数据挖掘技术

合集下载

什么叫数据挖掘_数据挖掘技术解析

什么叫数据挖掘_数据挖掘技术解析

什么叫数据挖掘_数据挖掘技术解析数据挖掘(data mining)是指从大量的资料中自动搜索隐藏于其中的有着特殊关联性的信息的过程。

在全世界的计算机存储中,存在未使用的海量数据并且它们还在快速增长,这些数据就像待挖掘的金矿,而进行数据分析的科学家、工程师、分析员的数量变化一直相对较小,这种差距称为数据挖掘产生的主要原因。

数据挖掘是一个多学科交叉领域,涉及神经网络、遗传算法、回归、统计分析、机器学习、聚类分析、特异群分析等,开发挖掘大型海量和多维数据集的算法和系统,开发合适的隐私和安全模式,提高数据系统的使用简便性。

数据挖掘与传统意义上的统计学不同。

统计学推断是假设驱动的,即形成假设并在数据基础上验证他;数据挖掘是数据驱动的,即自动地从数据中提取模式和假设。

数据挖掘的目标是提取可以容易转换成逻辑规则或可视化表示的定性模型,与传统的统计学相比,更加以人为本。

数据挖掘技术简述数据挖掘的技术有很多种,按照不同的分类有不同的分类法。

下面着重讨论一下数据挖掘中常用的一些技术:统计技术,关联规则,基于历史的分析,遗传算法,聚集检测,连接分析,决策树,神经网络,粗糙集,模糊集,回归分析,差别分析,概念描述等十三种常用的数据挖掘的技术。

1、统计技术数据挖掘涉及的科学领域和技术很多,如统计技术。

统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。

2、关联规则数据关联是数据库中存在的一类重要的可被发现的知识。

若两个或多个变量的取值之I司存在某种规律性,就称为关联。

关联可分为简单关联、时序关联、因果关联。

关联分析的目的是找出数据库中隐藏的关联网。

有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。

3、基于历史的MBR(Memory-based Reasoning)分析先根据经验知识寻找相似的情况,。

数据挖掘技术及应用研究

数据挖掘技术及应用研究

数据挖掘技术及应用研究一、引言数据挖掘技术是指从大量数据中提取出有价值的信息,并利用这些信息进行决策、规划等活动的技术。

它涉及多个学科领域,如数据管理、统计学、机器学习等。

随着信息技术的迅速发展,数据挖掘技术在各行各业得到了广泛的应用。

本文将重点介绍数据挖掘技术的基本概念、主要方法和应用领域。

二、数据挖掘技术的基本概念1. 定义数据挖掘技术是指从大量数据中自动发现隐藏在其中的有价值的信息和知识的一种机器学习技术。

2. 特点数据挖掘技术主要具有以下特点:(1)可处理大规模数据;(2)能够自动发现数据中的关联性和趋势;(3)可以处理复杂的数据类型和结构,例如文本、图像等;(4)能自动学习人类难以发现的知识和模式。

