基本初等函数定义及其性质重要资料归纳

合集下载

初等基本函数知识点总结

初等基本函数知识点总结

初等基本函数知识点总结函数是数学中最基本的概念之一,它在数学的各个分支中都有着重要的应用。

初等基本函数是指在初等数学范围内常见的基本函数,包括常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。

本文将对这些初等基本函数的概念、性质等进行总结和介绍。

一、常数函数常数函数的定义是f(x) = c (c为常数)。

这里的c就是常数函数的函数值,它是一个常数,和x的取值无关。

在坐标系中,常数函数的图象是一条水平的直线,它的斜率为0。

常数函数的性质有:1. 常数函数的图象是一条水平的直线。

2. 常数函数的定义域是全体实数集R,值域为{c}。

3. 常数函数的导数为0,即f'(x) = 0。

4. 常数函数是一个一一对应的函数。

5. 常数函数是奇函数,偶函数,周期函数,增函数,减函数等的特殊情况。

二、一次函数一次函数的定义是f(x) = kx + b (k和b为常数,k≠0)。

在坐标系中,一次函数的图象是一条通过点P(k,b)的直线,它的斜率为k,截距为b。

一次函数的性质有:1. 一次函数的图象是一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。

2. 一次函数的定义域是全体实数集R,值域是一切实数集R。

3. 一次函数的导数为k,即f'(x) = k。

4. 当k>0时,一次函数是增函数;当k<0时,一次函数是减函数;当k=0时,一次函数是常数函数。

5. 一次函数是一个奇函数,因为f(-x) = -kx + b = -f(x)。

三、二次函数二次函数的定义是f(x) = ax^2 + bx + c (a、b和c为常数,a≠0)。

二次函数的图象是一个开口向上或者向下的抛物线,它的开口方向由a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的性质有:1. 二次函数的图象是一个抛物线,它关于y轴对称,对称轴方程为x = -b/2a。

高一数学必修一第二章基本初等函数知识点总结

高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)

a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x

基本初等函数知识点总结

基本初等函数知识点总结

基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。

它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。

下面将对基本初等函数的知识点进行总结。

一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。

它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。

多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。

二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。

指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。

三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。

对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。

四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。

三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。

五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。

它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。

反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。

基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点1.函数的定义:函数是一种特殊的关系,它将一个或多个输入数值映射到唯一的输出数值。

函数通常用f(x)来表示,其中x是输入变量,f(x)是输出变量。

函数可以用图形、符号或表格来表示。

2.定义域和值域:函数的定义域是所有可输入的数值的集合,而函数的值域是所有可能的输出数值的集合。

定义域可写作D(f),值域可写作R(f)。

3.线性函数:线性函数是一种具有常数斜率的函数。

它的形式为f(x) = mx + b,其中m是斜率,b是截距。

线性函数的图形是一条直线。

4.幂函数:幂函数是一种形如f(x) = ax^b的函数,其中a和b是常数。

幂函数的图形通常是一条平滑的曲线。

当b为正偶数时,曲线在x轴的正半轴都是上升的;当b为负偶数时,曲线在x轴的正半轴是下降的。

5.指数函数:指数函数是以常数e为底的函数,它的形式为f(x)=a^x,其中a是指数底数。

指数函数的图形为一条逐渐增长(或逐渐减小)的曲线。

6.对数函数:对数函数是指以常数a为底的对数函数,它的形式为f(x) =log_a(x),其中a为底数,x为函数的输入值。

对数函数是指数函数的反函数,即f(x) = a^x的反函数。

7.三角函数:三角函数是有关三角形角度与边长之间的关系的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

