初一数学下册全书知识点汇总非常适合期末复习用

合集下载

七年级数学下册知识点归纳

七年级数学下册知识点归纳

七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。

初一下册数学知识点总结归纳

初一下册数学知识点总结归纳

初一下册数学知识点总结归纳初一下册数学知识点总结归纳(一)一、整数的概念和基本性质1. 整数的定义和性质(正整数、负整数、0、相反数等);2. 整数的加、减、乘、除法则;3. 整数比大小(绝对值大小比较);4. 整数的绝对值和相反数的性质。

二、分数的概念和基本性质1. 分数的定义和性质(有理数、分数线、分子、分母等);2. 分数的加、减、乘、除法则;3. 分数化简、约分;4. 分数的比较大小(通分后比较分子);5. 分数和整数的加、减、乘、除法。

三、小数的概念和基本性质1. 小数的定义和性质(有限小数、无限循环小数、无限不循环小数等);2. 小数的转化(小数转分数、分数转小数);3. 小数的加、减、乘、除法则。

四、代数式及其运算1. 代数式的基本概念(字母、常数、系数、项、次数);2. 代数式的加、减、乘、除法则;3. 多项式(单项式、多项式、常数项、一次项、二次项等);4. 四则运算(加、减、乘、除);5. 同类项的合并和分解、因式分解;6. 多项式除以一次式及其余数。

初一下册数学知识点总结归纳(二)五、图形的初步认识1. 图形的分类(平面图形、立体图形等);2. 平面图形(点、线、面、封闭图形、不封闭图形等);3. 立体图形(球、立方体、长方体、圆柱体、圆锥体、棱锥体等);4. 基本图形的名称和性质(正方形、长方形、圆形、三角形等);5. 图形坐标系(直角坐标系、平面直角坐标系、三维坐标系等)。

六、比例与变量1. 比例的基本概念(比、比值、比例等);2. 计算比例的方法(倍数、分数、百分数表示比例等);3. 比例运算的定理(倍数定理、分离变量法等);4. 并、集、差的基本概念;5. 变量的概念和使用。

七、图形的性质和运动1. 学习使用尺规作图;2. 放缩、旋转、平移的概念和性质;3. 图形的对称性和中心对称;4. 角度的概念和计算方法;5. 直线和平面的性质(平面内的角、直线的交角、平行线等)。

初一数学下册知识点总结(6篇)

初一数学下册知识点总结(6篇)

初一数学下册知识点总结(6篇)初一数学下册知识点总结1初一数学下册期末考试知识点总结一(苏教版)第七章平面图形的认识(二) 1第八章幂的运算 2第九章整式的乘法与因式分解 3第十章二元一次方程组 4第十一章一元一次不等式 4第十二章证明 9第七章平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。

同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。

描述:平行于同一直线的两条直线是平行的。

补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。

描述:垂直于同一直线的两条直线是平行的。

3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的性质:图形平移后,连接各组对应点得到的线段相互平行(或在同一条直线上)且相等。

5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任何两条边之差都小于第三条边。

若三角形的三边分别为a、b、c,则6、三角形中的主要线段:三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的外角大于与其不相邻的任何内角。

8、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

第八章幂的运算幂(p5初一数学下册知识点总结21.同一平面内,两直线不平行就相交。

2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

七年级数学下册期末知识点

七年级数学下册期末知识点

七年级数学下册期末知识点
1. 平面图形
在平面图形这一篇章中,我们主要学习了几何图形的种类、性
质和计算方法。

这包括了三角形、四边形、圆形等几何图形的定义、画法以及计算其周长、面积等基本性质。

同学们需要掌握这
些几何图形的基本特征,并能够准确、灵活地运用相关知识进行
计算。

2. 常用计算方法
在这一部分中,我们主要学习了一些基本的计算方法和技巧。

比如,如何进行分数的加减乘除、如何进行百分数的换算、如何
使用正比例和反比例等等。

这些计算方法和技巧是学习数学的基础,同学们需要认真理解和掌握。

3. 一元一次方程
一元一次方程是我们学习数学的重点内容之一。

我们需要掌握
如何列出一元一次方程,以及如何通过变形、移项来求解方程。

同时,我们还需要学习如何将实际问题转化为一元一次方程求解。

这是数学思维和计算能力的重要体现。

4. 数据的统计和分析
在这一部分中,我们主要学习了如何进行数据的统计和分析。

这包括了如何计算数据的中心位置、散布程度和偏态程度,以及如何使用直方图、折线图、饼图等工具进行数据可视化。

同学们需要掌握这些方法和技巧,以便在实际生活中能够运用自如。

总之,七年级数学下册期末知识点涵盖了平面图形、常用计算方法、一元一次方程和数据的统计和分析等方面。

同学们需要认真学习,掌握基本概念、方法和技巧,注重实际运用和思维能力的培养,才能在数学学科中取得好成绩。

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。

七年级数学下册全部知识点归纳(含概念公式实用)