三、数据挖掘技术的主要方法1. 关联规则挖掘关联规则挖掘是指从数据集中发现不同数据项之间的关系。

例如,超市销售数据中发现“啤酒”和“尿布”之间存在关联性,即购买尿布的顾客很有可能同时购买啤酒。

关联规则挖掘主要采用Apriori算法。

2. 分类和聚类分类是指将数据对象划分到不同的预定义类别中。

例如,将客户划分为“高消费”、“中等消费”、“低消费”等。

聚类是指将数据对象划分到若干个不同的组中,具有相似特征的对象被划分到同一组中。

3. 决策树和神经网络决策树和神经网络是两种常用的数据挖掘技术。

决策树是一种树形结构,用于对数据集进行分类或预测。

神经网络是一种模拟人脑构造的模型,能够学习从输入到输出的映射关系。

两种方法都需要大量的数据和计算资源。

四、数据挖掘技术的应用领域1. 金融行业数据挖掘技术在金融业中广泛应用。

例如,银行可以利用数据挖掘技术对客户进行分类,识别高风险客户;保险公司可以通过挖掘历史数据,预测赔付金额和风险等级。

2. 零售业数据挖掘技术可以帮助零售企业更好地了解客户需求和购买习惯,以便实施精准营销和促销策略。

例如,超市可以通过分析销售数据,预测客户对某种新产品的需求程度。

3. 医疗行业数据挖掘技术在医疗行业的应用非常广泛。

数据挖掘的概念与技术介绍

数据挖掘的概念与技术介绍

数据挖掘的概念与技术介绍数据挖掘的概念与技术介绍数据挖掘是指从大量的数据中发现隐藏在其中的有价值的信息、模式和规律的过程。

随着互联网时代的到来,越来越多的数据被收集和存储,数据挖掘成为了从这些海量数据中获取洞察和知识的重要工具。

本文将围绕数据挖掘的概念和技术展开讨论,帮助读者深入理解数据挖掘的核心要素和方法。

一、数据挖掘的概念1.1 数据挖掘的定义数据挖掘是一种通过自动或半自动的方式,从大量的数据中发现有用的信息、模式和规律的过程。

通过应用统计学、机器学习和人工智能等技术,数据挖掘可以帮助人们从数据中进行预测、分析和决策。

1.2 数据挖掘的目标数据挖掘的主要目标是从数据中发现隐藏的模式和规律,并将这些知识应用于实际问题的解决。

数据挖掘可以帮助企业提高市场营销的效果、改进产品设计、优化生产过程等。

数据挖掘也被广泛应用于科学研究、金融风险分析、医学诊断等领域。

1.3 数据挖掘的流程数据挖掘的流程通常包括数据收集、数据预处理、模型构建、模型评估和模型应用等步骤。

其中,数据预处理是数据挖掘流程中非常重要的一环,它包括数据清洗、数据集成、数据变换和数据规约等子任务。

二、数据挖掘的技术2.1 关联规则挖掘关联规则挖掘是数据挖掘的一个重要技术,它用于发现数据集中的项之间的关联关系。

通过挖掘关联规则,可以发现数据中隐藏的有用信息,如购物篮分析中的“啤酒和尿布”现象。

2.2 分类与回归分类与回归是数据挖掘中常用的技术,它们用于对数据进行分类或预测。

分类是指根据已有的样本数据,建立分类模型,然后将新的数据实例分到不同的类别中。

回归则是根据数据的特征和已知的输出值,建立回归模型,然后预测新的数据实例的输出值。

2.3 聚类分析聚类分析是一种将数据分成不同的类别或簇的技术。

通过发现数据之间的相似性,聚类可以帮助人们理解数据的内在结构和特点。

聚类分析在市场细分、社交网络分析等领域具有广泛的应用。

2.4 异常检测异常检测是指从数据中识别出与大多数数据显著不同的样本或模式。

数据挖掘技术含义

数据挖掘技术含义

数据挖掘技术含义1、数据挖掘概念数据挖掘(DataMining,DM),是随着数据库和人工智能发展起来的新兴的信息处理技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程,其主要特点是对数据库中的大量数据实行抽取、转换、分析和其他模型化处理,并从中提取辅助决策的关键性数据。

它可协助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。

数据挖掘是一门涉及面很广的交叉性新兴学科,涉及到数据库、人工智能、数理统计、可视化、并行计算等领域。

2、数据挖掘技术关联规则是一种简单,实用的分析规则,描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。

绝大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所相关联关系,所挖掘出的关联规则量往往非常巨大,但是。

