(完整版)基本初等函数讲义(全)
基本初等函数讲义(超级全)

一、一次函数二、二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时.宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时.常使用顶点式. ③若已知抛物线与x 轴有两个交点.且横线坐标已知时.选用两根式求()f x 更方便. (①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线.对称轴方程为,2x a=-顶点坐标是24(,)24b ac b a a-- ②当0a >时.抛物线开口向上.函数在(,]2b a -∞-上递减.在[,)2ba-+∞上递增.当2b x a =-时.2min 4()4ac b f x a -=;当0a <时.抛物线开口向下.函数在(,]2ba -∞-上递增.在[,)2b a -+∞上递减.当2bx a=-时.2max 4()4ac b f x a -=. 三、幂函数(1)幂函数的定义一般地.函数y x α=叫做幂函数.其中x 为自变量.α是常数. 过定点:所有的幂函数在(0,)+∞都有定义.并且图象都通过点(1,1).(1)根式的概念:如果,,,1nx a a R x R n =∈∈>.且n N +∈.那么x 叫做a 的n 次方根. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈(1)对数的定义①若(0,1)xa N a a =>≠且.则x 叫做以a 为底N 的对数.记作log a x N =.其中a 叫做底数.N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =.log 1a a =.log b a a b =.(3)常用对数与自然对数常用对数:lg N .即10log N ;自然对数:ln N .即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>.那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A .值域为C .从式子()y f x =中解出x .得式子()x y ϕ=.如果对于y 在C 中的任何一个值.通过式子()x y ϕ=.x 在A 中都有唯一确定的值和它对应.那么式子()x y ϕ=表示x 是y 的函数.函数()x y ϕ=叫做函数()y f x =的反函数.记作1()x fy -=.习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域.即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=.并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上.则'(,)P b a 在反函数1()y f x -=的图象上.④一般地.函数()y f x =要有反函数则它必须为单调函数. 例题一、求二次函数的解析式例1.抛物线244y x x =--的顶点坐标是()A .(2.0)B .(2.-2)C .(2.-8)D .(-2.-8)例2.已知抛物线的顶点为( 1.2).且通过(1.10).则这条抛物线的表达式为()A .()2312y x =-- B .()2312y x =-+ C. ()2312y x =+- D.()2312y x =-+---例3.抛物线y=的顶点在第三象限.试确定m 的取值范围是( ) A .m <-1或m >2 B .m <0或m >-1 C .-1<m <0 D .m <-1例4.已知二次函数()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的两根立方和等于17求()f x 的解析式二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时.求函数223y x x =--的最大值和最小值.例6.当0x ≥时.求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时.求函数21522y x x =--的最小值(其中t 为常数).222x mx m -++三、幂函数例8.下列函数在(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是() A.23y x = B.32y x = C.23y x-= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性.并画出图象的示意图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域;(2)判断函数的奇偶性; (3)求函数的单调区间.四、指数函数的运算例11.计算122(2)-⎡⎤-⎣⎦的结果是( ) A、12C、—12例12.等于( ) A 、 B 、C 、 D 、例13.若53,83==ba .则b a233-=___________五、指数函数的性质例14.{|2},{|xM y y P y y ====.则M ∩P () A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 例15.求下列函数的定义域与值域: (1)442x y -=(2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0.1)B .(1.1)C .(2.3)D .(2.4)例17求函数y=2121x x -+的定义域和值域.并讨论函数的单调性、奇偶性.4416a 8a 4a 2a五、对数函数的运算例18.已知32a=.那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a -例19.2log (2)log log a a a M N M N -=+.则NM的值为( ) A 、41B 、4C 、1D 、4或1 例20.已知732log [log (log )]0x =.那么12x -等于( )A 、13B C D 例21.2log 13a <.则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中.在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 例23.函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称例23.求证函数)()lg f x x =是(奇、偶)函数。
高校理工类数学第4节初等函数教学课堂讲义

u=ln r,v=θ 因此
w=ln |z|+iArg z
Fo多值函数,所以对数函数w=f(z)为多值函数, 并且每两个值相差2πi的整数倍,记作
Ln z=ln |z|+iArg z
如果规定上式中的Arg z取主值arg z,那么Ln z为一单值 函数,记作1n z,称为Ln z的主值。这样,就有
Foil 15
2、对数函数的性质
在实变函数中,负数无对数,此例说明复变数对数函数 是实变数对数函数的拓广。 利用辐角的相应的性质,不难证明,复变数对数函数保 持了实变数对数函数的基本性质:
(1) (2) 但应注意,这些等式右端必须取适当的分支才能等于左 端的某一分支。
Foil 16
对数函数的性质
指数函数的一些重要性质:
e (1)指数函数 z在整个Z 的有(2限) 平面内都有定义,且处处不为零.