七年级数学下册全部知识点归纳(含概念公式实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中全部字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包含它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1〞。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包含项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不肯定是单项式。

4、整式不肯定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。

3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。

〔2〕按去括号法则去括号。

〔3〕合并同类项。

4、代数式求值的一般步骤:〔1〕代数式化简。

〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。

初一下学期数学知识点总结

初一下学期数学知识点总结

初一下学期数学知识点总结一、代数1. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的基本性质- 一元一次不等式及其解法- 一元一次不等式的解集表示2. 函数- 函数的概念- 函数的表示方法(表格、图形、解析式)- 线性函数和常函数的图像及性质- 函数的基本运算(加法、减法、乘法、除法)3. 多项式- 多项式的概念- 多项式的加法和减法- 多项式乘以单项式的运算- 多项式乘以多项式的运算- 多项式的因式分解(提公因式、公式法)二、几何1. 平面图形- 平行线的性质- 角的概念和分类(邻角、对角、同位角等)- 三角形的基本性质- 特殊三角形(等腰三角形、等边三角形、直角三角形) - 四边形的基本性质(平行四边形、矩形、菱形、正方形)2. 图形的变换- 平移变换- 旋转变换- 轴对称变换- 相似变换3. 几何图形的计算- 面积的计算(三角形、四边形、圆)- 周长的计算- 体积的计算(长方体、立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 概率的基本概念- 简单事件的概率计算- 独立事件的概率计算四、数列1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 数列的计算- 等差数列的通项公式和求和公式- 等比数列的通项公式和求和公式请根据以上内容在Word文档中创建一个格式化的文档,确保使用清晰的标题和子标题,以及适当的列表和编号来组织内容。

您可以添加适当的图表和示例来辅助解释。

完成后,确保文档无错乱字符,逻辑清晰,格式规范,以便读者下载后可以轻松编辑和使用。

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)第1章平行线在同一平面内,两条直线的位置关系只有两种:相交与平行。

平行线的定义为:在同一平面内,不相交的两条直线叫做平行线,用符号“∥”表示。

为什么要有“在同一平面内”这个条件?因为平行线只存在于同一平面内,如果不在同一平面内,两条直线可能会相交。

平行线的基本事实是:经过直线外一点,有且只有一条直线与这条直线平行。

为什么要经过“直线外”一点?因为如果经过直线上的点,会有无数条直线与这条直线平行。

用三角尺和直尺画平行线的方法是:一贴,二靠,三推,四画。

需要注意的是,作图题要写出结论。

同位角、内错角、同旁内角是判断平行线关系的重要概念。

在判断过程中,需要画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线。

同位角在截线的同旁,被截线的同一侧;内错角在截线的异侧,被截线之间;同旁内角在截线的同旁,被截线之间。

练时需要填写正确的角对应关系。

平行线的判定有多种方法:同位角相等、内错角相等、同旁内角互补、平行线的定义、平行于同一条直线的两条直线平行、在同一平面内,垂直于同一条直线的两条直线互相平行。

在练中需要根据给定条件判断两条直线是否平行。

平行线的性质包括同位角相等、内错角相等、同旁内角互补。

在练中需要根据已知条件计算未知角度。

图形的平移是指一个图形沿某个方向移动,在XXX的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移。

平移不改变图形的形状、大小和方向,且一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

在描述一个图形的平移时,必须指出平移的方向和距离。

练:已知△ABC和其平移后的△DEF,点A的对应点是D,点B的对应点是E,线段AC的对应线段是DF,线段AB的对应线段是DE,平移的方向是从△ABC到△DEF的方向,平移的距离是未知。

若AC=AB=5,BC=4,平移的距离是3,则CF=4,DB=5,AE=3,四边形AEFC的周长是14.折叠问题:1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠XXX°,则∠1=64°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浩山数学复习资料第五章《相交线与平行线》一、知识点5.1相交线5.1.1相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

画已知直线的垂线有无数条。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线5.2.1平行线在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

在同一平面内两条直线的关系只有两种:相交或平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

5.2.2直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。

两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。

两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。

判定两条直线平行的方法:方法 1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

方法 2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

方法 3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

5.3平行线的性质平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。

5.4平移⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

图形的这种移动,叫做平移变换,简称平移。

第七章《三角形》一、知识点7.1与三角形有关的线段7.1.1三角形的边由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。

三角形两边的和大于第三边。

7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性三角形具有稳定性。

7.2与三角形有关的角7.2.1三角形的内角三角形的内角和等于180。

7.2.2三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角。

7.3多边形及其内角和7.3.1多边形在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

n边形的对角线公式:2)3(-nn各个角都相等,各条边都相等的多边形叫做正多边形。

7.3.2多边形的内角和n边形的内角和公式:180(n-2)多边形的外角和等于360。

7.4课题学习镶嵌1 三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

☆2判断三条线段能否组成三角形。

①a+b>c(a b为最短的两条线段)②a-b<c (a b为最长的两条线段)☆3第三边取值范围:a-b < c <a+b 如两边分别是5和8 则第三边取值范围为3<x<13.4 对应周长取值范围若两边分别为a,b则周长的取值范围是 2a<L<2(a+b) a为较长边。

