2020年 名师讲解 高考数学 提分宝典 函数概念与基本初等函数之第1讲 函数及其表示

合集下载

2020版高考数学第2章函数的概念与基本初等函数Ⅰ第4讲指数与指数函数课件理

2020版高考数学第2章函数的概念与基本初等函数Ⅰ第4讲指数与指数函数课件理

形结合思想、分类讨论思想的运用和考生的逻辑推理、数学运算素养.
理科数学 第二章:函数概念与基本初等函数Ⅰ
A考点帮∙知识全通关
考点1 指数与指数运算 考点2 指数函数的图象与性质
考点1 指数与指数运算(重点)
理科数学 第二章:函数概念与基本初等函数Ⅰ
考点2
指数函数的图象与性质(重点)
1.指数函数的概念 函数y=ax(a>0且a≠1)叫作指数函数,其中指数x是自变量,函数的定义域是 R,a是底数. 辨析比较 幂函数与指数函数的区别
式子
指数函数y=ax 幂函数y=xα 名称 常数 a为底数,a>0且a≠1 α为指数,α∈R x 指数 底数 y 幂值 幂值
理科数学 第二章:函数概念与基本初等函数Ⅰ
2.指数函数的图象和性质
y=ax 图象 函数的定义域为R;值域为(0,+∞). 性质 函数图象过定点(0,1),即x=0时,y=1. 当x>0时,恒有y>1; 当x>0时,恒有0<y<1; 当x<0时,恒有0<y<1. 当x<0时,恒有y>1. 函数在定义域R上为增函数 函数在定义域R上为减函数 a>1 0<a<1
若a>1,函数 f(x)的单调增(减)区间即函数y=af(x)的单调增(减)区间;
若0<a<1,函数 f(x)的单调增(减)区间即函数y=af(x)的单调减(增)区间.即“同增
异减”.
注意 当底数a与1的大小不确定时应分类讨论.
3.求解指数型函数中的参数取值范围的基本思路
一般利用指数函数的单调性或最值进行转化,应注意对底数a进行分类讨论. 4.对于含有ax,a2x的函数表达式,通常可以令t=ax进行换元,但换元过程中要 注意新元的取值范围.

2020高考数学 精英备考专题讲座第一讲函数 第五节函数的综合应用2(理) 精品

2020高考数学 精英备考专题讲座第一讲函数 第五节函数的综合应用2(理) 精品

第五节 函数的综合应用(2)函数、导数、不等式等这三部分或它们的综合,在每年高考试题中都有大量出现,综合性都比较强,题目都有较高的难度;利用函数解不等式,利用导数研究函数的单调性,求函数的极值和最值等是考查的重点.特别今后,高考的应用题不一定是概率题,那么函数作为解决生活实际问题的重要方法,其应用题出现在高考试题中,并且可能常态化那也在情理之中. 考试要求 能结合实例,借助几何直观探索并了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会用导数求函数的极大值、极小值以及生活中的优化问题.能够利用函数解决一些生活实际问题. 题型一 函数与不等式例1设函数⎪⎩⎪⎨⎧≥--<+=1141)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A.]10,0[]2,(Y --∞B. ]1,0[]2,(Y --∞C. ]10,1[]2,(Y --∞D. ]10,1[)0,2[Y - 点拨:由分段函数的表达式知,需分成两类:解析:由1)(≥x f ,则21(1)1x x <⎧⎨+≥⎩或141x ≥⎧⎪⎨≥⎪⎩, 解该不等式组得,(,2][0,10]a ∈-∞-U .选A例2 已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是A )+∞B )+∞C (3,)+∞D [3,)+∞点拨:注意a 的取值范围,利用均值不等式求解.解:作出函数f (x )=|lg x |的图象,由()(),0f a f b a b =<<知01,lg lg ,1a b a b ab <<<-=∴=,22a b a a ∴+=+,考察函数2y x x =+的单调性可知,当01x <<时,函数单调递减,223a b a a∴+=+>,故选C.易错点:例1分段函数不等式一般通过分类讨论的方式求解,解对数不等式没注意到真数大于0,或没注意底数在(0,1)上时,或不等号的方向写错等;例2直接利用均值不等式求解得22a b a a ∴+=+>.变式与引申1:已知函数()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为 .变式与引申2:已知二次函数cx bx ax x f ++=2)(,不等式x x f 2)(->的解集为)3,1(. ①若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式;②若)(x f 的最大值为正数,求实数a 的取值范围. 题型二 函数与数列例3 已知函数.21)1()())((=-+∈=x f x f R x x f y 满足 (1)求*))(1()1()21(N n nn f nf f ∈-+和的值; (2)若数列)1()1()2()1()0(}{f nn f n f n f f a a n n +-++++=Λ满足,求列数}{n a 的通项公式;(3)若数列{b n }满足1433221,41+++++==n n n n n b b b b b b b b S b a Λ,则实数k 为何值时,不等式n n b kS <2恒成立.点拨:(2)注意到1122011n n n n n n --+=+=+==L ,及1()(1)2f x f x +-=,构成对进行运算;(3)求出n b ,将11112n n b b n n +=⨯++裂项,并求和求出n S ,再利用二次函数单调性求解.解:(1)令 41)21(21)211()21(21=∴=-+=f f f x ,,则 令 21)1()1(21)11()1(1=-+=-+=n n f n f n f n f n x ,即,则(2)∵)1()1()2()1()0(f n n f n f n f f a n +-++++=Λ ①∴)0()1()2()1()1(f n f n n f n n f f a n +++-+-+=Λ ②由(1),知 21)1()1(=-+n n f n f ∴①+②,得.41.21)1(2+=∴⨯+=n a n a n (*)n N ∈(3)∵1144,n n n n a a b +==,11n n b +=,∴11112n n n n b b +++=⨯,∴1433221+++++=n n n b b b b b b b b S Λ1111111111111111()()()()2334451223344512n n n n =⨯+⨯+⨯++⨯=-+-+-++-++++L L )2(22121+=+-=n nn )2)(1(2)1(11222++---=+-+=-∴n n n k kn n n kn b kS n n 由条件,可知当02)1(2<---n k kn 恒成立时即可满足条件.设2)1()(2---=n k kn n f ,当k >0时,又二次函数的性质知02)1(2<---n k kn 不可能恒成立 当k=0时,f (n )=-n -2<0恒成立; 当k <0时,由于对称轴直线2121212)1(-<-=---=k k k n ∴f (n )在),1[+∞上为单调递减函数∴只要f (1)<0,即可满足02)1(2<---n k kn 恒成立∴由0,23,02)1()1(<<<---=k k k k f 又得,∴k <0 综上知,k ≤0,不等式n n b kS <2恒成立易错点:没有发现1122011n n n n n n --+=+=+==L ,可以结合1()(1)2f x f x +-=,进行逆序求和;对1433221+++++=n n n b b b b b b b b S Λ不能裂项求和或求和中出错,对02)1(2<---n k kn 恒成立的讨论不够严谨造成错误.变式与引申3:已知()x f 定义在R 上的函数,对于任意的实数a ,b 都有()()()a bf b af ab f +=,且()12=f ①求⎪⎭⎫⎝⎛21f 的值; ②求()n f -2的解析式(*∈N n )变式与引申4:一企业生产的某产品在不做电视广告的前提下,每天销售量为b 件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S (件)与电视广告每天的播放量n (次)的关系可用如图所示的程序框图来体现.①试写出该产品每天的销售量S (件)关于电视广告每天的播放量n (次)的函数关系式;②要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次? 题型三 含参数的函数极值问题例4 设x 1、)0()()(223212>-+=≠a x a bx ax x f x x x 是函数 的两个极值点. (1)若2,121=-=x x ,求函数f (x )的解析式; (2)若b x x 求,22||||21=+的最大值;(3)若)()()(,,1221x x a x f x g a x x x x --'==<<函数且,求证:.)23(121|)(|2+≤a a x g点拨:(2)根据根与系数关系得出两根异号,则212121212||||||()4x x x x x x x x +=-+-再用导数求b 的最大值;(3)将不等式问题转化为求函数的最大值问题.解:).0(23)(22>-+='a a bx ax x f(1)2,121=-=x x Θ是函数f (x )的两个极值点, .0)2(,0)1(='=-'∴f f.9,6,0412,02322-===-+=--∴b a a b a a b a 解得.3696)(23x x x x f --=∴(2)∵x 1、x 2是 f (x )是两个极值点,.0)()(21='='∴x f x f∴x 1、x 2是方程02322=-+a bx ax 的两根.∵△= 4b 2+ 12a 3, ∴△>0对一切a > 0,Rb ∈恒成立..0,0,3,32212121<⋅∴>-=⋅-=+x x a a x x a b x x Θ .3494)3(4)32(||||||2222121a a b a a b x x x x +=---=-=+∴由).6(3,22349422||||222221a a b a ab x x -=∴=+=+得 .60,0)6(3,022≤<≥-∴≥a a a b Θ 令.369)(),6(3)(22a a a h a a a h +-='-=则)(0)(,40a h a h a ∴>'<<时在(0,4)内是增函数; 0)(,64<'<<a h a 时 ∴h (a )在(4,6)内是减函数.∴a = 4时,h (a )有极大值为96,(]6,0)(在a h ∴上的最大值是96, ∴b 的最大值是.64 (3)证法一:∵x 1、x 2是方程0)(='x f 的两根, ))((3)(21x x x x a x f --='∴,22121)2|31|||(3|31|||3|)(|--+-≤--⋅-=∴x x x x a x x x x a x g .31,,3.)31(43)]31()[(43|)(|,0,0,12212122212121-=∴=-=⋅+-=----≤∴<->-∴<<x a x a x x x x a x x x x a x g x x x x x x x ΘΘ.)23(121)3131(43|)(|22+=++⋅≤∴a a a a x g 证法二:∵x 1、x 2是方程0)(='x f 的两根,))((3)(21x x x x a x f --='∴..31,,31221-=∴=-=⋅x a x a x x Θ|]1)(3)[31(|.|)31())(31(3||)(|--+=+--+=∴a x x a x a a x x a x g∵x 1 < x < x 2, )133)(31(|)(|++-+=∴a x x a x g aa a a x a a x x a 3143)2(3)313)(31(3232+++--=+-+-=12)23(3143223+=++≤a a a a a易错点:本题讨论、计算较多,不小心都容易出错,对问题的转化能力要求较高. 变式与引申5: 若函数()()11213123+-+-=x a ax x x f 在区间()4,1上是减函数,在区间()+∞,6上是增函数,求实数a 的取值范围.变式与引申6:已知函数()()0221ln 2≠--=a x ax x x f 存在单调递减区间,求a 的取值范围;题型四 函数应用题例5 2020年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测. 为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计算人数的时间,即1=n ;9点20分作为第二个计算人数的时间,即2=n ;依此类推ΛΛ,把一天内从上午9点到晚上24点分成了90个计算单位.对第n 个时刻进入园区的人数()f n 和时间n (n N *∈⎪⎪⎩⎪⎪⎨⎧≤≤≤≤+-≤≤⋅≤≤=-)9073(0)7237(21600300)3625(33600)241(3600)(1224n n n n n n f n ,*∈N n 对第n 个时刻离开园区的人数()g n 和时间n (n N *∈)满足以下关系(如图1-5-3):⎪⎩⎪⎨⎧∈≤≤≤≤-≤≤=*N n n n n n n g ,)9073(5000)7225(12000500)241(0)((1)试计算在当天下午3点整(即15点整)时,世博园区内共有多少游客?(2)请求出当天世博园区内游客总人数最多的时刻.(附123 1.096≈)点拨:(1)计算出入园游客总数与出园游客总数,其差就是所求;(2)当入园游客总数与出园游客总数之差最大,则游客总人数最多,按每段函数分别计算()()f n g n -.解:(1)当024n ≤≤且n N *∈时,()3600f n =, 当3625≤≤n 且n N *∈时,2412()36003n f n -=⋅所以36[(1)(2)(3)(24)][(25)(26)(36)]S f f f f f f f =++++++++L L(图1-5-2)108003600249072361O 1n f(n))(n f10800 3600 1 1 24 36 72 90 n=3600×24+3600×1⎡⎤-=86400+82200=168600; 另一方面,已经离开的游客总人数是:12(25)(26)(36)T g g g =+++L 12=×50012115002⨯+⨯39000=;……2分 所以361216860039000129600S S T =-=-=(人)故当天下午3点整(即15点整)时,世博园区内共有129600位游客.(2)当0)()(≥-n g n f 时园内游客人数递增;当0)()(<-n g n f 时园内游客人数递减. (i)当241≤≤n 时,园区人数越来越多,人数不是最多的时间; (ii)当3625≤≤n 时,令360012000500≤-n ,得出31≤n ,即当3125≤≤n 时,进入园区人数多于离开人数,总人数越来越多; 当3632≤≤n 时,12000500336001224->⋅-n n ,进入园区人数多于离开人数,总人数越来越多;(iii)当7237≤≤n 时, 令3002160050012000n n -+=-时,42n =, 即在下午4点整时,园区人数达到最多.此后离开人数越来越多,故园区内人数最多的时间是下午4点整. 易错点:(1)下午3点是哪个时段算不清出错; (2)不能读懂题意和看图,无从下手.变式与引申7:提高过江大桥的车辆通行能力可改善整个城市的交通状况。