(2)
ez
e e e (3)指数函z1数是z2以
为周期的周期函数.
z1 z2
(4)指数函数ez 在整个复平面上解析,且有
2i
(ez ) ez Foil 8
2、加法定理
ez x 1 ep z x 2 e p z x 1 z 2 p ) ( [证] 设 z 1 x 1 i1 , y z 2 x 2 i2 , y 左e 端 x z1e px z2p e x 1 (c y 1 i s o y 1 i ) s e n x 2 (c y 2 i s o y 2 i ) s n
Foil 14
对数函数举例
[例2-4-1] 求Ln 2,Ln(-1)以及及他们相应的主值。
[解] 因为Ln 2=ln 2+2kπi,所以它的主值就是ln 2。 而Ln (–1)=ln 1+i Arg (–1)=(2k+1)πi(k为整数),所以它 的主值是Ln (–1)=πi。 注意:在实变函数中,负数无对数,而复变数对数函 数是实变数对数函数的拓广。
专题0 基本初等函数(Ⅰ)(知识梳理)

专题02基本初等函数(知识梳理)第一节 指数与指数函数1.有理数指数幂 (1)幂的有关概念 ①正分数指数幂: am n=na m (a >0,m ,n ∈N *,且n >1).②负分数指数幂: a -m n=1am n=1n a m(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q); ②(a r )s =a rs (a >0,r ,s ∈Q); ③(ab )r =a r b r (a >0,b >0,r ∈Q). 2.指数函数的图象与性质R1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.[谨记通法]指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. 考点二 指数函数的图象及应用重点保分型考点——师生共研[典例引领]1.(2018·嘉兴能力测试)若函数f (x )=a x -b 的图象如图所示,则( )A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1解析:选D 由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1,又函数f (x )=a x -b 的图象是在y =a x 的基础上向下平移b 个单位长度得到的,所以0<b <1.2.已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.解析:①当0<a <1时,作出函数y =|a x -2|的图象,如图a.若直线y =3a 与函数y =|a x -2|(0<a <1)的图象有两个交点,则由图象可知0<3a <2,所以0<a <23.②当a >1时,作出函数y =|a x -2|的图象,如图b ,若直线y =3a 与函数y =|a x -2|(a >1)的图象有两个交点,则由图象可知0<3a <2,此时无解.所以a 的取值范围是⎝⎛⎭⎫0,23. 答案:⎝⎛⎭⎫0,23[由题悟法]指数函数图象的画法及应用(1)画指数函数y =a x (a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.[即时应用]1.函数f (x )=1-e |x |的图象大致是( )解析:选A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2若函数y =|3x -1|在(-∞,k ]上单调递减,求k 的取值范围.解:函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.由图象知,其在(-∞,0]上单调递减,所以k 的取值范围是(-∞,0]. 考点三 指数函数的性质及应用题点多变型考点——多角探明[锁定考向]高考常以选择题或填空题的形式考查指数函数的性质及应用,难度偏小,属中低档题. 常见的命题角度有: (1)比较指数式的大小;(2)简单指数方程或不等式的应用; (3)探究指数型函数的性质.[通法在握]应用指数函数性质的常见3大题型及求解策略题型 求解策略比较幂值的大小(1)能化成同底数的先化成同底数幂再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小解简单指数不等式先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致[提醒]在研究指数型函数的单调性时,当底数与“1”的大小关系不明确时,要分类讨论.第二节对数与对数函数1.对数概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N 叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N log a1=0,log a a=1,a log a N=N运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式换底公式:log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)2.对数函数的图象与性质y=log a x a>10<a<1图象性质定义域为(0,+∞)值域为R过定点(1,0),即x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在区间(0,+∞)上是增函数在区间(0,+∞)上是减函数3.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.在运算性质log a Mα=αlog a M中,要特别注意条件,在无M>0的条件下应为log a Mα=αlog a|M|(α∈N*,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.[谨记通法]对数运算的一般思路(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.如“题组练透”第1题易错.考点二对数函数的图象及应用重点保分型考点——师生共研[典例引领](2018·杭州模拟)设f(x)=|ln(x+1)|,已知f(a)=f(b)(a<b),则()A.a+b>0B.a+b>1C.2a+b>0 D.2a+b>1解析:选A 作出函数f (x )=|ln(x +1)|的图象如图所示,由f (a )=f (b ),得-ln(a +1)=ln(b +1),即ab +a +b =0.