三角函数的图形是周期性的曲线,周期为2π。

8.反函数:反函数是指满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数对。

反函数可以通过交换函数的输入和输出得到。

9.复合函数:复合函数是指将一个函数的输出作为另一个函数的输入的函数关系。

复合函数可以表示为f(g(x)),其中g(x)是一个函数,f(x)是另一个函数。

10.奇偶函数:奇函数是满足f(-x)=-f(x)的函数,而偶函数是满足f(-x)=f(x)的函数。

奇函数的图形关于原点对称,偶函数的图形关于y轴对称。

这些是基本初等函数的一些常见知识点,掌握了这些知识点可以帮助你理解函数的基本概念、性质和图像,为进一步学习更高级的数学知识打下坚实的基础。

基本初等函数知识总结

基本初等函数知识总结

基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。

初等函数的定义与性质

初等函数的定义与性质

初等函数的定义与性质初等函数是数学中常见且基本的函数类型。

它们在数学分析、数论、概率论等各个领域都有广泛的应用。

本文将介绍初等函数的定义和性质,帮助读者更好地理解和应用初等函数。

一、初等函数的定义初等函数是指能够通过有限次的代数运算和初等函数运算所得到的函数。

这里的代数运算包括四则运算和函数复合运算,而初等函数运算则包括指数函数、对数函数、三角函数以及反三角函数。

初等函数的所属范围相对广泛,这使得我们能够通过简单的运算和组合得到他们的值。

二、初等函数的性质1. 初等函数是连续函数:初等函数在其定义域上都是连续的。

连续性给初等函数的应用提供了数学上的保证,使得我们能够对初等函数进行更简单、更精确的分析和计算。

2. 初等函数的导数:初等函数具有求导性质,即它们的导数可以通过一系列的规则来求解。

常见初等函数的导数规则包括幂函数求导法则、指数函数求导法则、对数函数求导法则、三角函数求导法则等。

这些导数规则是微积分学中的基础,能够帮助我们更深入地理解初等函数的变化规律。

3. 初等函数的周期性:三角函数是一类重要的初等函数,具有周期性的特点。

例如正弦函数和余弦函数的周期都是2π。

这种周期性对于解决周期性问题和振动问题非常有用,例如傅里叶级数展开和信号处理等领域。

4. 初等函数的极限:初等函数的极限也是初等函数性质的重要组成部分。

通过对初等函数的极限进行研究,我们可以得到函数在某一点附近的趋势和变化规律。

5. 初等函数的积分:初等函数也具有求积分的属性。

通过对初等函数的积分,我们能够计算曲线下面的面积、计算物体的质量和体积等。

积分是微积分学的基本内容,对于解决实际问题起着重要的作用。

总结起来,初等函数是数学中非常重要的函数类型。

它们在数学分析、工程学、物理学等多个领域中都具有广泛的应用。

初等函数通过有限次的代数运算和初等函数运算得到,具有连续性、导数性质、周期性、极限性质和积分性质。

这些性质使得初等函数成为研究和应用的基础,对于深入理解数学以及解决实际问题都具有重要的意义。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。

函数通常用f(x)表示,其中x是自变量,f(x)是因变量。

函数有以下性质:1. 定义域和值域:函数的定义域是所有可输入的自变量的集合,值域是所有对应的因变量的集合。

2. 奇偶性:一个函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

3. 单调性:函数可以是单调递增或单调递减的。

单调递增函数满足当x1小于x2时,f(x1)小于f(x2);单调递减函数则相反。

二、常见的基本初等函数1. 幂函数:指数函数是形如y=x^n的函数,其中n是一个实数。

根据n的不同取值,幂函数可以分为多种情况,如正幂函数、负幂函数、倒数函数等。

2. 指数函数:指数函数是以指数为自变量的函数,常见的指数函数有以e为底的自然指数函数(y=e^x)和以10为底的常用对数函数(y=log(x))。

3. 对数函数:对数函数是指以某个正实数为底的函数,常见的对数函数有以e为底的自然对数函数(y=ln(x))和以10为底的常用对数函数。

4. 三角函数:三角函数是以角度或弧度为自变量的函数,常见的三角函数有正弦函数(y=sin(x))、余弦函数(y=cos(x))、正切函数(y=tan(x))等。

5. 反三角函数:反三角函数是三角函数的逆函数,常见的反三角函数有反正弦函数(y=arcsin(x))、反余弦函数(y=arccos(x))、反正切函数(y=arctan(x))等。

