交x 轴于点D . (1)求过A B C ,,三点的抛物线的解析式(2)求点D 的坐标(3)设平行于x 轴的直线交抛物线于E F ,两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由?图4答案:解:(1)令二次函数2y ax bx c =++,则164002a b c a b c c -+=⎧⎪++=⎨⎪=⎩12322a b c ⎧=-⎪⎪⎪∴=-⎨⎪=⎪⎪⎩∴过A B C ,,三点的抛物线的解析式为213222y x x =--+.(2)以AB 为直径的圆圆心坐标为302O ⎛⎫' ⎪⎝⎭,52O C '∴=32O O '= CD 为圆O '切线 O C C D '∴⊥ 90O CD DCO '∴∠+∠=°90CO O O CO ''∠+∠=° C OO D C O '∴∠=∠ O CO CDO '∴△∽△ //O O OC OC OD '= 3/22/2OD = 83OD ∴= D ∴坐标为803⎛⎫ ⎪⎝⎭,(3)存在抛物线对称轴为32X =-设满足条件的圆的半径为r ,则E 的坐标为3()2r r -+,或3()2F r r --, 而E 点在抛物线213222y x x =--+上 21333()()22222r r r ∴=--+--++112r ∴=-+212r =-- 故在以EF 为直径的圆,恰好与x轴相切,该圆的半径为1-,1+.第36题. 已知:如图,AB 为O ⊙的直径,AB AC =,O ⊙交BC 于D ,DE AC ⊥于E . (1)请判断DE 与O ⊙的位置关系,并证明; (2)连结AD ,若O ⊙的半径为52,3AD =,求DE 的长.答案:解:(1)DE 与⊙O 相切. 证明:连结OD .∵OB =OD ∴∠B =∠1∵AB =AC ∴∠B =∠C ∴∠C =∠1∴OD ∥AC (同位角相等,两直线平行) ∵DE ⊥AC ∴∠DEC =90°∴∠ODE =∠DEC =90°(两直线平行,内错角相等)∴OD ⊥DE ∵OD 为⊙O 半径∴DE 是⊙O 的切线(过半径外端且垂直于半径的直线是圆的切线)(2)∵AB 为⊙O 直径∴∠ADB =90° ∴在Rt △BDA 中,∠ADB =90°∴BD =4∵AB =AC ∴BD =CD =4∵DE ⊥AC ∴S △ADC =AD CD ∙21 S △ADC =DE AC ∙21∴AD CD ∙21=DE AC ∙21∴DE ⨯=⨯534 ∴DE =512第37题. 如图,O ⊙是ABC △的外接圆,AB AC =,过点A 作AP BC ∥,交BO 的延长线于点P .(1)求证:AP 是O ⊙的切线;(2)若O ⊙的半径58R BC ==,,求线段AP 的长.答案:解:(1)证明:过点A 作AE BC ⊥,交BC 于点E . AB AC =,AE ∴平分BC . ∴点O 在AE 上. 又AP BC ∥, AE AP ∴⊥.AP ∴为O ⊙的切线. (2)142BE BC == ,3OE ∴=.又AOP BOE ∠=∠ , OBE OPA ∴△∽△.BE OE AP OA∴=. 即435AP =. 203AP ∴=.第38题. 已知,如图,O ⊙的直径AB 与弦CD 相交于E , BCBD =,O ⊙的切线BF 与弦AD 的延长线相交于点F .(1)求证:CD BF ∥;(2)连结BC ,若O ⊙的半径为4,3cos 4BCD ∠=,求线段AD 、CD 的长.答案:解:(1) 直径AB 平分 CD, ∴AB CD ⊥.BF 与O ⊙相切,AB 是O ⊙的直径,AB BF ∴⊥. CD BF ∴∥. (2)连结BD ,AB 是O ⊙的直径, 90ADB ∴∠=°, 在Rt ADB △中,3cos cos 4A C ∠=∠=,428AB =⨯=. 3cos 864AD AB A ∴=∠=⨯= .AB CD ⊥于E , 在Rt AED △3cos cos 4A C ∠=∠=,sin A ∠=.sin 6DE AD A ∴=∠== 直径AB 平分 CD ,2CD DE ∴==.第39题. 如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠. (1)求证:PC 是O ⊙的切线; (2)求证:12BC AB =; (3)点M 是 AB 的中点,CM 交AB 于点N ,若4AB =,求MN MC 的值.答案:解:(1)OA OC A ACO =∴∠=∠ ,, 又22COB A COB PCB ∠=∠∠=∠ ,, A ACO PCB ∴∠=∠=∠. 又AB 是O ⊙的直径, 90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥, 而OC 是O ⊙的半径, ∴PC 是O ⊙的切线.