所以0=ab +a +b <a +b 24+a +b ,即(a +b )(a +b +4)>0,显然-1<a <0,b >0,∴a +b +4>0.∴a +b >0.故选A.[由题悟法]应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.[即时应用]1.函数f (x )=ln|x -1|的图象大致是( )解析:选B 当x >1时,f (x )=ln(x -1),又f (x )的图象关于x =1对称,故选B.2.(2018·温州适应性训练)若x 1满足2x +2x =5,x 2满足2x +2log 2(x -1)=5,则x 1+x 2=( ) A.52 B .3 C.72D .4解析:选C 2x =5-2x,2log 2(x -1)=5-2x ,即2x -1=52-x ,log 2(x -1)=52-x ,作出y =2x -1,y =52-x ,y =log 2(x -1)的图象(如图). 由图知y =2x-1与y =log 2(x -1)的图象关于y =x -1对称,它们与y =52-x 的交点A ,B 的中点为y =52-x 与y =x -1的交点C ,x C =x 1+x 22=74,∴x 1+x 2=72,故选C.[通法在握]1.解决与对数函数有关的函数的单调性问题的步骤2.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.(3)若底数与真数都不同,则常借助1,0等中间量进行比较.第三节幂函数1.五种常见幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)1.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.[小题纠偏]1.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 答案:⎝⎛⎭⎫120,+∞ 2.给出下列命题: ①函数y =2x 是幂函数;②如果幂函数的图象与坐标轴相交,则交点一定是原点; ③当n <0时,幂函数y =x n 是定义域上的减函数; ④二次函数y =ax 2+bx +c ,x ∈[m ,n ]的最值一定是4ac -b 24a. 其中正确的是________(填序号). 答案:②考点一 幂函数的图象与性质基础送分型考点——自主练透[题组练透]1.幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:选C 令f (x )=x α,则4α=2, ∴α=12,∴f (x )=x 12.2.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( ) A .1 B .2 C .1或2D .3解析:选A ∵幂函数f (x )=(m 2-3m +3)x m +1为偶函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件.当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.3.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [谨记通法]幂函数的指数与图象特征的关系(1)幂函数的形式是y =x α(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式. (2)若幂函数y =x α(α∈R)是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0. 考点二 求二次函数的解析式重点保分型考点——师生共研[典例引领]已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.解:法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+-12=12. ∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:(利用两根式)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函数有最大值y max=8,即4a-2a-1-a24a=8.解得a=-4或a=0(舍去),故所求函数解析式为f(x)=-4x2+4x+7.[由题悟法]求二次函数解析式的方法[通法在握]1.二次函数最值问题的3种类型及解题思路(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)思路:抓“三点一轴”,三点是指区间两个端点和中点,一轴指的是对称轴.2.由不等式恒成立求参数取值范围的2大思路及1个关键(1)思路:一是分离参数;二是不分离参数.(2)关键:两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否可分离.这两个思路的依据是:a≥f(x)⇔a≥f(x)max,a≤f(x)⇔a≤f(x)min.。
基本初等函数讲义(超级全)

一、一次函数之阳早格格创做二、二次函数(1)二次函数剖析式的三种形式 ①普遍式:2()(0)f x ax bx c a =++≠ ②顶面式:2()()(0)f x a x h k a =-+≠ ③二根式:12()()()(0)f x a x x x x a =--≠ (2)供二次函数剖析式的要领 ①已知三个面坐标时,宜用普遍式.②已知扔物线的顶面坐标或者与对付称轴有关或者与最大(小)值有关时,常使用顶面式.③若已知扔物线与x 轴有二个接面,且横线坐标已知时,采用二根式供()f x 更便当.(3)二次函数图象的本量①.二次函数2()(0)f x ax bx c a =++≠的图象是一条扔物线,对付称轴圆程为,2bx a =-顶面坐标是24(,)24b ac b a a-- ②当0a >时,扔物线启心进与,函数正在(,]2ba-∞-上递减,正在[,)2b a-+∞上递加,当2bx a =-时,2min 4()4ac b f x a-=;当0a <时,扔物线启心背下,函数正在(,]2b a -∞-上递加,正在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a-=.