2020高考数学考点预测4函数概念与基本初等函数Ⅰ(指数函数对数函数幂函数)

2020高考数学考点预测4函数概念与基本初等函数Ⅰ(指数函数对数函数幂函数)

2020高考数学考点预测4函数概念与基本初等函数I(指数函数对数函数幂函数)函数概念与差不多初等函数I〔指数函数、对数函数、幕函数〕一、考点介绍本部分考试大纲要求如下:〔1〕函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念②在实际情境中,会依照不同的需要选择恰当的方法〔如图像法、列表法、解析法〕表示函数.③了解简单的分段函数,并能简单应用.④明白得函数的单调性、最大〔小〕值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像明白得和研究函数的性质.〔2〕指数函数①了解指数函数模型的实际背景.②明白得有理指数幕的含义,了解实数指数幕的意义,把握幕的运算③明白得指数函数的概念,并明白得指数函数的单调性把握指数函数图像通过的专门占八、、-④明白指数函数是一类重要的函数模型.〔3〕对数函数①明白得对数的概念及其运算性质,明白用换底公式能将一样对数转化成自然对数或常用对数;了解对数在简化运算中的作用.②明白得对数函数的概念;明白得对数函数的单调性,把握函数图像通过的专门点.③明白对数函数是一类重要的函数模型;④了解指数函数y a x与对数函数y log a x互为反函数〔a 0,a 1〕.〔4〕幕函数①了解幕函数的概念.1丄②结合函数y x, y x2,y x[y -, y x2的图像,了解它们的变化情形x〔5〕函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判定一元二次方程根的存在性及根的个数.②依照具体函数的图像,能够用二分法求相应方程的近似解〔6〕函数模型及其应用①了解指数函数、对数函数以及幕函数的增长特点.明白直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型〔如指数函数、对数函数、幕函数、分段函数等在社会生活中普遍使用的函数模型〕的广泛应用.二、高考真题x 2 11. ----------------------------------------------------------------------------------- 〔 2018年安徽卷,数学文理科,13〕函数f(x) ----------------------------------------------------------- --- 的定义域为log 2(x 1)〖解析〗此题考查函数的定义域的相关知识,由题知:log 2(x 1)0, x 1 0且x 1 0 ,| x 21 1 0 ;解得:x >3.〖答案〗3,+数学文科,1 x 2, x < 1,1那么f -------- 的值x 2 x 2, x 1,f (2)2.〔 2018年山东卷,5〕设函数f(x)为〔 〕15278 D . 18A .B .c.—16 1691解析〗本小题要紧考查分段函数咨询题。