(2)AC PC A P =∴∠=∠ ,, A ACO PCB P ∴∠=∠=∠=∠,O N B PCAMO N B PCAM又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠ ,,12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. (3)连接MA MB ,,点M 是AB 的中点, AM BM ∴=,ACM BCM ∴∠=∠, 而ACM ABM ∠=∠,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,MBN MCB ∴△∽△,BM MN MC BM∴=,2BM MN MC ∴= , 又AB 是O ⊙的直径, AM BM=, 90AMB AM BM ∴∠==°,.4AB BM =∴= ,28MN MC BM ∴== .第40题. 如图,等腰OAB △中,OB OA =,以点O 为圆心作圆与底边AB 相切于点C .求证:BC AC =.答案:证明:∵AB 切⊙O 于点C ,∴AB OC ⊥. ∵OB OA =, ∴BC AC =.(若用三角形全等、勾股定理、三角函数等知识证明的按相应步骤给分.)第41题. 如图,AB 是O ⊙的直径,O ⊙交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的个数是( )AD BC ⊥① EDA B ∠=∠② 12OA AC =③ ④DE 是O ⊙的切线 A .1个 B .2个 C .3个 D .4个B答案:D第42题. 如图,AB 与O ⊙相切于点B ,AO 的延长线交O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= .答案:28°第43题. 如图,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥于点N .(1)求证MN 是O ⊙的切线;(2)若1202BAC AB ∠==°,,求图中阴影部分的面积.答案:(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线. (2)连接AM .∵AB 为直径,点M 在O ⊙上,∴90AMB ∠=°. ∵120AB AC BAC =∠=,°,∴30B C ∠=∠=°,∴60AOM ∠=°. 又∵在Rt AMC △中,MN AC ⊥于点N ,∴30AMN ∠=°.1sin sin 30sin 302AN AM AMN AC =∠==°°,cos sin 30cos302MN AM AMN AC =∠==°°,C∴()28ANMOAN OM MN S +==梯形,260π1π3606OAM S == 扇形,∴4π24S =阴影.第44题. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,过点D 作DF ⊥AB 于点E ,交⊙O 于点F ,已知OE =1cm ,DF =4cm . (1)求⊙O 的半径;(2)求切线CD 的长答案:解:(1)连接OD , 在O ⊙中,直径AB ⊥弦DF 于点E ,122DE DF ∴==.在Rt ODE △中,1OE =,2DE =,OD ∴cm ). (2)CD 切O ⊙于点D ,OD CD ∴⊥于点D .在OED △与ODC △中,90OED ODC ∠=∠=°,EOD DOC ∠=∠. ∴OED ODC △∽△. 则OE ED OD DC =2DC =.CD ∴=cm ).第45题. 如图,直线l 切⊙O 于点A ,点P 为直线l 上一点,直线PO 交⊙O 于点C 、B ,点D 在线段AP 上,连结DB ,且AD=DB . (1)求证:DB 为⊙O 的切线.(2)若AD=1,PB=BO ,求弦AC 的长.ACD FO E B 图答案:(1)证明: 连结OD∵ P A 为⊙O 切线 ∴ ∠OAD = 90°∵ OA=OB ,DA=DB ,DO=DO , ∴ΔOAD ≌ΔOBD ∴ ∠OBD =∠OAD = 90°, ∴P A 为⊙O 的切线 (2)解:在RtΔOAP 中, ∵ PB =OB =OA ∴ ∠OP A =30° ∴ ∠POA =60°=2∠C , ∴PD =2BD =2DA =2 ∴ ∠OP A =∠C =30° ∴ AC =AP =3第46题. 如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.答案:证明:(1)连接OD OE BD 、、.AB 是O ⊙的直径,90CDB ADB ∴∠=∠=°, E 点是BC 的中点,DE CE BE ∴==. OD OB OE OE ODE OBE ==∴ ,,△≌△. 90ODE OBE ∴∠=∠=∴°,直线DE 是O ⊙的切线. (2)作OH AC ⊥于点H ,由(1)知,BD AC ⊥,EC EB =.OA OB OE AC =∴ ,∥,且12OE AC =. CDF OEF ∴∠=∠,DCF EOF ∠=∠.CF OF = ,DCF EOF ∴△≌△,DC OE AD ∴==. 