三、幂函数(1)幂函数的定义普遍天,函数y x α=喊干幂函数,其中x 为自变量,α是常数.(2)幂函数的图象过定面:所有的幂函数正在(0,)+∞皆有定义,而且图象皆通过面(1,1). 四、指数函数(1)根式的观念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 喊干a 的n 次圆根.(2)分数指数幂的观念①正数的正分数指数幂的意思是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的背分数指数幂的意思是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的背分数指数幂不意思.(3)运算本量①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r=>>∈ab a b a b r R (4)指数函数五、对付数函数(1)对付数的定义①若(0,1)x a N a a =>≠且,则x 喊干以a 为底N 的对付数,记做log a x N =,其中a 喊干底数,N喊干真数.②背数战整不对付数. ③对付数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个要害的对付数恒等式log 10a =,log 1a a =,log b a a b =.(3)时常使用对付数与自然对付数时常使用对付数:lg N ,即10log N ;自然对付数:ln N ,即log e N (其中 2.71828e =…).(4)对付数的运算本量 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈④log aNa N =⑤log log (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且(5)对付数函数(6)反函数的观念设函数()y f x =的定义域为A ,值域为C,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对付于y 正在C 中的所有一个值,通过式子()x y ϕ=,x 正在A 中皆有唯一决定的值战它对付应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=喊干函数()y f x =的反函数,记做1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的供法①决定反函数的定义域,即本函数的值域;②从本函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并证明反函数的定义域. (8)反函数的本量 ①本函数()y f x =与反函数1()y f x -=的图象关于曲线y x =对付称. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 正在本函数()y f x =的图象上,则'(,)P b a 正在反函数1()y f x -=的图象上.④普遍天,函数()y f x =要有反函数则它必须为单调函数.例题一、供二次函数的剖析式244y x x =--的顶面坐标是()A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知扔物线的顶面为(-1,-2),且通过(1,10),则那条扔物线的表白式为()A .()2312y x =-- B .()2312y x =-+C.()2312y x =+- D.()2312y x =-+-例3.扔物线y=222xmx m -++的顶面正在第三象限,试决定m的与值范畴是()A .m <-1或者m >2B .m <0或者m >-1C .-1<m <0D .m <-1()f x 共时谦脚条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的二根坐圆战等于17供()f x 的剖析式 二、二次函数正在特定区间上的最值问题例5. 当22x -≤≤时,供函数223y x x =--的最大值战最小值. 例6.当0x ≥时,供函数(2)y x x =--的与值范畴.例7.当1t x t ≤≤+时,供函数21522y x x =--的最小值(其中t 为常数).三、幂函数(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -={}0x x >的是()A.23y x = B.32y x = C.23y x -= D.32y x-=例10.计划函数y =52x 的定义域、值域、奇奇性、单调性,并绘出图象的示企图. 例10.已知函数y =42215x x --.(1)供函数的定义域、值域; (2)推断函数的奇奇性; (3)供函数的单调区间. 四、指数函数的运算122(2)-⎡⎤-⎣⎦的截止是()A、12C 、— D 、—12例12.44等于()A 、16a B 、8a C 、4a D 、2a53,83==ba,则b a233-=___________五、指数函数的本量例14.{|2},{|xM y y P y y ====,则M∩P ()A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 例15.供下列函数的定义域与值域:(1)442x y -=(2)||2()3x y =()2301x y a a a -=+>≠且的图像必通过面 ()A .(0,1)B .(1,1)C .(2,3)D .(2,4) 例17供函数y=2121x x -+的定义域战值域,并计划函数的单调性、奇奇性.五、对付数函数的运算32a =,那么33log 82log 6-用a 表示是()A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a - 例19.2log (2)log log a a a M N M N -=+,则NM 的值为()A 、41B 、4 C 、1 D 、4或者1732log [log (log )]0x =,那么12x-等于()A 、13B C D 例21.2log 13a <,则a 的与值范畴是()A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭五、对付数函数的本量例22.