2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.3 含解析

2020版高考数学(文)新增分大一轮人教通用版讲义:第二章 函数概念与基本初等函数Ⅰ2.3 含解析

§2.3函数的奇偶性与周期性1.函数的奇偶性2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.概念方法微思考1.如果已知函数f(x),g(x)的奇偶性,那么函数f(x)±g(x),f(x)·g(x)的奇偶性有什么结论?提示在函数f(x),g(x)公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f(x)满足下列条件,你能得到什么结论?(1)f(x+a)=-f(x)(a≠0).(2)f(x+a)=1f(x)(a≠0).(3)f(x+a)=f(x+b)(a≠b).提示(1)T=2|a|;(2)T=2|a|;(3)T=|a-b|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x 2,x ∈(0,+∞)是偶函数.( × )(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.( × ) (3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ ) 题组二 教材改编2.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=______. 答案 -2解析 f (1)=1×2=2,又f (x )为奇函数, ∴f (-1)=-f (1)=-2.3.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=______. 答案 1解析 f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 4.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案 (-2,0)∪(2,5]解析 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5]. 题组三 易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-12答案 B解析 ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.答案 3解析 ∵f (x )为偶函数,∴f (-1)=f (1). 又f (x )的图象关于直线x =2对称, ∴f (1)=f (3).∴f (-1)=3.题型一 函数奇偶性的判断例1 判断下列函数的奇偶性: (1)f (x )=36-x 2+x 2-36; (2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎪⎨⎪⎧36-x 2≥0,x 2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称, ∴f (x )=36-x 2+x 2-36=0. ∴f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.(2)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=ln (1-x 2)-x .又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ), ∴函数f (x )为奇函数.思维升华 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.跟踪训练1 (1)下列函数中,既不是奇函数也不是偶函数的是( ) A .f (x )=x +sin 2x B .f (x )=x 2-cos x C .f (x )=3x -13xD .f (x )=x 2+tan x答案 D解析 对于选项A ,函数的定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),所以f (x )=x +sin 2x 为奇函数;对于选项B ,函数的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )=x 2-cos x 为偶函数;对于选项C ,函数的定义域为R ,f (-x )=3-x -13-x =-⎝⎛⎭⎫3x -13x =-f (x ),所以f (x )=3x -13x 为奇函数;只有f (x )=x 2+tan x 既不是奇函数也不是偶函数.故选D.(2)函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数 答案 C解析 易知函数的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又f (-x )=lg|sin(-x )|=lg|-sin x |=lg|sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg|sin x |是最小正周期为π的偶函数. 题型二 函数的周期性及其应用1.(2018·抚顺模拟)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________. 答案 -2解析 f (7)=f (-1)=-f (1)=-2.2.已知定义在R 上的函数f (x )满足f (2)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2 020)=________. 答案 -2- 3解析 由f (x +2)=1-f (x ),得f (x +4)=1-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (2 020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2 020)=-2- 3.3.(2017·山东)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________. 答案 6解析 ∵f (x +4)=f (x -2),∴f ((x +2)+4)=f ((x +2)-2),即f (x +6)=f (x ), ∴f (x )是周期为6的周期函数, ∴f (919)=f (153×6+1)=f (1). 又f (x )是定义在R 上的偶函数, ∴f (1)=f (-1)=6,即f (919)=6.4.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案2-1解析 依题意知:函数f (x )为奇函数且周期为2, 则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0. ∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+0+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (0)=122-1+20-1=2-1. 思维升华 利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三 函数性质的综合应用命题点1 求函数值或函数解析式例 2 (1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2, 则f (2 021)=________. 答案 -12解析 设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2 021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则f (x )=________.答案 ⎩⎪⎨⎪⎧e -x -1-x ,x ≤0,e x -1+x ,x >0 解析 ∵当x >0时,-x <0, ∴f (x )=f (-x )=e x -1+x ,∴f (x )=⎩⎪⎨⎪⎧e -x -1-x ,x ≤0,e x -1+x ,x >0.命题点2 求参数问题例3 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________. 答案 1解析 ∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2), ∴ln[(a +x 2)2-x 2]=0. ∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫32,则a +3b 的值为________. 答案 -10解析 因为f (x )是定义在R 上且周期为2的函数, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22, 即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________. 答案 [-1,0]解析 因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0,此时⎩⎪⎨⎪⎧-a -2=a 2≤0,-1-a ≤0,即⎩⎪⎨⎪⎧a ≤0,a ≥-1,即-1≤a ≤0. 命题点3 利用函数的性质解不等式例4 (1)已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,若f (ln x )<f (2),则x 的取值范围是( ) A .(0,e 2) B .(e -2,+∞)C .(e 2,+∞)D .(e -2,e 2)答案 D解析 根据题意知,f (x )为偶函数且在[0,+∞)上单调递增,则f (ln x )<f (2)⇔|ln x |<2,即-2<ln x <2,解得e-2<x <e 2,即x 的取值范围是(e -2,e 2).(2)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围为______________. 答案 ⎝⎛⎭⎫13,1解析 由已知得函数f (x )为偶函数,所以f (x )=f (|x |), 由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|). 当x >0时,f (x )=ln(1+x )-11+x 2, 因为y =ln(1+x )与y =-11+x 2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增.由f (|x |)>f (|2x -1|),可得|x |>|2x -1|,两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0, 解得13<x <1.所以符合题意的x 的取值范围为⎝⎛⎭⎫13,1.思维升华 解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2 (1)定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫x +32=f (x ),当x ∈⎝⎛⎦⎤0,12时,f (x )=12log (1-x ),则f (x )在区间⎝⎛⎭⎫1,32内是( ) A .减函数且f (x )>0B .减函数且f (x )<0C .增函数且f (x )>0D .增函数且f (x )<0答案 D解析 当x ∈⎝⎛⎦⎤0,12时,由f (x )=12log (1-x )可知,f (x )单调递增且f (x )>0,又函数f (x )为奇函数,所以在区间⎣⎡⎭⎫-12,0上函数也单调递增,且f (x )<0.由f ⎝⎛⎭⎫x +32=f (x )知,函数的周期为32,所以在区间⎝⎛⎭⎫1,32上,函数单调递增且f (x )<0.故选D.(2)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 答案 -12解析 由题意可知,f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. (3)已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (6-x 2)>f (x ),则实数x 的取值范围是________. 答案 (-3,2)解析 ∵g (x )是奇函数,∴当x >0时,g (x )=-g (-x )=ln(1+x ), 易知f (x )在R 上是增函数, 由f (6-x 2)>f (x ),可得6-x 2>x , 即x 2+x -6<0,∴-3<x <2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题. 一、函数性质的判断例1 (1)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)上单调递增 B .f (x )在(0,2)上单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称 答案 C解析 f (x )的定义域为(0,2).f (x )=ln x +ln(2-x )=ln [x (2-x )]=ln(-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减. 又y =ln u 在其定义域上单调递增,∴f (x )=ln(-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A ,B 错误;∵f (x )=ln x +ln(2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确;∵f (2-x )+f (x )=[ln(2-x )+ln x ]+[ln x +ln(2-x )]=2[ln x +ln(2-x )],不恒为0, ∴f (x )的图象不关于点(1,0)对称,∴选项D 错误. 故选C. (2)下列函数:①y =sin 3x +3sin x; ②y =1e x+1-12; ③y =lg 1-x1+x ; ④y =⎩⎪⎨⎪⎧-x +1,x ≤0,-x -1,x >0.其中是奇函数且在(0,1)上是减函数的是________. 答案 ②③解析 易知①中函数在(0,1)上为增函数;④中函数不是奇函数;满足条件的函数为②③. (3)定义在实数集R 上的函数f (x )满足f (x )+f (x +2)=0,且f (4-x )=f (x ).现有以下三个命题: ①8是函数f (x )的一个周期;②f (x )的图象关于直线x =2对称;③f (x )是偶函数. 其中正确命题的序号是________. 答案 ①②③解析 由f (x )+f (x +2)=0可得 f (x +4)=-f (x +2)=f (x ),∴函数f (x )的最小正周期是4,①对; 由f (4-x )=f (x ),可得f (2+x )=f (2-x ),f (x )的图象关于直线x =2对称,②对;f (4-x )=f (-x )且f (4-x )=f (x ), ∴f (-x )=f (x ),f (x )为偶函数,③对. 二、函数性质的综合应用例2 (1)(2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( ) A .-50 B .0 C .2 D .50 答案 C解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2. 故选C.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11) 答案 D解析 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).(3)设偶函数f (x )满足f (x )=2x -4(x ≥0),则满足f (a -2)>0的实数a 的取值范围为__________. 答案 {a |a >4或a <0}解析 ∵偶函数f (x )满足f (x )=2x -4(x ≥0),∴函数f (x )在[0,+∞)上为增函数,f (2)=0,∴不等式f (a -2)>0等价于f (|a -2|)>f (2),即|a -2|>2,即a -2>2或a -2<-2,解得a >4或a <0.1.下列函数中,既是偶函数又在区间(1,2)内单调递减的是( ) A .f (x )=x B .f (x )=1x 2C .f (x )=2x +2-xD .f (x )=-cos x答案 B解析 函数f (x )=1x2是偶函数,且在(1,2)内单调递减,符合题意.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)等于( ) A .-3 B .-54 C.54D .3答案 A解析 由f (x )为R 上的奇函数,知f (0)=0, 即f (0)=20+m =0,解得m =-1, 则f (-2)=-f (2)=-(22-1)=-3.3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x . A .①③ B .②③ C .①④ D .②④ 答案 D解析 由奇函数的定义f (-x )=-f (x )验证, ①f (|-x |)=f (|x |),为偶函数;②f (-(-x ))=f (x )=-f (-x ),为奇函数; ③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数; ④f (-x )+(-x )=-[f (x )+x ],为奇函数. 可知②④正确,故选D.4.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)等于( ) A .-2 B .0 C .2 D .1 答案 A解析 ∵函数f (x )为定义在R 上的奇函数,且周期为2, ∴f (1)=-f (-1)=-f (-1+2)=-f (1), ∴f (1)=0,f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=124-=-2, ∴f ⎝⎛⎭⎫-52+f (1)=-2. 5.(2018·锦州调研)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( ) A .(2,+∞) B.⎝⎛⎭⎫0,12∪(2,+∞) C.⎝⎛⎭⎫0,22∪(2,+∞) D .(2,+∞)答案 B解析 f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.已知偶函数f (x )对于任意x ∈R 都有f (x +1)=-f (x ),且f (x )在区间[0,1]上是单调递增的,则f (-6.5),f (-1),f (0)的大小关系是( ) A .f (0)<f (-6.5)<f (-1)B .f (-6.5)<f (0)<f (-1)C .f (-1)<f (-6.5)<f (0)D .f (-1)<f (0)<f (-6.5) 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=-f (x +1)=f (x ),∴函数f (x )的周期是2. ∵函数f (x )为偶函数,∴f (-6.5)=f (-0.5)=f (0.5),f (-1)=f (1). ∵f (x )在区间[0,1]上是单调递增的, ∴f (0)<f (0.5)<f (1),即f (0)<f (-6.5)<f (-1).7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________. 答案 -32解析 函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立, 所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 答案 -ln 2解析 由已知可得f ⎝⎛⎭⎫1e 2=ln 1e2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是奇函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=-f (2)=-ln 2. 9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________. 答案 9解析 由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9.10.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t 满足f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1),那么t 的取值范围是________. 答案 ⎣⎡⎦⎤1e ,e解析 由于函数f (x )是定义在R 上的偶函数, 所以f (ln t )=f ⎝⎛⎭⎫ln 1t ,由f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1),得f (ln t )≤f (1). 又函数f (x )在区间[0,+∞)上是单调递增的, 所以|ln t |≤1,即-1≤ln t ≤1,故1e ≤t ≤e.11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. (1)证明 ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8. ∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].13.若定义在R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2 023)=________.答案 1解析 因为f (x )>0,f (x +2)=1f (x ), 所以f (x +4)=f [(x +2)+2] =1f (x +2)=11f (x )=f (x ), 即函数f (x )的周期是4,所以f (2 023)=f (506×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 023)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).由f (x )>0,得f (1)=1,所以f (2 023)=f (1)=1.14.已知函数f (x )=x 3+2x ,若f (1)+f (1log a3)>0(a >0且a ≠1),则实数a 的取值范围是____________.答案 (0,1)∪(3,+∞)解析 因为函数f (x )=x 3+2x 是奇函数,且在R 上是增函数,f (1)+f (1log a3)>0,所以f (1log a3)>-f (1)=f (-1),所以1log a 3>-1,所以⎩⎪⎨⎪⎧1a >1,0<a <3或⎩⎪⎨⎪⎧0<1a <1,3<a ,所以a ∈(0,1)∪(3,+∞).15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为__________. 答案 ⎝⎛⎭⎫-2,23 解析 易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x -2,m ∈[-2,2],此时,只需⎩⎪⎨⎪⎧h (-2)<0,h (2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2 020)=________. 答案 0解析 因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0.所以f(1)+f(2)+f(3)+f(4)+…+f(2 020)=0.。