并不是所有通过关联得到的属性之间的关系都有实际应用价值,对这些关联规则实行有效的评价。

筛选出用户真正感兴趣的。

有意义的关联规则尤为重要。

分类就是假定数据库中的每个对象属于一个预先给定的类。

从而将数据库中的数据分配到给定的类中。

而聚类分析是根据所选样本间关联的标准将其划分成几个组,同组内的样本具有较高的相似度,不同组的则相异。

分类和聚类的区别在于分类事先知道类别数和各类的典型特征,而聚类则事先不知道。

聚类方法适合于探讨样本间的内部关系,从而对样本结构做出合理的评价。

使用这些方法一般首先建立一个数据模型或统计模型,然后根据这种模型提取相关的知识。

传统的统计学为数据挖掘提供了很多判别和回归分析方法。

贝叶斯推理、回归分析、方差分析等技术是很多挖掘应用中有力的工具之一。

2.4神经网络方法神经元网络,具有非线形映射特性、信息的分布存储、并行处理和全局集体的作用、高度的自学习、自组织和自适合水平的种种优点。

这些优点使得神经元网络非常适合解决数据挖掘的问题。

数据挖掘技术

数据挖掘技术

数据挖掘技术数据挖掘技术是一门涉及从大量数据中发掘出有用信息的学科。

随着信息时代的到来,各行各业积累了海量的数据,而数据挖掘技术的兴起,为我们利用这些数据提供了有效的手段。

本文将介绍数据挖掘技术的定义、主要方法和应用领域。

一、定义数据挖掘技术是指通过运用各种数学、统计学和计算机科学的方法,探索和发现大规模数据集中隐藏的模式、关联规则等有价值的信息。

数据挖掘技术可以帮助我们从数据中挖掘出隐藏的知识,辅助决策和问题解决。

二、主要方法1. 分类与预测:通过训练数据集来构建一个分类模型,用于对新数据进行分类或预测。

常用的算法有决策树、朴素贝叶斯、支持向量机等。

2. 关联规则挖掘:发现数据集中不同项之间的关联关系,用于推断和预测。

常用的算法有Apriori算法、FP-Growth算法等。

3. 聚类分析:将数据集中的对象划分成不同的组或类别,使得同一组内的对象相似度较高,组间的相似度较低。

常用的算法有K-means聚类、层次聚类等。

4. 异常检测:通过分析数据的特征和分布,发现与正常模式不符的异常数据。

常用的算法有LOF算法、孤立森林算法等。

5. 预测建模:通过对历史数据进行分析和建模,预测未来的趋势和情况。

常用的算法有时间序列分析、回归分析等。

三、应用领域1. 电商领域:数据挖掘技术可以通过对用户行为和购买记录的分析,为电商企业提供个性化推荐服务,提高用户购物体验和销售额。

2. 金融领域:数据挖掘技术可以帮助银行和保险公司进行风险评估和欺诈检测,提供准确的信用评分和保险赔付估计。

3. 医疗领域:数据挖掘技术可以通过分析临床数据和医疗记录,帮助医生进行疾病的预测和诊断,提供个体化的医疗方案。

4. 航空领域:数据挖掘技术可以通过对机票销售数据和历史航班信息的分析,优化航班调度和机票定价,提高航空公司的运营效率。

5. 社交媒体领域:数据挖掘技术可以通过对用户社交网络和行为数据的分析,为社交媒体平台提供个性化推荐和精准广告投放。

数据挖掘 概念与技术

数据挖掘 概念与技术

数据挖掘概念与技术数据挖掘概念与技术一、概念介绍数据挖掘是一种通过自动或半自动的手段,从大量数据中发现有用信息的过程。

它结合了多个领域的知识,如统计学、机器学习、人工智能、数据库技术等,旨在寻找隐藏在数据背后的规律和模式,以便做出更好的决策和预测。

二、数据挖掘技术1. 数据预处理数据预处理是指在进行数据挖掘之前对原始数据进行清洗和转换,以便更好地应用于后续分析。

常见的预处理方法包括缺失值填充、异常值处理、特征选择等。

2. 分类与回归分类和回归是两种最常用的数据挖掘技术。

分类是指将事物分为不同类别或标签,例如将电子邮件分为垃圾邮件和非垃圾邮件。

回归则是用来预测数值型变量,例如预测房价或股票价格。

3. 聚类分析聚类分析是一种无监督学习方法,它将相似的对象分组在一起,并将不相似的对象分开。

聚类可以帮助我们发现新的模式和关系,也可以用于数据压缩和降维。

4. 关联规则挖掘关联规则挖掘是一种发现数据集中项之间关系的方法。

例如,在购物篮分析中,我们可以使用关联规则挖掘来发现哪些商品经常被一起购买。

5. 异常检测异常检测是一种寻找异常值的方法。

异常值可能是数据输入错误或者表示了真实世界中的一个重要事件。

异常检测可以帮助我们发现这些重要事件并且对其进行进一步分析。

三、应用场景数据挖掘技术已经广泛应用于各个领域,如金融、医疗、电子商务等。

以下是一些具体的应用场景:1. 市场营销通过对大量客户数据进行分析,可以识别出潜在客户和他们的需求,并设计相应的市场营销策略。

2. 风险管理金融机构可以使用数据挖掘技术来预测贷款违约风险和股票价格波动,并采取相应的风险管理策略。

3. 医疗领域医疗机构可以使用数据挖掘技术来预测患者病情和治疗效果,并优化诊断和治疗方案。

4. 电子商务电子商务平台可以使用数据挖掘技术来个性化推荐商品和服务,提高用户满意度和销售额。

四、未来发展趋势数据挖掘技术正不断发展和完善,以下是一些未来的发展趋势:1. 深度学习深度学习是一种基于神经网络的机器学习方法,它可以自动从数据中提取特征,并在大规模数据上获得更好的性能。