下列函数中,正在()0,2上为删函数的是()A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于()A 、x 轴对付称B 、y 轴对付称C 、本面对付称D 、曲线y x =对付称)()lgf x x=是(奇、奇)函数.课下做业1.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象大概是图所示的( )2.对付扔物线y=22(2)x --3与y=-22(2)x -+4的道法不精确的是()A .扔物线的形状相共B .扔物线的顶面相共C .扔物线对付称轴相共D .扔物线的启心目标差异3. 二次函数y=221xx --+图像的顶面正在()A .第一象限B .第二象限C .第三象限D .第四象限4. 如图所示,谦脚a >0,b <0的函数y=2ax bx +的图像是()5.如果扔物线y=26x x c ++的顶面正在x 轴上,那么c 的值为()A .0B .6C .3D .96.一次函数y =ax +b 与二次函数y =ax2+bx +c 正在共一坐标系中的图象大概是( )7.正在下列图象中,二次函数y=ax2+bx +c 与函数y=(ab )x 的图象大概是 ()8.若函数f(x)=(a -1)x2+(a2-1)x +1是奇函数,则正在区间[0,+∞)上f(x)是( )A .减函数B .删函数C .常函数D .大概是减函数,也大概是常函数9.已知函数y =x2-2x +3正在关区间[0,m]上有最大值3,最小值2,则m 的与值范畴是( )A .[1,+∞)B .[0,2]C .[1,2]D .(-∞,2]10、使x2>x3创造的x 的与值范畴是( )A 、x <1且x≠0B 、0<x <1C 、x >1D 、x <111、若四个幂函数y =ax ,y=bx ,y =c x ,y =d x 正在共一坐标系中的图象如左图,则a 、b 、c 、d 的大小关系是( ) A 、d >c >b >a B 、a >b >c >d C 、d >c >a >b D 、a >b >d >c12.若幂函数()1m f x x -=正在(0,+∞)上是减函数,则 ( )A .m >1B .m <1C .m =lD .不克不迭决定 13.若面(),A a b 正在幂函数()n y x n Q =∈的图象上,那么下列论断中不克不迭创造的是A .00a b >⎧⎨>⎩B .00a b >⎧⎨<⎩C.00a b <⎧⎨<⎩ D .00a b <⎧⎨>⎩14.若函数f(x)=log 12(x2-6x +5)正在(a ,+∞)上是减函数,则a 的与值范畴是( )A .(-∞,1]B .(3,+∞)C .(-∞,3)D .[5,+∞)15、设集中2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是() A 、∅ B 、T C 、S D 、有限集16、函数22log (1)y x x =+≥的值域为()A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞17、设1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则()A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>18、正在(2)log (5)a b a -=-中,真数a 的与值范畴是()A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<19、估计lg52lg2)lg5()lg2(22•++等于() A 、0 B 、1 C 、2 D 、320、已知3log 2a =,那么33log 82log 6-用a 表示是() A 、52a - B 、2a - C 、23(1)a a -+ D 、231a a --21、已知幂函数f(x)过面(2,),则f(4)的值为()A 、12B 、 1C 、2D 、81.扔物线y =8x2-(m -1)x +m -7的顶面正在x 轴上,则m =________.23-=xy 的定义域为___________.()()12m f x m x +=-,如果()f x 是正比率函数,则m=____ ,如果()f x 是反比率函数,则m=______,如果f(x)是幂函数,则m=____.14(1)x --蓄意思,则x ∈___________.35x y <=___________.25525x x y ⋅=,则y 的最小值为___________.7、若2log 2,log 3,m n a a m n a +===. 8、函数(-1)log (3-)x y x =的定义域是. 9、2lg 25lg 2lg50(lg 2)++=.1622<-+x x的解集是__________________________.282133x x --⎛⎫< ⎪⎝⎭的解集是__________________________.103,104x y ==,则10x y -=__________________________.13、已知函数3xlog x (x 0)1f (x),f[f ()]2(x 0)9>⎧=⎨≤⎩,则,的值为 14、函数2)23x (lg )x (f +-=恒过定面2、已知幂函数f (x )=23221++-p p x(p ∈Z )正在(0,+∞)上是删函数,且正在其定义域内是奇函数,供p 的值,并写出相映的函数f (x )、222(3)lg 6x f x x -=-,(1)供()f x 的定义域;(2)推断()f x 的奇奇性.a R ∈,22()()21xx a a f x x R ⋅+-=∈+,试决定a 的值,使()f x 为奇函数.5. 已知函数x 121f (x)log[()1]2=-,(1)供f(x)的定义域;(2)计划函数f(x)的删减性.。
(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。
基本初等函数讲义(全)