【600分考点-700分考法】2020版高考理数:专题(2)函数的概念与基本初等函数I

【600分考点-700分考法】2020版高考理数:专题(2)函数的概念与基本初等函数I


1 x2
-1= 1x+11x-1
= 1x+11x+1-2,
∴f(x)=x2-2x(x≠1).
方法二(换元法):设
1 x
+1=t,则x=
t-1 1(t≠1),
∴f(t)=

1 1
2
-1=(t-1)2-1=t2-2t,∴f(x)=x2-2x(x≠1).
t-1
考点一 函数的概念
求函数的值域时,应根据解析式的结构特点,选择适当的方法,常
见的方法: (1)配方法.将形如y=ax2+bx+c(a≠0)的函数配方,转化为顶点
式,利用二次函数值域的求法求解.
(2)单调性法.先判断函数的单调性,利用单调性确定函数的最值, 进而求得值域.若f(x)在[a,b]上单调递增,则x∈[a,b]时,
函数f(2x)的定义域为[0,1].所以函数g(x)有意义的条件是
0≤x≤1,
x-1≠0,
解得0≤x<1.故函数g(x)的定义域是[0,1).
【答案】[0,1)
考点一 函数的概念 方法2 求函数的解析式
求函数解析式的常见方法:
(1)待定系数法.若已知函数的类型(如一次函数、二次函数等),可直接设出 函数解析式.例如,二次函数可设为f(x)=ax2+bx+c(a≠0),其中a,b,c 是待定系数,根据题设条件列出方程组,解出a,b,c即可. (2)换元法.已知f(h(x))=g(x),求f(x)时,可设h(x)=t,从中解出x(用t 表示x),代入g(x)中进行换元得到f(t),最后将t换成x即可.
考点一 函数的概念
必备知识 全面把握
1.函数的定义
一般地,设A,B是非空的数集,如果按照某种确定的对应关 系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定 的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个 函数,记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫 做函数的定义域;与x的值相对应的y值叫做函数值,函数值的 集合{f(x)|x∈A}叫做函数的值域.

浙江2020版高考数学第三章函数概念与基本初等函数Ⅰ3.1函数及其表示讲义(含解析)

浙江2020版高考数学第三章函数概念与基本初等函数Ⅰ3.1函数及其表示讲义(含解析)