45BA BC A ∴=∴∠=,°. OH AD OH AH DH ∴== ⊥,.13tan 3OH CH OH ACO CH ∴=∴∠==,.CEB A OF D C EBAOF D H第47题. 如图,O ⊙是Rt △ABC 的外接圆,∠ABC =90°,点P 是圆外一点,P A 切O ⊙于点A ,且P A=PB .(1)求证:PB 是O ⊙的切线;(2)已知P ABC =1,求O ⊙的半径.答案:解:(1)证明:连接OBOA OB OAB OBA =∴∠=∠ ,. PA PB PAB PBA =∴∠=∠ ,.OAB PAB OBA PBA ∴∠+∠=∠+∠. 即PBO ∠.又PA 是O ⊙的切线,9090P A O P B O ∴∠=∴∠=°,°, OB PB ∴⊥.又OB 是O ⊙的半径,PB ∴是O ⊙的切线.说明:还可连接OB 、OP ,利用OAP OBP △≌△来证明OB PB ⊥.(2)解:连接OP ,交AB 于点D .PA PB =∴ ,点P 在线段AB 的垂直平分线上. OA OB =∴ ,点O 在线段AB 的垂直平分线上. OP ∴垂直平分线段AB . 90PAO PDA ∴∠=∠=°又APO DPA APO DPA ∠=∠∴ ,△∽△.2AP POAP PO DP DP PA∴=∴=,·. ()21122OD BC PO PO OD AP ==∴-= 又,.即2212PO PO -=,解得2PO =.在Rt APO △中,1OA ==,即O ⊙的半径为1.(图)(图)P第48题. 如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径;(2)求图中阴影部分的面积.答案: (1)连结OC ,则 OC AB ⊥.∵OA OB =,∴1122AC BC AB ===⨯= 在Rt AOC △中,3OC ===. ∴ ⊙O 的半径为3.(2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. 阴影部分的面积为Rt Δ=OBC OCD S S S -阴影扇形 =12OC CB ⋅-3π2-3π2.C O A B D。
圆的切线的性质与判定-练习题 含答案

圆的切线的性质与判定副标题一、选择题(本大题共2小题,共6.0分)1.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为A. 相离B. 相切C. 相交D. 无法确定【答案】C【解析】解:半径,圆心到直线的距离,,即,直线和圆相交,故选C.由直线和圆的位置关系:,可知:直线和圆相交.本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设的半径为r,圆心O到直线l的距离为d,直线l和相交;直线l和相切;直线l和相离.2.在中,,,,以点C为圆心,以为半径画圆,则与直线AB的位置关系是A. 相交B. 相切C. 相离D. 不能确定【答案】A【解析】解:过C作于D,如图所示:在中,,,,,的面积,,,即,以为半径的与直线AB的关系是相交;故选A.过C作于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.二、填空题(本大题共3小题,共9.0分)3.如图,已知是的内切圆,切点为D、E、F,如果,,,则内切圆的半径______ .【答案】1【解析】解:是的内切圆,切点为D、E、F,,,,,,,,,,,,,是直角三角形,内切圆的半径,故答案为1.根据切线长定理得出,,,进而得出是直角三角形,再利用直角三角形内切圆半径求法得出内切圆半径即可.此题主要考查了切线长定理以及直角三角形内切圆半径求法,根据切线长定理得出是直角三角形是解题关键.4.如图,AD、AE、CB均为的切线,D,E,F分别是切点,,则的周长为______ .【答案】16【解析】解:、AE、CB均为的切线,D,E,F分别是切点,,,,的周长,的周长,,的周长为16.根据切线长定理得:,,,再由的周长代入可求得结论.本题主要考查了切线长定理,熟练掌握从圆外一点引圆的两条切线,它们的切线长相等;此题运用线段间的等量代换将周长转化为一条线段长的2倍,得出结论.5.如图,PA、PB是的切线,A、B是切点,已知,,那么AB的长为______.【答案】【解析】解:过点O作于点C,,、PB是的切线,,,,是等边三角形,,,在中,,,.故答案为:.首先过点O作于点C,由垂径定理可得:,又由PA、PB是的切线,由切线长定理可得,由,即可得是等边三角形,继而可求得,则可求得AC的长,继而求得答案.此题考查了切线长定理、垂径定理、等边三角形的判定与性质以及三角函数的定义此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题(本大题共3小题,共24.0分)6.如图,AB为直径,C为上一点,点D是的中点,于E,于F.判断DE与的位置关系,并证明你的结论;若,求AC的长度.【答案】解:与相切.