数据挖掘的技术与方法

数据挖掘的技术与方法

数据挖掘的技术与方法数据挖掘是一种从大规模的数据集中提取有价值的信息和知识的过程。

它涉及到多种技术和方法,以帮助我们在海量数据中发现隐藏的模式和规律。

本文将介绍数据挖掘的一些常见技术和方法。

一、聚类分析聚类分析是一种无监督学习方法,可将数据集中的对象分成不同的组或簇。

聚类算法尝试将相似的数据对象放入同一组,同时将不相似的对象分配到不同的组。

常见的聚类方法包括K均值聚类、层次聚类和密度聚类等。

K均值聚类是一种常用的聚类算法,它将数据通过计算样本之间的距离,将样本划分为K个簇。

其基本思想是将数据集中的样本划分为K个簇,使得簇内的样本相似度最大化,而簇间的样本相似度最小化。

二、分类分析分类分析是一种有监督学习方法,旨在根据已知的数据样本进行分类预测。

分类算法将已知类别的训练集输入模型,并根据训练集中的模式和规律进行分类。

常见的分类算法包括决策树、朴素贝叶斯和支持向量机等。

决策树是一种基于树状图模型的分类算法,它通过一系列的判断节点将数据集划分为不同的类别。

朴素贝叶斯是一种基于贝叶斯定理的分类算法,它假设各个特征之间相互独立。

支持向量机是一种基于最大间隔的分类算法,它通过寻找一个最优超平面,将不同的类别分开。

三、关联规则挖掘关联规则挖掘是一种用于识别数据项之间关联关系的方法。

它可以用于发现频繁项集以及项集之间的关联规则。

Apriori算法是一种常用的关联规则挖掘算法。

它基于候选项集的生成和剪枝,通过逐层扫描数据集来发现频繁项集。

同时,根据频繁项集可以生成关联规则,以揭示数据项之间的关联关系。

四、异常检测异常检测是一种用于识别与预期模式和行为不符的数据项或事件的方法。

异常检测可以帮助我们发现数据中的异常值、离群点或潜在的欺诈行为。

常见的异常检测算法包括基于统计学的方法、聚类方法和支持向量机等。

基于统计学的方法通过对数据进行概率分布建模,来识别与模型不符的数据项。

聚类方法通过将数据进行分组,并检测离群点所在的簇。

数据挖掘技术

数据挖掘技术

数据挖掘技术的 算法
聚类算法
K-means算法
层次聚类算法
DBSCAN算法
谱聚类算法
分类算法
决策树算法
朴素贝叶斯算法
K最近邻算法 支持向量机算法
关联规则挖掘算法
应用场景:市场篮子分析、 序列模式发现等
定义:从大量数据中挖掘出 有趣的关系
算法分类:Apriori、FPGrowth等
评估指标:支持度、置信度 等
去除无效或错误数据 填充缺失值 去除噪声数据 数据规范化
数据探索
数据收集:获取需要挖掘的数据集 数据清洗:去除重复、错误或不完整的数据 数据预处理:对数据进行转换或归一化处理,使其更易于分析和挖掘 数据探索:通过可视化、统计等方法探索数据集,发现其中的模式和规律
模型建立
数据预处理:清洗、整理 数据,提高数据质量
掌握数据预处理 和数据清洗的方 法
实践项目,提升 技能
选择合适的数据挖掘工具和平台
根据需求选择工具:考虑需要 解决的问题类型、数据类型、 数据量等因素
选择易用的平台:降低学习成 本,提高效率
考虑平台的可扩展性:随着业 务变化,需要不断扩展工具和 平台的能力
考虑成本效益:根据预算选择 合适的工具和平台
农业环境监测: 通过数据挖掘 技术,实时监 测农业环境的 变化,保障农 业生产的安全
数据挖掘技术的 优势与局限
数据挖掘技术的优势
发现隐藏在大量数据中的有用信息
揭示企业业务的内在规律和模式
自动化决策支持:基于数据挖掘的决策支持系统可以提高决策的效率和准确性
预测未来趋势:通过数据挖掘技术对历史数据进行深入分析,可以预测未来的市场趋势和业务发展 动向。
特征提取:从数据中提取 有用的特征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:随着Internet的普及和深入,网络远程教学越来越多地受到了教育工作者的关注和研究,但是目前的网络教学质量体系还显得不够完善、健全。