§3.1函数及其表示1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 概念方法微思考请你概括一下求函数定义域的类型?提示 (1)f (x )为分式型函数时,定义域为使分母不为零的实数集合; (2)f (x )为偶次根式型函数时,定义域为使被开方式非负的实数的集合;(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合; (4)若f (x )=x 0,则定义域为{x |x ≠0}; (5)指数函数的底数大于0且不等于1;(6)正切函数y =tan x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域就是集合B .( × )(2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( √ ) (3)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (4)函数f (x )的图象与直线x =1最多有一个交点.( √ )(5)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (6)分段函数是由两个或几个函数组成的.( × ) 题组二 教材改编2.[P74T7(2)]函数f (x )=x +3+log 2(6-x )的定义域是________. 答案 [-3,6)3.[P25B 组T1]函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只有唯一的x 值与之对应的y 值的范围是________.答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5] 题组三 易错自纠4.已知f (x )=⎩⎪⎨⎪⎧2x-2,x ≥0,-x 2+3,x <0,若f (a )=2,则a 的值为( ) A .2 B .-1或2 C .±1或2 D .1或2答案 B解析 当a ≥0时,2a -2=2,解得a =2;当a <0时,-a 2+3=2,解得a =-1.综上,a 的值为-1或2.故选B.5.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为______. 答案 2解析 当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解,所以x 0=2.6.若x -4有意义,则函数y =x 2-6x +7的值域是____________. 答案 [-1,+∞)解析 因为x -4有意义,所以x -4≥0,即x ≥4. 又因为y =x 2-6x +7=(x -3)2-2, 所以y min =(4-3)2-2=1-2=-1. 所以其值域为[-1,+∞).题型一 函数的概念1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数的定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B.2.有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;②f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;③若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数,故①不正确;对于②,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数,故②正确;对于③,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1,故③不正确. 综上可知,正确的判断是②.思维升华函数的值域可由定义域和对应关系唯一确定;当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).题型二 函数的定义域问题命题点1 求函数的定义域例1 (1)(2018·浙江名校协作体联考)函数f (x )=lg (1-x -2)的定义域为( ) A .(2,3) B .(2,3] C .[2,3) D .[2,3] 答案 C解析 由⎩⎨⎧1-x -2>0,x -2≥0得2≤x <3,所以函数f (x )=lg(1-x -2)的定义域为[2,3),故选C.(2)若函数y =f (x )的定义域是[0,2 018],则函数g (x )=f (x +1)x -1的定义域是( ) A .[-1,2 017] B .[-1,1)∪(1,2 017] C .[0,2 018]D .[-1,1)∪(1,2 018]答案 B解析 使函数f (x +1)有意义,则0≤x +1≤2018,解得-1≤x ≤2017,故函数f (x +1)的定义域为[-1,2 017].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2017,x -1≠0,解得-1≤x <1或1<x ≤2017.故函数g (x )的定义域为[-1,1)∪(1,2 017]. 引申探究本例(2)中,若将“函数y =f (x )的定义域为[0,2 018]”,改为“函数f (x -1)的定义域为[0,2 018],”则函数g (x )=f (x +1)x -1的定义域为________________. 答案 [-2,1)∪(1,2 016]解析 由函数f (x -1)的定义域为[0,2 018]. 得函数y =f (x )的定义域为[-1,2 017],令⎩⎪⎨⎪⎧-1≤x +1≤2017,x ≠1,则-2≤x ≤2016且x ≠1.所以函数g (x )的定义域为[-2,1)∪(1,2 016]. 命题点2 已知函数的定义域求参数范围 例2 (1)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,34B.⎝ ⎛⎭⎪⎫0,34C.⎣⎢⎡⎦⎥⎤0,34 D.⎣⎢⎡⎭⎪⎫0,34 答案 D解析 要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件;②当m ≠0时,由Δ=(4m )2-4m ×3<0,得0<m <34,由①②得0≤m <34.(2)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 答案 -92解析 函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.思维升华(1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍. (2)求抽象函数的定义域①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域; ②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域. (3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解. 跟踪训练1 (1)函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.答案 (0,2]解析 由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].(2)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 答案 [-1,2]解析 ∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].(3)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________. 答案 [0,4]解析 当m =0时,f (x )的定义域为一切实数;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,得0<m ≤4,综上,m 的取值范围是[0,4]. 题型三 求函数解析式例3 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为____________________.答案 f (x )=lg2x -1(x >1)解析 换元法:令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg 2t -1, 即f (x )=lg2x -1(x >1). (2)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为__________________. 答案 f (x )=x 2-x +3解析 待定系数法:设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以所求函数的解析式为f (x )=x 2-x +3.(3)函数f (x )满足方程2f (x )+f ⎝ ⎛⎭⎪⎫1x=2x ,x ∈R 且x ≠0,则f (x )=____________________.答案 43x -23x(x ∈R 且x ≠0)解析 解方程组法:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x =2x ,①将x 换成1x ,则1x换成x ,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=2x.②由①②消去f ⎝ ⎛⎭⎪⎫1x ,得3f (x )=4x -2x.所以f (x )=43x -23x (x ∈R 且x ≠0).思维升华函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法. (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).跟踪训练2 (1)已知f (x +1)=x +2x ,则f (x )的解析式为f (x )=________________. 答案 x 2-1(x ≥1)解析 方法一 设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).方法二 因为x +2x =(x )2+2x +1-1 =(x +1)2-1,所以f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1).(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )的解析式为f (x )=____________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.(3)函数f (x )满足方程2f (x )+f (-x )=2x ,则f (x )的解析式为________. 答案 f (x )=2x解析 因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x .题型四 分段函数命题点1 求分段函数的函数值例4 (2018·台州期末)已知函数f (x )=⎩⎪⎨⎪⎧2x,x <1,log 3x ,x ≥1,则f (0)=________,f (f (0))=________.答案 1 0解析 由题意得f (0)=20=1, 则f (f (0))=f (1)=log 31=0.命题点2 分段函数与方程、不等式问题例5 (1)(2018·浙江十校联盟高考适应性考试)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值为________.答案 -3解析 方法一 当a >0时,由f (a )+f (1)=0得2a+2=0,无解. 当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3. 方法二 由题意知f (1)=2>0,故由f (a )+f (1)=0,结合指数函数的性质知a ≤0,且f (a )=a +1=-2,解得a =-3.(2)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是__________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x +122x ->1,显然成立.综上可知,x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.思维升华(1)分段函数的求值问题的解题思路①求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值;②求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.(2)分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来. 跟踪训练3 (1)(2018·宁波期末)函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,2sin ⎝ ⎛⎭⎪⎫π12x -1,x >1,则f (f (2))等于( )A .-2B .-1C .23-1-2D .0答案 B解析 f (f (2))=f ⎝ ⎛⎭⎪⎫2sin π6-1=f (0)=20-2=-1,故选B.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.答案 (-1,3)解析 由题意知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2, 则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.1.函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)答案 D解析 由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).2.(2018·浙江嘉兴一中月考)下列四组函数中,表示同一函数的一组是( ) A .f (x )=lg x 2,g (x )=2lg xB .f (x )=x +1·x -1,g (x )=x 2-1 C .f (x )=x 0,g (x )=1D .f (x )=2-x,g (t )=⎝ ⎛⎭⎪⎫12t答案 D解析 A ,B ,C 中函数的定义域不同,故选D.3.(2018·浙江五校第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧4-x ,x ≥0,3x,x <0,则f (-2)+f (4)等于( )A.109B.19C .87D.7309 答案 B解析 由题意可得,f (-2)+f (4)=3-2+4-4=19.故选B.4.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎪⎫-1,-12 C .(-1,0) D.⎝ ⎛⎭⎪⎫12,1答案 B解析 由已知得-1<2x +1<0,解得-1<x <-12,所以函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. 5.(2019·浙江部分重点中学调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2,x <-1,2x-1,x ≥-1,则函数f (x )的值域为( ) A .[-1,+∞)B .(-1,+∞) C.⎣⎢⎡⎭⎪⎫-12,+∞ D .R答案 B解析 当x <-1时,f (x )=x 2-2∈(-1,+∞);当x ≥-1时,f (x )=2x-1∈⎣⎢⎡⎭⎪⎫-12,+∞.综上可知,函数f (x )的值域为(-1,+∞).故选B.6.(2018·浙江知名重点中学考前热身联考)设函数f (x )=⎩⎪⎨⎪⎧2x -b ,x <1,2x,x ≥1,若f (f (0))=4,则b 等于( ) A .2B .1C .-2D .-1 答案 C解析 f (0)=-b ,当-b <1,即b >-1时,f (-b )=-3b =4,得b =-43(舍去),当-b ≥1,即b ≤-1时,2-b=4,得b =-2.7.如图,△AOD 是一直角边长为1的等腰直角三角形,平面图形OBD 是四分之一圆的扇形,点P 在线段AB 上,PQ ⊥AB ,且PQ 交AD 或交弧DB 于点Q ,设AP =x (0<x <2),图中阴影部分表示的平面图形APQ (或APQD )的面积为y ,则函数y =f (x )的大致图象是( )答案 A解析 观察可知阴影部分的面积y 的变化情况为:(1)当0<x ≤1时,y 随x 的增大而增大,而且增加的速度越来越快.(2)当1<x <2时,y 随x 的增大而增大,而且增加的速度越来越慢.分析四个答案中的图象,只有选项A 符合条件,故选A. 8.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)答案 C解析 若a <0,则f (a )<1等价于⎝ ⎛⎭⎪⎫12a -7<1等价于⎝ ⎛⎭⎪⎫12a<8,解得a >-3,故-3<a <0;若a ≥0,则f (a )<1等价于a <1, 解得a <1,故0≤a <1. 综上可得-3<a <1.故选C.9.已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=________.答案 x 2-x +1(x ≠1)解析 f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x +1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1, 令x +1x=t (t ≠1),则f (t )=t 2-t +1, 即f (x )=x 2-x +1(x ≠1).10.(2016·浙江)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =______,b =________. 答案 -2 1解析 由已知可得:f (x )-f (a )=x 3+3x 2+1-a 3-3a 2-1=x 3+3x 2-a 3-3a 2. 而(x -b )(x -a )2=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b ,则⎩⎪⎨⎪⎧-2a -b =3,a 2+2ab =0,a 3+3a 2-a 2b =0,结合a ≠0解得a =-2,b =1.11.定义新运算“★”:当m ≥n 时,m ★n =m ;当m <n 时,m ★n =n 2.设函数f (x )=(2★x )x -(4★x ),x ∈[1,4],则函数f (x )的值域为____________. 答案 [-2,0]∪(4,60]解析 由题意知,f (x )=⎩⎪⎨⎪⎧2x -4,x ∈[1,2],x 3-4,x ∈(2,4],当x ∈[1,2]时,f (x )∈[-2,0]; 当x ∈(2,4]时,f (x )∈(4,60],故当x ∈[1,4]时,f (x )∈[-2,0]∪(4,60].12.(2018·浙江名校新高考研究联盟四联)已知函数f (x )=⎩⎪⎨⎪⎧x +32,x ∈[0,1),2x ,x ∈[1,2],若存在x 1<x 2,使得f (x 1)=f (x 2),求x 1·f (x 2)的取值范围.解 函数f (x )的图象如图所示,若存在x 1<x 2,使得f (x 1)=f (x 2),由图象可得12≤x 1<1,2≤f (x 2)<52,所以1≤x 1·f (x 2)<52.13.(2018·浙江温州中学月考)将函数y =⎪⎪⎪⎪⎪⎪12x -1+⎪⎪⎪⎪⎪⎪12x -2+1的图象绕原点按顺时针方向旋转角θ⎝ ⎛⎭⎪⎫0≤θ≤π2得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图象,则θ的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫0,π4解析 画出函数y =⎪⎪⎪⎪⎪⎪12x -1+⎪⎪⎪⎪⎪⎪12x -2+1的图象如图,结合图象可以看出当该函数的图象绕原点O 顺时针旋转的角大于或等于0而小于π4时所得曲线都是一个函数的图象,故应填⎣⎢⎡⎭⎪⎫0,π4.14.(2018·宁波模拟)定义max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,已知函数f (x )=max{|2x -1|,ax2+b },其中a <0,b ∈R ,若f (0)=b . (1)求实数b 的取值范围;(2)若f (x )的最小值为1,求a +b 的值. 解 (1)由题意得f (0)=max{1,b }, 若f (0)=b ,则b ≥1.(2)解不等式|2x -1|>1,得x >1或x <0.所以若f (x 0)=1,x 0∈[0,1],当x ∈[0,1]时,要使f (x )的最小值为1, 只需ax 2+b 的最小值为1,因为a <0,所以由函数y =ax 2+b 的图象(图略)知ax 2+b 在x =1时取得最小值1,即a +b =1.15.(2015·浙江)存在函数f (x )满足:对于任意x ∈R ,都有( ) A .f (sin2x )=sin x B .f (sin2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1|答案 D解析 在A 中,令x =0,得f (0)=0;令x =π2,得f (0)=1,与函数的定义不符,故A 错.在B 中,令x =0,得f (0)=0;令x =π2,得f (0)=π24+π2,与函数的定义不符,故B 错.在C 中,令x =1,得f (2)=2;令x =-1,得f (2)=0,与函数的定义不符,故C 错. 在D 中,变形为f (|x +1|2-1)=|x +1|, 令|x +1|2-1=t ,得t ≥-1,|x +1|=t +1, 从而有f (t )=t +1,显然这个函数关系在定义域[-1,+∞)上是成立的, 故选D.16.(2018·浙江名校(诸暨中学)联考)f (x )是定义在R 上的函数,若f (1)=504,对任意的x ∈R ,满足f (x +4)-f (x )≤2(x +1)及f (x +12)-f (x )≥6(x +5),求f (2017)f (1)的值.解 ∵f (x +4)-f (x )≤2(x +1), ∴f (x +8)-f (x +4)≤2(x +5),f (x +12)-f (x +8)≤2(x +9),上述三个式子相加得到f (x +12)-f (x )≤6(x +5), 结合条件可知,f (x +12)-f (x )=6(x +5),于是f (2017)-f (1)=[f (2 017)-f (2 005)]+[f (2 005)-f (1 993)]+[f (1 993)-f (1 981)]+…+[f (13)-f (1)]=30×168+6×168×(2005+1)2=5040+504×2006,∴f (2017)f (1)=2017.。