证明:连接OD、AD,点D是的中点,,,,,,,,,与相切.连接BC交OD于H,延长DF交于G,由垂径定理可得:,,,,弦心距,是直径,,,是的中位线,.【解析】先连接OD、AD,根据点D是的中点,得出,进而根据内错角相等,判定,最后根据,得出DE与相切;先连接BC交OD于H,延长DF交于G,根据垂径定理推导可得,再根据AB是直径,推出OH是的中位线,进而得到AC的长是OH长的2倍.本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线本题也可以根据与相似,求得AC的长.7.如图,AB为的直径,C为上一点,AD与过点C的切线互相垂直,垂足为点D,AD交于点E,连接CE,CB.求证:;若,,求AE的长.【答案】证明:连接OC,是的切线,.,,.又,,,;解:是直径,,,,.,,∽,,即,,.在直角中,,.【解析】连接OC,利用切线的性质和已知条件推知,根据平行线的性质和等角对等边证得结论;,通过相似三角形∽的对应边成比例求得,在直角中,由勾股定理得到,故AE.本题考查了切线的性质,勾股定理,相似三角形的判定与性质,解题时,注意辅助线的作法.8.如图,AB为的直径,C是上一点,过点C的直线交AB的延长线于点D,,垂足为E,F是AE与的交点,AC平分.求证:DE是的切线;若,,求图中阴影部分的面积.【答案】证明:连接OC,,,平分,,,,,,,,,点C在圆O上,OC为圆O的半径,是圆O的切线;解:在中,,,,在中,,,,,,,,,,,,阴影部分的面积为.【解析】连接OC,先证明,进而得到,于是得到,进而证明DE是的切线;分别求出的面积和扇形OBC的面积,利用即可得到答案.本题主要考查了切线的判定以及扇形的面积计算,解的关键是证明,解的关键是求出扇形OBC的面积,此题难度一般.。
课题:切线的性质与判定及切线长定理专题

切线的性质与判定、切线长定理专题班级:姓名:1、切线的性质例1:(1)AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于 . (2).如图,在矩形ABCD中,AB=6,AD=10,AD,AB,BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,且点为N,则DM的长为()A. B.8 C. D.2(1)(2)练习:1、如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=115°,过D点的切线PD与射线BA交于点P,则∠ADP的度数为;2.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为;3.如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a>0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是()A. B. C. D.(1)(2)(3)4.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当⊙O与边BC所在的直线与相切时,则AB的长是.5.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值() A.5 B.4 C.4.75 D.4.82、切线的判定例2:(1)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D 为圆心,DB长为半径作⊙D,AB=10,EB=6.(1)求证:AC是⊙D的切线;(2)求线段AC的长.(2)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C 作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.练习:1.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.3、切线长定理例3:(P102,第11题)若AB、BC、CD分别与⊙O相切于E、F、G 三点,且AB∥CD,BO=6,CO=8.(1)求∠BOC的度数;(2)求BC的长;(3)求半径OF的长;(4)E、O、G共线吗?说明理由.(5)连接G、F,求证OB∥FG(6)连接EF 、GF 分别交OB 于P ,交OC 于Q,求证:四边形OPFQ 为矩形.(7)若延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于点N ,求MN 的长.变式1.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=12cm ,AD=8cm ,BC=22cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动.P 、Q 分别从点A 、C 同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t (s ).