如何建立一个行之有效的网络教学评价模型,已成为远程教育工作者面临的一个重要课题。

本文中,通过应用数据挖掘技术实现网上教学评价模型,希望能为教育信息化建设提供有价值的参考。

关键词:数据挖掘;网络教学评价;评价模型
0 前言
教学评价是教学活动的一个重要环节,不同的教育价值观就会有不同的网络教学评价体系。

随着网上课程改革在全国范围内的不断深入展开,传统教学评价中的弊端也越来越明显地在改革中体现出来。

信息技术虽然是一门新兴的学科,受传统教学观念的束缚较少,但它作为一门年轻的学科,在形成具有自身学科特点的教学评价方面还显得比较薄弱。

因此,建立一种新的适应远程教学需要的、以学生发展为中心、提高网络教学水平的当代网络教学评价模型,显得非常迫切和必要。

1 数据挖掘技术概述
数据挖掘是一个集统计学、人工智能、模式识别、并行计算、机器学习、数据库等技术于一体的交叉性学科研究领域。

数据挖掘技术是指从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程,又被称为数据库中的知识发现(KDD:knowledge discovery in database)。

数据挖掘是要发现那些不能靠直觉发现甚至是违背直觉的信息或知识,挖掘后得到的信息可能会出乎意料之外,但是非常有价值,这些信息有利于决策者及时做出有效的决策。

2 数据挖掘的流程
数据挖掘基本过程和主要步骤内容如下:
2.1明确目的
在进行数据挖掘工作前,要清楚地知道数据挖掘的目标。

事先明确挖掘的业务目标,确定达到目标的评价方法,这将大大减少挖掘工作的难度和挖掘量,否则就很难获得数据挖掘的效果。

2.2 数据准备
(1)数据的选择
建立了挖掘目标后,为实现这个目标选择数据。

这些数据可能是数据仓库或数据市场的子集,也可能是各个联机事务处理系统中的数据。

数据可能存在重名、错误、格式不一致等问题,挖掘前要增强数据的质量以保证给数据挖掘工具提供正确的数据。

(2)数据的预处理
在数据采集的过程中,有许多因素影响数据的准确性,所以必须对数据进行再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。

(3)数据的转换
将数据转换成一个分析模型,这个分析模型是针对挖掘算法建立的。

建立一个真正适合挖掘算法的分析模型是数据挖掘成功的关键。

2.3数据挖掘
根据数据功能的类型和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。

2.4结果分析
对数据挖掘的结果进行解释和评价,根据用户的决策目的,转换成为能够最终被用户
理解的知识。

其使用的分析方法一般根据数据挖掘操作而定,通常会用到可视化技术。

2.5知识的同化
将分析所得到的知识集成到业务信息系统的组织结构中去。

3 网络教学的评价对象
参与网络教学的对象主要是学生和教师,要对学习和教学的过程与效果进行充分的评价,因此对这两类对象要采取不同方式的评价,在此基础上设计适合于网络教学的教学评价模型。

3.1 对学生的评价
对学生的评价是网络教学评价的主要内容。

网络教学评价注重对学生的态度、意义建构过程的评价,一方面真正了解学生的学习过程,另一方面对学生的学习过程给予及时的反馈,为学生提供帮助和建议。

主要包括以下几个功能模块:
(1)交互程度模块
网络教育的研究与实践已充分表明,交互式学习对于学生动机的激发与保持、远程学习成功与否起到关键性的作用。

通过发表文章数,讨论得分,查看学生留言以及统计师生交流的参数分析综合反映学生的交互程度。

(2)答疑模块
在网络学习过程中,学生需要向教师或相关专家请教问题是不可避免的。

通过答疑,学生可以更加深入地学习,可促进知识意义的建构。

答疑情况可以通过学生请教问题数,浏览问题解决的次数等综合反映学生对学习知识的理解程度及主动学习的积极性。

(3)资源利用模块
学生利用丰富的课程资源及互联网资源进行学习是网络教学的一大优势,学生对资源的利用不仅指利用教师在网上提供的在线学习资源,对体现学生的学习过程和意义建构过程来说,更为有效的是下载教师上传的资源后进行学习。