2020年 名师讲解 高考数学 提分宝典 导数及其应用之第1讲 变化率与导数、导数的计算

2020年 名师讲解 高考数学 提分宝典  导数及其应用之第1讲  变化率与导数、导数的计算

[基础题组练]1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π解析:选C.因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 2.(2019·福州模拟)曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2 B.32 C.12D.14解析:选D.f ′(x )=1+1x ,则f ′(1)=2,故曲线f (x )=x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1,此切线与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,则切线与坐标轴围成的三角形的面积为12×1×12=14,故选D.3.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D. 12解析:选A.因为y ′=x 2-3x ,令y ′=12,解得x =3,即切点的横坐标为3.4.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )解析:选D.由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故排除A 、C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故排除B.5.函数g (x )=x 3+52x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b 的值为( )A.72B.52 C.32D.12解析:选B.当x =1时,g (1)=1+52+b =72+b ,又g ′(x )=3x 2+5x +3x,所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5,由于点⎝⎛⎭⎫1,72+b 在切线上,所以72+b =11-5, 解得b =52.故选B.6.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=________. 解析:因为f ′(x )=4ax 3-b sin x +7, 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8. 答案:87.(2019·广州市调研测试)若过点A (a ,0)作曲线C :y =xe x 的切线有且仅有两条,则实数a 的取值范围是________.解析:设切点坐标为(x 0,x 0ex 0),y ′=(x +1)e x ,y ′|x =x 0=(x 0+1)ex 0,所以切线方程为y -x 0ex 0=(x 0+1)ex 0(x -x 0),将点A (a ,0)代入可得-x 0ex 0=(x 0+1)ex 0(a -x 0),化简,得x 20-ax 0-a =0,过点A (a ,0)作曲线C 的切线有且仅有两条,即方程x 20-ax 0-a =0有两个不同的解,则有Δ=a 2+4a >0,解得a >0或a <-4,故实数a 的取值范围是(-∞,-4)∪(0,+∞).答案:(-∞,-4)∪(0,+∞)8.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1, 所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, 所以x 0=-2,所以y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.所以直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, 所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.[综合题组练]1.(应用型)在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.故选C. 2.(应用型)(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.3.(创新型)(2019·黑龙江伊春质检)曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是________.解析:设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在M 点处的切线与直线2x -y +8=0平行时,M 点到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.因为y ′=22x -1,所以22x 0-1=2,解得x 0=1,所以M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.答案:2 54.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,② -2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去). 所以k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.④ 将④代入抛物线方程得, x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9,所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. 5.(2019·福州质检)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.。