如两边分别为5和7则周长的取值范围是 14<L<24.☆5 三角形的角平分线、高、中线都有三条,都是线段。

其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。

6“三线”特征:☆三角形的中线①平分底边。

②分得两三角形面积相等并等于原三角形面积的一半。

③分得两三角形的周长差等于邻边差。

☆7 直角三角形:①两锐角互余。

② 30度所对的直角边是斜边的一半。

③三条高交于三角形的一个顶点。

④∠A=1/2∠B=1/3∠C ⑤∠A: ∠B: ∠C=1:2:3 ⑥∠A=∠B+∠C ⑦∠A: ∠B: ∠C=1:1:2 ⑧∠A=90-∠B☆8 相关命题:→1 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

→2 锐角三角形中最大的锐角的取值范围是60≤X<90 。

最大锐角不小于60度。

→3 任意一个三角形两角平分线的夹角=90+第三角的一半。

→4 钝角三角形有两条高在外部。

→5 全等图形的大小(面积、周长)、形状都相同。

→6 面积相等的两个三角形不一定是全等图形。

→7 能够完全重合的两个图形是全等图形。

→8 三角形具有稳定性。

9 三条边分别对应相等的两个三角形全等。

10 三个角对应相等的两个三角形不一定全等。

11 两个等边三角形不一定全等。

12 两角及一边对应相等的两个三角形全等。

13 两边及一角对应相等的两个三角形不一定全等。

14 两边及它们的夹角对应相等的两个三角形全等。

15 两条直角边对应相等的两个直角三角形全等。

16 一条斜边和一直角边对应相等的两个三角形全等。

17 一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18 一角和一边对应相等的两个直角三角形不一定全等。

19 有一个角是60的等腰三角形是等边三角形。

初一数学(下)总复习——代数部分第八章《二元一次方程组》一、知识点8.1二元一次方程组含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

8.3再探实际问题与二元一次方程组第九章《不等式与不等式组》一、知识点9.1不等式9.1.1不等式及其解集用“<”或“>”号表示大小关系的式子叫做不等式。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

9.1.2不等式的性质不等式有以下性质:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。

9.2实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。

9.3一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。

几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

解不等式就是求它的解集。

对于具有多种不等关系的问题,可通过不等式组解决。

解一元一次不等式组时。

一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。

9.4课题学习利用不等关系分析比赛第十五章《整式》知识点(见已整理)第六章《平面直角坐标系》一、知识点6.1平面直角坐标系6.1.1有序数对有顺序的两个数a与b组成的数对,叫做有序数对。

6.1.2平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。

坐标轴上的点不属于任何象限。

6.2坐标方法的简单应用6.2.1用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

6.2.2用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

二、典型习题一、选择题1.在平面直角坐标系中,点P(-2,3)在()A、第一象限B、第二象限C、第三象限D、第四象限2.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()北南西东BADCOMA.点A B.点BC.点C D.点D3.点M(2,-3)关于y轴的对称点N的坐标是()A.(-2,-3)B.(-2, 3)C.(2, 3)D.(-3,2)4.(已知点P(3,-2)与点Q关于x轴对称,则Q点的坐标为()A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)5.已知直线y=mx-1上有一点B(1,n),它到原点的距离是10,则此直线与两坐标轴围成的三角形的面积为()(A)12(B)14或12(C)14或18(D)18或126.已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y轴对称,那么点A的对应点A'的坐标为().A.(-4,2) B.(-4,-2) C.(4,-2) D.(4,2)7.在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7);B.(5,3)C.(7,3);D.(8,2)8.以如图所示的方格纸中,每个小正方形的边长为1,如果以MN所在的直线为Y轴,以小正方形的边长为单位长度建立平面直角坐标系,第7题图使A 点与B 点关于原点对称,则这时C 点的坐标可能是( ) A 、(1,3);B 、(2,-1);C 、2,1);D 、(3,1)9.在平面直角坐标系中,若点P (x -2, x ) 在第二象限,则x 的取值范围为( )A .x >0 ;B .x <2 ;C .0<x <2;D .x >210.在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴的正方向的夹角为α,则用[ρ,α]表示点P 的极坐标.显然,点P 的坐标和它的极坐标存在一一对应关系.如点P 的坐标(1,1)的极坐标为P[2,45°],则极坐标Q[32,120°]的坐标为( )A.(-3,3)B.(-3, 3)C.(3,3)D.(3, 3) 二、填空题11.如图,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、 A 5(2,-1)、…。

相关文档
最新文档