(1)当t 为何值时,四边形PQCD 为平行四边形?(2)当t 为何值时,PQ 与⊙O 相切?变式2.如图,四边形ABCD 中,AD 平行BC ,∠ABC=90°,AD=2,AB=6,以AB 为直径的半⊙O 切CD 于点E ,F 为弧BE 上一动点,过F 点的直线MN 为半⊙O 的切线,MN 交BC 于M ,交CD 于N ,则△MCN 的周长为( )A .9B .10C .3D .2(变式2) (变式3) (变式4) (变式5) 变式3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A .12B .24C .8D .6变式4.如图,PA 、PB 、分别切⊙O 于A 、B 两点,∠P=40°,则∠C 的度数为 ;变式5.如图,PA 、PB 、CD 分别切⊙O 于A 、B 、E ,CD 交PA 、PB 于C 、D 两点,若∠P=40°,则∠PAE+∠PBE 的度数为PQ变式6.如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.3 C.3 D.(变式6) (例4)4、动态问题例4:如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm,如果⊙P以1cm/s的速度沿由A向B的方向移动,那么⊙P与直线CD相切时运动时间是 s.练习:1.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是 cm.(1题) (2题)2.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是.变式:如2题图,已知∠AOB=60°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.若⊙M在OB边上运动,则当OM= cm时,⊙M与OA相切.3.如图,P为正比例函数y=x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).则⊙P与直线x=2相切时点P的坐标为.4.如图,已知⊙P的半径为2,圆心P在抛物线y=﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线的性质及判定练习题
1.已知:Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,以C点为圆心,作半径为R的圆,求:
(1)当R为何值时,⊙C和直线AB相离?
(2)当R为何值时,⊙C和直线AB相切?
(3)当R为何值时,⊙C和直线AB相交?
2.已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.
3.已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.
4、如图4,ΔABC中,AB=AC,以AB为直径作⊙O交BC于D,DE⊥AC于E。
求证:DE是⊙O的切线。
5、如图5,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,
∠C=20°。
求∠CDA的度数。
3、如图6,AB是⊙O直径,CA与⊙O相切于点A,连接CO交⊙O 于D,CO的延长线交⊙O于E。
连接BE、BD,∠ABD=30°.
求∠EBO 和∠C的度数。
7、如图7,AB为⊙O直径,PA、PC为⊙O的切线,A、C为切点,∠BAC=30°
(1)求∠P大小。
(2)AB=2,求PA的长。
8.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E点,直线EF⊥AC于F.求证:EF与⊙O相切.
9.已知:如图,PA切⊙O于A点,PO∥AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?说明你的理由.
10.如图,直线PA 交园O 于A 、E 两点,过点A 作园o 的直径AB ,AC 平分∠PAB 交园o 于点C ,作CD 垂直于PA 点D (1) 求证CD 为园O 的切线 (2) 若DC=4,DA=2求园O 的直径
11如图园o 的直径为AB ,直线ED 切园O 于点C ,过 B 作BD 垂直ED 于D 求证∠ABC=∠CBD
(2)若将直线ED 向上平移其他条件不变,∠CBD 与哪个角相等。
A
B
D
C E B
E
D P
C
A
12如图,在⊙O 中,AB 为直径,AC 为弦,过点C 作CD⊥AB 与点D ,将△ACD 沿AC 翻折,点D 落在点E 处,AE 交⊙O 于点F ,连接OC 、FC. (1)求证:CE 是⊙O 的切线。
(2)若FC∥AB,求证:四边形 AOCF 是菱形。
B
D
A
C E
A
B。