2020版高考数学新增分大一轮复习第三章函数概念与基本初等函数Ⅰ3.4幂函数与二次函数讲义含解析

2020版高考数学新增分大一轮复习第三章函数概念与基本初等函数Ⅰ3.4幂函数与二次函数讲义含解析

§3.4 幂函数与二次函数最新考纲考情考向分析1.了解幂函数的概念,掌握幂函数y =x ,y =x 2,y =x 3,y =1x ,y =x 12的图象和性质.2.了解幂函数的变化特征.3.了解一元二次函数、一元二次方程、一元二次不等式之间的联系.会解一元二次不等式. 以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程,转化与化归及数形结合思想,题型一般为选择、填空题,中档难度.1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较函数y =x y =x 2 y =x 3y =12xy =x -1图象性质 定义域R RR {x |x ≥0} {x |x ≠0} 值域R{y |y ≥0}R{y |y ≥0}{y |y ≠0}奇偶性 奇函数 偶函数 奇函数 非奇非偶函数 奇函数单调性 在R 上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点 (1,1)2.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0)图象定义域RR值域⎣⎢⎡⎭⎪⎫4ac -b24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b24a单调性在x ∈⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增在x ∈⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减对称性函数的图象关于直线x =-b2a对称概念方法微思考1.二次函数的解析式有哪些常用形式? 提示 (1)一般式:y =ax 2+bx +c (a ≠0); (2)顶点式:y =a (x -m )2+n (a ≠0);(3)零点式:y =a (x -x 1)(x -x 2)(a ≠0).2.已知f (x )=ax 2+bx +c (a ≠0),写出f (x )≥0恒成立的条件. 提示 a >0且Δ≤0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c (a ≠0),x ∈[a ,b ]的最值一定是4ac -b24a .( × )(2)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(3)函数y =212x 是幂函数.( × )(4)幂函数的图象一定经过点(1,1)和点(0,0)( × )(5)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n是定义域上的减函数.( × )题组二 教材改编2.[P79B 组T1]已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α等于( )A.12B .1C.32D .2 答案 C解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k·⎝ ⎛⎭⎪⎫12α.∴k =1,α=12.∴k +α=32.3.[P44A 组T9]已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3B.a ≤3 C .a <-3D .a ≤-3 答案 D解析 函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3,故选D. 题组三 易错自纠 4.幂函数f (x )=21023a a x -+(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( ) A .3B .4C .5D .6 答案 C解析 因为a 2-10a +23=(a -5)2-2,f (x )=()252a x--(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6,又(a -5)2-2为偶数,所以只能是a =5,故选C.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是______. 答案 -1解析 函数y =2x 2-6x +3的图象的对称轴为x =32>1,∴函数y =2x 2-6x +3在[-1,1]上单调递减,∴y min =2-6+3=-1.6.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”) 答案 >解析 f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0.题型一 幂函数的图象和性质1.若幂函数的图象经过点⎝ ⎛⎭⎪⎫2,14,则它的单调递增区间是( ) A .(0,+∞) B.[0,+∞) C .(-∞,+∞) D.(-∞,0) 答案 D解析 设f (x )=x α,则2α=14,α=-2,即f (x )=x -2,它是偶函数,单调递增区间是(-∞,0).故选D.2.若四个幂函数y =x a,y =x b,y =x c,y =x d在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c答案 B解析 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B.3.已知幂函数f (x )=(n 2+2n -2)23nnx-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( ) A .-3B .1C .2D .1或2 答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B. 4.若()131a -+<()1332a --,则实数a 的取值范围是________________________.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,32 解析 不等式()131a -+<()1332a --等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键. 题型二 求二次函数的解析式例1(1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________. 答案 f (x )=x 2-2x +3解析 由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称, ∴b 2=1,∴b =2,∴f (x )=x 2-2x +3. (2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax ,由4a×0-4a24a =-1,得a =1,所以f (x )=x 2+2x . 思维升华求二次函数解析式的方法跟踪训练1(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________. 答案 x 2+2x +1解析 设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0),又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 x 2-4x +3解析 因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.题型三 二次函数的图象和性质命题点1 二次函数的图象例2一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )答案 C解析 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y轴的右侧,故应排除B ,选C. 命题点2 二次函数的单调性例3函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-3] C .[-2,0] D .[-3,0]答案 D解析 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a<0,3-a2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a2a=-1,∴a =-3. 命题点3 二次函数的最值例4已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a .(1)当-a <12即a >-12时,f (x )max =f (2)=4a +5,(2)当-a ≥12即a ≤-12时,f (x )max =f (-1)=2-2a ,综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a>-12,2-2a ,a≤-12.命题点4 二次函数中的恒成立问题例5(1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________. 答案 (-∞,-1)解析 设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1. (2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________. 答案 2解析 令a x =t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.思维升华解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值范围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路都是将问题归结为求函数的最值或值域.跟踪训练2(1)函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是( ) A .b ≥0B.b ≤0 C .b >0D .b <0 答案 A解析 ∵函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,∴图象的对称轴x =-b 2在区间[0,+∞)的左边或-b 2=0,即-b2≤0,得b ≥0.(2)(2018·浙江名校协作体联考)y =2ax2+4x +a -1的值域为[0,+∞),则a 的取值范围是( )A .(2,+∞) B.(-∞,-1)∪(2,+∞) C .[-1,2] D .[0,2]答案 D解析 由已知,t =2ax 2+4x +a -1取遍[0,+∞)上的所有实数,当a =0时,t =4x -1能取遍[0,+∞)上的所有实数,只需定义域满足⎣⎢⎡⎭⎪⎫14,+∞.当a ≠0时,只需⎩⎪⎨⎪⎧2a>0,Δ=16-8a (a -1)≥0,解得0<a ≤2.综上,0≤a ≤2.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫12,+∞解析 由题意得a >2x -2x2对1<x <4恒成立,又2x -2x2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1, ∴⎝ ⎛⎭⎪⎫2x -2x2max =12,∴a >12.数形结合思想和分类讨论思想在二次函数中的应用研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.例设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2. 综上可知,f (x )min =⎩⎪⎨⎪⎧t2+1,t≤0,1,0<t<1,t2-2t +2,t≥1.1.幂函数24mmy x -=(m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .3 答案 C 解析 ∵y =24m mx-(m ∈Z )的图象与坐标轴没有交点,∴m 2-4m <0,即0<m <4.又∵函数的图象关于y 轴对称且m ∈Z , ∴m 2-4m 为偶数,∴m =2. 2.若幂函数f (x )=(m 2-4m +4)·268m m x-+在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .2 答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.3.若命题“ax 2-2ax +3>0恒成立”是假命题,则实数a 的取值范围是( ) A .a <0或a ≥3B.a ≤0或a ≥3 C .a <0或a >3D .0<a <3 答案 A解析 若ax 2-2ax +3>0恒成立,则a =0或⎩⎪⎨⎪⎧a>0,Δ=4a2-12a<0,可得0≤a <3,故当命题“ax 2-2ax +3>0恒成立”是假命题时,a <0或a ≥3.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0 答案 A解析 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.5.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解集为( )A .{x |-2<x <2}B .{x |x >2或x <-2}C .{x |0<x <4}D .{x |x >4或x <0} 答案 D解析 函数f (x )=ax 2+(b -2a )x -2b 为偶函数,则b -2a =0,故f (x )=ax 2-4a =a (x -2)(x +2),因为函数f (x )在(0,+∞)上单调递增,所以a >0.根据二次函数的性质可知,不等式f (2-x )>0的解集为{x |2-x >2或2-x <-2}={x |x <0或x >4},故选D.6.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4] B.⎣⎢⎡⎦⎥⎤32,4C.⎣⎢⎡⎭⎪⎫32,+∞D.⎣⎢⎡⎦⎥⎤32,3 答案 D解析 二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示),可得m ∈⎣⎢⎡⎦⎥⎤32,3.7.已知P =322-,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.答案 P >R >Q解析 P =322-=⎝⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数,且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253, 即P >R >Q .8.(2018·台州路桥中学检测)已知幂函数y =f (x )的图象过点(2,2),则f (9)=________. 答案 3解析 设f (x )=x α,因为它过点(2,2), 所以2=2α,所以α=12,所以f (x )=12x ,所以f (9)=129=3.9.设函数f (x )=-2x 2+4x 在区间[m ,n ]上的值域是[-6,2],则m +n 的取值范围是__________. 答案 [0,4]解析 令f (x )=-6,得x =-1或x =3;令f (x )=2,得x =1.又f (x )在[-1,1]上单调递增,在[1,3]上单调递减,∴当m =-1,n =1时,m +n 取得最小值0;当m =1,n =3时,m +n 取得最大值4.10.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是__________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 11.(2018·湖州期中)已知函数f (x )=x 2-|x 2-ax -2|,a 为实数. (1)当a =1时,求函数f (x )在[0,3]上的最小值和最大值;(2)若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,求实数a 的取值范围. 解 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧x +2,x <-1或x >2,2x2-x -2,-1≤x≤2,结合图象(图略)可知f (x )在⎣⎢⎡⎦⎥⎤0,14上单调递减,在⎣⎢⎡⎦⎥⎤14,3上单调递增, f (x )在[0,3]上的最小值为f ⎝ ⎛⎭⎪⎫14=-178,f (x )在[0,3]上的最大值为f (3)=5.(2)令x 2-ax -2=0,∵Δ=a 2+8>0, 必有两根x 1=a -a2+82,x 2=a +a2+82,∴f (x )=⎩⎪⎨⎪⎧ax +2,x <x1或x >x2,2x2-ax -2,x1≤x≤x2,若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,则⎩⎪⎨⎪⎧a >0,a -a2+82≥-1,a 4≤2,解得1≤a ≤8.12.(2019·台州质量评估)已知a >0,b ∈R ,函数f (x )=4ax 2-2bx -a +b ,x ∈[0,1]. (1)当a =b =2时,求函数f (x )的最大值; (2)证明:函数f (x )的最大值为|2a -b |+a . (1)解 ∵a =b =2,∴f (x )=8x 2-4x =8⎝ ⎛⎭⎪⎫x -142-12,x ∈[0,1],∴当x =1时,f (x )max =4.(2)证明 由f (x )=4a ⎝ ⎛⎭⎪⎫x -b 4a 2-b24a -a +b , 当b 4a <12,即b <2a 时, f (x )max =f (1)=4a -2b -a +b =3a -b =|2a -b |+a ;当b 4a ≥12,即b ≥2a 时, f (x )max =f (0)=b -a =|2a -b |+a .∴函数f (x )的最大值为|2a -b |+a .13.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( )A.②④B.①④C.②③D.①③答案 B解析因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x=-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a.又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.14.已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围为( )A.[-2,2] B.[1,2]C.[2,3] D.[1,2]答案 B解析由于函数f(x)=x2-2tx+1的图象的对称轴为x=t,函数f(x)=x2-2tx+1在区间(-∞,1]上递减,∴t≥1.∴当x∈[0,t+1]时,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t 2+1)≤2,解得-2≤t ≤ 2. 又t ≥1,∴1≤t ≤ 2.故选B.15.已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B 等于( ) A .16B .-16C .a 2-2a -16D .a 2+2a -16 答案 B解析 令f (x )=g (x ),即x 2-2(a +2)x +a 2=-x 2+2(a -2)·x -a 2+8,即x 2-2ax +a 2-4=0,解得x =a +2或x =a -2.f (x )与g (x )的图象如图.由题意知H 1(x )的最小值是f (a +2),H 2(x )的最大值为g (a -2),故A -B =f (a +2)-g (a -2)=(a +2)2-2(a +2)2+a 2+(a -2)2-2(a -2)2+a 2-8=-16.16.若函数f (x )=x 2-a |x -1|在[0,+∞)上单调递增,求实数a 的取值范围.解 f (x )=⎩⎪⎨⎪⎧x2-ax +a ,x∈[1,+∞),x 2+ax -a ,x ∈(-∞,1),当x ∈[1,+∞)时,f (x )=x 2-ax +a =⎝⎛⎭⎪⎫x -a 22+a -a24,当x ∈(-∞,1)时,f (x )=x 2+ax -a =⎝⎛⎭⎪⎫x +a 22-a -a24.①当a 2>1,即a >2时,f (x )在⎣⎢⎡⎭⎪⎫1,a 2上单调递减, 在⎝ ⎛⎭⎪⎫a 2,+∞上单调递增,不符合题意; ②当0≤a2≤1,即0≤a ≤2时,符合题意;③当a2<0,即a <0时,不符合题意.综上,a 的取值范围是[0,2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[基础题组练]
1.y =
x -1
2x
-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)
D .[-2,0]∪[1,2]
解析:选C.要使函数有意义,则⎩⎪⎨⎪⎧x -12x ≥0,
x ≠0,4-x 2
>0,
解得x ∈(-2,0)∪[1,2),
即函数的定义域是(-2,0)∪[1,2). 2.下列各组函数中,表示同一函数的是( ) A .f (x )=e ln x ,g (x )=x B .f (x )=x 2-4
x +2,g (x )=x -2
C .f (x )=sin 2x
2cos x ,g (x )=sin x
D .f (x )=|x |,g (x )=x 2
解析:选D.A ,B ,C 的定义域不同,所以答案为D.
3.(2019·合肥质量检测)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,
x 2+2,x ≤2,则f (f (1))=( )
A .-1
2
B .2
C .4
D .11
解析:选C.因为f (1)=12+2=3,所以f (f (1))=f (3)=3+1
3-2
=4.故选C.
4.(2019·甘肃张掖诊断)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x
,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.1
4 B.⎝⎛⎭⎫121+log 25
C.12
D.120
解析:选D.因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+1+log 25)=f (2+log 25)=⎝⎛⎭