基本初等函数讲义(全) -CAL-FENGHAI.-(YICAI)-Company One1一、一次函数二、二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质定义域 (),-∞+∞对称轴2b x a=-顶点坐标24,24b ac b aa ⎛⎫-- ⎪⎝⎭值域24,4ac b a ⎛⎫-+∞ ⎪⎝⎭24,4ac b a ⎛⎫--∞ ⎪⎝⎭单调区间,2b a ⎛⎫-∞- ⎪⎝⎭递减,2b a ⎛⎫-+∞ ⎪⎝⎭递增 ,2b a ⎛⎫-∞- ⎪⎝⎭递增,2b a ⎛⎫-+∞ ⎪⎝⎭递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. 三、幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).四、指数函数(1)根式的概念如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m n n n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数函数名称 指数函数定义 函数(0x y a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =y(0,1)1y =x a y =y(0,1)1y =(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且 (5)对数函数函数 名称对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. (6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法x yO(1,0)1x =log a y x =xyO (1,0)1x =log a y x=①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.例题一、求二次函数的解析式例1. 抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( )A .()2312y x =--B .()2312y x =-+ C. ()2312y x =+- D. ()2312y x =-+-例3.抛物线y=的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1--222x mx m -++例4.已知二次函数()f x 同时满足条件: (1)()()11f x f x +=-; (2)()f x 的最大值为15; (3)()0f x =的两根立方和等于17 求()f x 的解析式二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时,求函数223y x x =--的最大值和最小值.例6.当0x ≥时,求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).三、幂函数例8.下列函数在(),0-∞上为减函数的是( )A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是( )A.23y x = B.32y x = C.23y x -= D.32y x -=例10. 讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的示意图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.四、指数函数的运算例11. 计算122(2)-⎡⎤-⎣⎦的结果是( )A、12 C、—12例12.等于( ) A 、 B 、 C 、 D 、例13. 若53,83==ba ,则b a233-=___________五、指数函数的性质例14.{|2},{|xM y y P y y ====,则M∩P( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 例15.求下列函数的定义域与值域:(1)442x y -= (2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0,1)B .(1,1)C .(2,3)D .(2,4)4416a 8a 4a 2a例17求函数y=2121x x -+的定义域和值域,并讨论函数的单调性、奇偶性.五、对数函数的运算例18.已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 例19.2log (2)log log a a a M N M N -=+,则NM 的值为( ) A 、41 B 、4 C 、1 D 、4或1 例20.已知732log [log (log )]0x =,那么12x -等于( )A 、13 B 、 C D 例21.2log 13a<,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭ B 、2,3⎛⎫+∞ ⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 例23.函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称例23.函数)()lgf x x =是 (奇、偶)函数。
人教版数学必修一第二章-基本初等函数复习课共24张PPT(共24张PPT)

4.若loga2<logb2<0,则( B )
(A)0<a<b<1
(B)0<b<a<1
(C)1<b<a
(D)0<b<1<a
5.方程loga(x+1)+x2=2(0<a<1)的解的个
数是( C ) (A)0 (B)1 (C)2 (D)无法确定
1.比较下列各组中两个值的大小,并说明 理由.
2.设函数. f (x) = lg(x + x2 +1) (1)确定函数f (x)的定义域; (2)判断函数f (x)的奇偶性; (3)证明函数f (x)在其定义域上是单调 增函数;
5.如图中曲线C1,C2,C3,C4分别是函数y=ax,y=bx, y=cx,y=dx的图象,则a,b,c,d与1的大小关系是(D )
(A)a<b<1<c<d (B)a<b<1<d<c (C)b<a<1<c<d (D)b<a<1<d<c
6.已知函数
f (x) = a x -1 ax +1
(a>1பைடு நூலகம்.
(1)判断函数f (x)的奇偶性; (2)证明f (x)在(-∞,+∞)上是增函数.