三、基本初等函数的图像和性质1. 幂函数的图像与性质:平方函数(y=x^2)的图像是一个开口上的抛物线,立方函数(y=x^3)的图像则是一个S形曲线。

幂函数的性质与指数n的奇偶性、正负有关。

2. 指数函数的图像与性质:自然指数函数(y=e^x)具有递增的特点,其图像是一条通过原点且向上增长的曲线。

常用对数函数(y=log(x))的图像则是一条斜率逐渐减小的曲线。

基本初等函数知识点总结

基本初等函数知识点总结

基本初等函数知识点总结1.常数函数:常数函数是指函数的值在定义域内都保持不变的函数。

表示为f(x)=c,其中c是常数。

常数函数的图像是一条平行于x轴的直线。

常数函数的性质是恒等性,即f(x)=f(x'),对于任意x和x'都成立。

2.平方函数:平方函数是指函数的值与自变量的平方成正比的函数。

表示为f(x)=x²。

平方函数的图像是一条开口向上的抛物线。

平方函数的性质是奇偶性,即f(-x)=f(x),对于任意实数x都成立。

3.立方函数:立方函数是指函数的值与自变量的立方成正比的函数。

表示为f(x)=x³。

立方函数的图像是一条通过原点且存在于所有象限的曲线。

立方函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)或f(x₁)>f(x₂)成立。

4.绝对值函数:绝对值函数是指函数的值与自变量的绝对值成正比的函数。

表示为f(x)=,x。

绝对值函数的图像是一条以原点为顶点且对称于y轴的V字形曲线。

绝对值函数的性质是非负性,即对于任意实数x,有f(x)≥0成立。

5.指数函数:指数函数是指函数的值与自变量的指数幂成正比的函数。

表示为f(x)=aˣ,其中a是一个正实数且a≠1、指数函数的图像是一条通过点(0,1)且与x轴和y轴都无交点的曲线。

指数函数的性质是增长性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

6. 对数函数:对数函数是指函数的值与自变量的对数成正比的函数。

表示为f(x)=logₐ(x),其中a是一个正实数且a≠1、对数函数的图像是一条通过点(1, 0)且与x轴和y轴都无交点的曲线。

对数函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

7. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。

正弦函数表示为f(x)=sin(x),余弦函数表示为f(x)=cos(x),正切函数表示为f(x)=tan(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本函数图像及性质
一、基本函数图像及其性质: 1、一次函数:(0)y kx b k =+≠
2、正比例函数:(0)y kx k =≠
3、反比例函数:(0)k
y x x
=

4、二次函数:2
(0)y ax bx c a =++≠
(1)、作图五要素:2
124(,0),(,0),(0,),(),(,)()224b b ac b x x c x a a a -=--对称轴顶点 (2)、函数与方程:2
=4=0
0b ac >⎧⎪∆-⎨⎪<⎩
两个交点一个交点没有交点
(3)、根与系数关系:12b x x a +=-,12c x x a
⋅=
5、指数函数:(0,1)x
y a a a =>≠且 (1)、图像与性质:
(i )1()(0,1)x x y a y a a a
==>≠与且关于y 轴对称。

(ii )1a >时,a 越大,图像越陡。

(2)、应用:
(i )比较大小: (ii )解不等式: 1、回顾:
(1)()m
m
m
ab a b =⋅ (2)()m
m m a a b b
=
2、基本公式:
(1)m n m n
a a a
+⋅= (2)m m n n a a a
-= (3)()m n m n
a a ⨯=
3、特殊:
(1)0
1(0)a a =≠ (2)11
(0)a a a
-=
≠ (3
)1;0)n
a n a R n a =∈≥为奇数,为偶数,
(4
;0;0||
a n a
a a
a a n ≥⎧⎧==⎨⎨
-<⎩⎩为奇其中,为偶
例题1:(1)22232[()()]3x x y xy y x x y x y ---÷;3223
5()()(5)x xy xy ÷
(2
)1
1203
2170.027()(2)1)79----+-;20.52
0371037(2)0.1(2)392748
π--++-+
(3
例题2:(1)化简:2
12
2
12)9124()144(+-+++a a a a
(2)方程016217162=+⨯-x
x 的解是 。