122+log 25
=14×15=1
20
,故选D. 5.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( )
A.74 B .-74
C.43
D .-43
解析:选A.令t =1
2x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a
=74
. 6.已知函数f (x -1)=x
x +1,则函数f (x )的解析式为( )
A .f (x )=x +1
x +2
B .f (x )=x
x +1
C .f (x )=x -1
x
D .f (x )=1
x +2
解析:选A.令x -1=t ,则x =t +1,所以f (t )=t +1t +2,即f (x )=x +1
x +2.故选A.
7.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪
⎧1,x >0,0,x =0,-1,x <0,则( )
A .|x |=x |sgn x |
B .|x |=x sgn|x |
C .|x |=|x |sgn x
D .|x |=x sgn x
解析:选D.当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.
8.(2019·安徽合肥质检)已知函数f (x )满足f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,则f (3)=( )
A.9
8 B.94 C.92
D .9
解析:选C.因为f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,所以f (3)=2f ⎝⎛⎭⎫32=2×⎝⎛⎭⎫322
=92. 9.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )=________. 解析:设g (x )=ax 2+bx +c (a ≠0), 因为g (1)=1,g (-1)=5,且图象过原点,
所以⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪
⎧a =3,b =-2,c =0,所以g (x )=3x 2-2x .
答案:3x 2-2x
10.(2019·安徽合肥质检)已知函数f (x )=mx 2+(m -3)x +1的值域是[0,+∞),则
实数m 的取值范围是________.
解析:当m =0时,函数f (x )=-3x +1的值域是[0,+∞),显然成立;当m >0时,
Δ=(m -3)2-4m ≥0,解得0<m ≤1或m ≥9.显然m <0时不合题意.综上可知,实数m 的
取值范围是[0,1]∪[9,+∞).
答案:[0,1]∪[9,+∞)
11.(2019·安徽合肥模拟)已知f (x )的定义域为{x |x ≠0},且3f (x )+5f ⎝⎛⎭⎫1x =3
x +1,则函数f (x )的解析式为________.
解析:用1x
代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, 所以⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3
x +1 ①,
3f ⎝⎛⎭
⎫1x +5f (x )=3x +1 ②,①×3-②×5得f (x )=1516x -916x +18
(x ≠0).
答案:f (x )=1516x -916x +1
8
(x ≠0)
12.已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域为________. 解析:因为y =f (x +1)的定义域为[-2,3], 所以-1≤x +1≤4.
由-1≤2x -1≤4,得0≤x ≤5
2,
即y =f (2x -1)的定义域为⎣⎡⎦⎤0,52. 答案:⎣⎡⎦
⎤0,5
2 [综合题组练]
1.(创新型)具有性质f ⎝⎛⎭⎫
1x =-f (x )的函数,我们称为满足“倒负”变换的函数,给出下列函数:①f (x )=x -1x ;②f (x )=x +1
x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,
0,x =1,-1
x ,x >1.其中满足“倒负”变换的函数
是( )
A .①③
B .②③
C .①②③
D .①②
解析:选A.对于①,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足题意; 对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;
对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1
x
<1,0,1x =1,-x ,1x >1,
即f ⎝⎛⎭⎫
1x =⎩⎪⎨

⎧1
x
,x >1,0,x =1,
-x ,0<x <1,
故f ⎝⎛⎭⎫1x =-f (x ),满足题意.
综上可知,满足“倒负”变换的函数是①③.故选A.
2.(创新型)设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )
=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,
则( )
A .(f ·f )(x )=f (x )
B .(f ·g )(x )=f (x )
C .(g ·f )(x )=g (x )
D .(g ·g )(x )=g (x )
解析:选A.对于A ,(f ·f )(x )=f (f (x ))=⎩
⎪⎨⎪⎧f (x ),f (x )>0,
f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )
=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.
3.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫2
8+…+f ⎝⎛⎭⎫
78=________.
解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2,f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2,f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2,又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12
×2=1, 所以f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:7
4.(应用型)(2019·广东珠海质检)已知函数f (x )=⎩⎪⎨⎪
⎧(1-2a )x +3a ,x <1,ln x ,x ≥1
的值域为R ,
则实数a 的取值范围是________.
解析:由题意知y =ln x (x ≥1)的值域为[0,+∞),故要使f (x )的值域为R ,则必有y =(1-2a )x +3a 为增函数,且1-2a +3a ≥0,所以1-2a >0,且a ≥-1,解得-1≤a <1
2
.
1答案:[-1,
2)。

相关文档
最新文档