1 计算
2 log5 2 + log5 3
log
5
10
+
1 2
log 5
0.36
+
1 3
log 5
8
=1
2 求函数y = log x-1(3 - x)的定义域
3.(lg 2)2 lg 250 + (lg 5)2 lg 40 =
12 换底公式
注意换底公式在对数运算中的作用:
①公式
顺用和逆用;
②由公式和运算性质推得的结论
基本初等函数(知识点汇总)大全

《指数函数》知识点汇总1、根式的基本性质⎪⎩⎪⎨⎧>±=⇔>∈=为偶数,为奇数n a a n a x n N n a x n n n)0(,)1,( a a n n =)((n 是大于1的自然数)n n nb a ab ⋅=(的整数是大于1,0,0n b a ≥≥)ba bann n=)1,0,0(的整数是大于n b a >≥⎩⎨⎧=为偶数为奇数n a n a a nn |,|,||2a a =n m nm a a =(1,,,0>∈>+n N n m a 且)n m np m p a a =(1,,,,0>∈>+n N p n m a 且)nmnm nm aaa11==-(1,,,0>∈>+n N n m a 且))1,,0(的整数都是大于n m a a a mnnm>=2、指数幂及运算性质n m n m a a a +=⋅(R n m b a ∈>>,,0,0)),,0,0(R n m b a a aa nm n m ∈>>=- mn n m a a =)((R n m b a ∈>>,,0,0) n n n b a b a =⋅)((R n m b a ∈>>,,0,0)3、指数函数)1,0(≠>=a a a y x且的图象和性质 )1(>=a a y x)10(<<=a a y x函数图象函数性质(1)定义域:R ; (2)值域:),0(+∞; (3)过定点)1,0(; (4)当0>x 时,1>y ; (4)当0>x 时,10<<y ; (5)当0<x 时,10<<y ; (5)当0<x 时,1>y ; (6)在R 上是增函数(6)在R 上是减函数(7)底数越大图象越接近y 轴;(7)底数越小图象越接近y 轴;(8)底数越大,它的图象与x=1的交点越靠上(底大图高); (9)当a 与a1互为倒数时,函数)1,0(≠>=a a a y x且与函数)1,0()1(≠>=a a ay x 且的图象关于y 轴对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一次函数二、二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质图像定义域 (),-∞+∞对称轴 2b x a=-顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭值域24,4ac b a ⎛⎫-+∞ ⎪⎝⎭24,4ac b a ⎛⎫--∞ ⎪⎝⎭单调区间,2b a ⎛⎫-∞- ⎪⎝⎭递减,2b a ⎛⎫-+∞ ⎪⎝⎭递增 ,2b a ⎛⎫-∞- ⎪⎝⎭递增,2b a ⎛⎫-+∞ ⎪⎝⎭递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.三、幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).四、指数函数(1)根式的概念如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.(3)运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数定义函数(0x y a a =>且1)a ≠叫做指数函数图象1a > 01a <<定义域 R 值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性非奇非偶单调性 在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对图象的影响在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.五、对数函数 (1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且 (5)对数函数函数 名称对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. (6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式x yO(1,0)1x =log a y x =xyO (1,0)1x =log a y x=子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.例题一、求二次函数的解析式例1. 抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8) 例2.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( )A .()2312y x =--B .()2312y x =-+ C. ()2312y x =+- D. ()2312y x =-+---例3.抛物线y=的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1例4.已知二次函数()f x 同时满足条件: (1)()()11f x f x +=-; (2)()f x 的最大值为15; (3)()0f x =的两根立方和等于17 求()f x 的解析式二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时,求函数223y x x =--的最大值和最小值.例6.当0x ≥时,求函数(2)y x x =--的取值范围.222x mx m -++例7.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).三、幂函数例8.下列函数在(),0-∞上为减函数的是( )A.13y x = B.2y x = C.3y x = D.2y x -=例9.下列幂函数中定义域为{}0x x >的是( )A.23y x = B.32y x = C.23y x -= D.32y x -=例10. 讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的示意图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域;(2)判断函数的奇偶性; (3)求函数的单调区间.四、指数函数的运算例11. 计算122(2)-⎡⎤-⎣⎦的结果是( )AB 、12 CD 、—12例12.等于( ) A 、 B 、 C 、 D 、 例13. 若53,83==ba ,则b a 233-=___________五、指数函数的性质例14.{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 例15.求下列函数的定义域与值域:4416a 8a 4a 2a(1)442x y -= (2)||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点 ( )A .(0,1)B .(1,1)C .(2,3)D .(2,4)例17求函数y=2121x x -+的定义域和值域,并讨论函数的单调性、奇偶性.五、对数函数的运算例18.已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -例19.2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1例20.已知732log [log (log )]0x =,那么12x -等于( )A 、13 B 、 C D例21.2log 13a<,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中,在()0,2上为增函数的是( ) A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 例23.函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称 例23.函数)()lg f x x =是 (奇、偶)函数。