(3)已知32
12
1=+-x
x ,计算(1)1
--x x ;(2)3
7
122++-+--x x x x
例题3:(1)若48
12710,310==-y
x
,则y x -210= 。

(2)设,0,,,≠∈xyz R z y x 且z y x 14464==,则( )
A.
y x z 111+= B.y x z 112+= C.y x z 121+= D.y
x z 211+=
(3)已知,123=+b a 则
a b a 3
39⨯= 。

6、对数函数:log (0,1)a y x a a =>≠且 (1)、图像与性质:
(2)、应用:
(i )比较大小: (ii )解不等式:
对数运算
1、与指数运算的关系:互为逆运算 log (01)(0)a b a b >≠>且
557log 7x x =→= (注:底数不变)
2、基本公式:
(1)log log log a a a M N M N +=⋅; (2)log log log a a a
M M N N
-=; (3)log log n
a a M n M =
3、特殊:
(1)log 10a =;1
log 1a
a
=-;log a b a b = (2)换底公式:log lg ln log (10,)(,)log lg ln c a c b b b
b c c e a a a
=
====常用对数自然对数;
注:log log 1a b b a ⋅=;log log m n a a n
b b m
= 例题1:指数式与对数式的转化
→=62554 ;→=-1.0101 ;→=2x e ;
→=3log 2x ;→-=201.0lg ;→=2ln x ;
例题2:求下列x 的值:3
2log ln 100lg 642-
==-=x x
e x
例题3:用z y x a a a log ,log ,log 表示下列各式(1);log z xy
a (2);log 32z
y x a
例题4:(1)若2log 2,log 3,m n
a a m n a +=== 。

(2)已知2log 3=a ,那么6log 28log 33-用a 表示为 。

例题5:化简计算(1)3log 7925
log 8log 93
(lg 2lg 2)2
⋅+-+;
(2)5
21log 2
3
322log (log 16)(5)++
(3)12
lg12
321162log lg 20lg 2(log 2)(log 3)1)49⎛⎫
++--⋅+ ⎪⎝⎭
★随堂训练:
1、已知0)](log [log log 237=x ,那么2
1-x 等于 。

2、方程12
log 1log )1(2=++x x 的解是=x 。

3、若53,32==b a ,试用a 与b 表示72log 45
4、2
1
6log log 3log 9362=⋅⋅m ,则实数m 的值为 。

5、若0>ab ,则下列正确的序号是 。

①b a ab lg lg )lg(+=;②b a b
a
lg lg lg -=;③b
a
b a lg )lg(212=;④10log 1)lg(ab ab =
6、若0>a 且0,0,1>>≠c b a ,则下列式子正确的个数为 。

①c b
c b a a a log log log =;②)(log )(log c b c b a a +=⋅;③c b c b a a a log log )(log +=⋅;④c
b
c b a a a log log )(log =-;
⑤c b c b a a a log log )(log ⋅=+;⑥c b c
b
a a a
log log log -=
7、若y=log 56·log 67·log 78·log 89·log 910,则有 ( )
A. y ∈(0 , 1) B . y ∈(1 , 2 ) C. y ∈(2 , 3 ) D. y =1
8、计算:(1)(log )log log 2222
545415
-++
(2)100011
3
43460022
++
-++-lg .lg lg lg lg .
7、正弦函数:sin y x = 8、余弦函数:cos y x = 9、正切函数:tan y x =
10、幂函数:a
y x =
(1)、基本图像:
(2)、幂函数图像不过第四象限。

二、绝对值图像:
x :将0x >保留,擦去0x <,再将0x >部分沿y 轴对折 y :将0y >保留,再将0y <部分沿x 轴对折
三、图像平移变换: 左加右减;上加下减。

相关文档
最新文档