(4)作业模块
通过作业完成情况与得分,评价模块由此提供学生对于知识点的掌握程度的信息和作业完成情况的信息,了解学生的学习情况和学习过程中遇到的困难。

(5)测试模块
考试是对学习者的网络学习情况做出的阶段性评定。

对于网络学习来说,考试不是目的,而是一种促进更佳学习的手段。

评价模型据此生成学习者知识点掌握程度及知识运用程度报表,并对学习者的下一步学习提供改进意见。

3.2 对教师的评价
在网络教学环境中,学生与教师的地位发生了改变,教师成为学生学习的辅助者而不再是传递者,信息的传递主要由网络系统完成。

尽管如此,教师在网络教学过程中对学生具有一定指导和帮助作用,教师的参与对开展远程教育依然有着重要意义。

对教师的评价主要包括以下几个功能:
(1)师生交互模块
教师与学生的交互程度表现在对学生学习的关注程度,是否组织起有效的讨论和聊天室的讨论,是否对学生讨论情况进行评价,教师授课学生的发言人数、发言量等等,据此体现教师对学生关注程度、使用教学策略、教学组织情况。

(2)作业与答疑模块
对学生作业批改以及给予适当的辅导意见,浏览学生所提问题的次数及回答的题目数量,据此提供教师对学生学习的关注程度和对学生的疑难的解决程度的参数,在反馈信息中生成教师调整教学满足学生学习需要程度的曲线。

(3)参与教学活动模块
用登录时间与注销登录时间来确定教师在线时间及教师在网上发布教学信息等参数反映教师对教学活动参与的主动性。

(4)资料提供模块
教师上传教学资源的数量,由此提供组织学生学习的广度和深度的信息。

教师提供的学习资料是否能及时更新,学生对资源情况的利用率以此提供教师对教学内容的把握程度与教学内容能否满足学生需求程度的信息。

(5)授课学生成绩模块
学生的成绩从一定程度上反映教师的教学质量和教学效果,由授课学生的考试成绩和作业成绩提供对教师授课质量的参考指标,但不能以此为准绳。

4 网络教学评价模型总体设计
首先把决策主题所需要的数据,从各种相关的数据库或数据文件等外部数据源中抽取出来,进行各种必要的清洗、整合和转换处理,再将这些数据集成存储到仓库中。

数据仓库是以一定的组织结构存储各种主题数据。

在此基础上分别建立两个相互独立的平台,即教师平台和学生平台,然后对网络教学中的数据进行有效地挖掘,最后得到教学评价分析报告。

网络教学评价模型见图。

5 设计网络教学评价模型的意义和展望
5.1 示范。

对网络教学进行评价,找出成功和不成功的教学模式,无疑会为整个网络教育界提供范例,减少摸索的实践,促进网络教学质量的提高。

5.2指导。

分析、理解网络教学活动过程中教师和学生的行为和结果,指导教师和学生在教学过程中不断改善和调整教学方法,增强师生参与网络教学的积极性和主动性。

5.3 决策。

通过对网络教学的评价,其评价结果将对开发和决策提供有力的佐证,有助于决策的进行。

5.4 标准化。

全面、综合、客观地评价网络教学会对网络教学的标准化起到促进的作用。

参考文献:
[1]庞先伟,基于数据挖掘技术的资源型学习,中国教育改革,第三期,2003.7
[2]屠宏、吴宏江,数据挖掘在网络学习者学习特征分析系统中应用,《远程教育杂志》,2004.5
[3]朱明,《数据挖掘》,中国科学技术大学出版社,2002.2
[4]邵兴江,数据挖掘在教育信息化中的应用空间分析,《浙江现代教育技术》,2004.3 [5]朱凌云、罗廷锦、余胜泉,网络课程评价,开放教育,2003.2
【完】
【“贸大远程杯”我为现代远程教育发展建言献策有奖征集活动来稿选登(《中国远程教育》杂志社主办、对外经济贸易大学远程教育学院协办)】
作者声明:我谨保证我是此作品的著作权人。

我保证此作品没有在其他任何传统媒体、网络媒体发表过。

我同意中国网络教育网 无偿刊登此作品并向其他媒体推荐此作品。

在不发生重复授权的前提下,我保留个人向其他媒体的直接投稿权利。

一旦其他媒体决定刊用,我将及时通知中国网络教育网。

相关文档
最新文档