19.2.3一次函数与方程、不等式(2)

合集下载

一次函数与方程、不等式(学案)

一次函数与方程、不等式(学案)

19.2.3一次函数与方程、不等式(学案)一、新课引入情景引入:x+y=2应该坐在哪里呢?举例说明:一次函数y=-x+2 与二元一次方程x+y=2之间的转化播放动画:一次函数点坐标与二元一次方程的解的关系从动画中可看见,一次函数图象上点的坐标与二元一次方程的解是一一对应的。

思考:一元一次方程、不等式与一次函数之间有着怎样的联系呢?二、知识探究(一)一次函数与一元一次方程的关系1.思考:下面三个方程有什么共同点和不同点?2x+1=3 ;2x+1=0 ;2x+1=-1共同点:;不同点:2.求出方程的解2x+1=3 2x+1=0 2x+1=-13.小组讨论:你能从函数的角度对解这三个方程进行解释吗?(提示:分别从“数”和“形”的角度进行分析)从“数”的角度:解2x+1=3,可以看成求函数y=2x+1的值为时,x为何值;解2x+1=0,可以看成求函数y=2x+1的值为时,x为何值;解2x+1=-1,可以看成求函数y=2x+1的值为时,x为何值;解ax+b=k,可以看成求函数y=ax+b的值为时,x为何值;从“形”的角度:解2x+1=3,可以看成求函数y=2x+1图象上的点纵坐标为时,所对应的横坐标为何值解2x+1=0,可以看成求函数y=2x+1图象上的点纵坐标为时,所对应的横坐标为何值解2x+1=-1,可以看成求函数y=2x+1图象上的点纵坐标为时,所对应的横坐标为何值解ax+b=k,可以看成求函数y=ax+b图象上的点纵坐标为时,所对应的横坐标为何值4.通过动图验证,发现:一次函数上各点的坐标与各方程的解一一对应。

5.小试牛刀练习1.已知一次函数为y=3x+2 ,求函数图象与x 轴交点坐标分析:要求交点坐标,则要观察图象,确定函数值y ,然后再解方程。

练习2.已知,如图为一次函数为y=kx+b (k ≠0)的图象,求关于x的方程的解(1)kx+b=3 _____(2)kx+b=0 _____分析:要解方程,则要通过观察图象,确定当y 值分别为3、0 时,对应点的横坐标是多少。

19.2.3一次函数与方程、不等式

19.2.3一次函数与方程、不等式

思考
下面三个不等式有什么共同特点?你能从函 数的角度对解这三个不等式进行解释吗?能把你得到的 结论推广到一般情形吗? (1)3x+2>2;(2)3x+2<0;(3)3x+2<-1. 用函数图象的角度看: 3 不等式ax+b>c的解集就是 2 使直线y =ax+b 在直线y=c上方时 对应的自变量的取值范围; 1 不等式ax+b<c的解集就是 使直线y =ax+b 在直线y=c下方时-2 -1 O -1 对应的自变量的取值范围.
想一想
(1)在什么时候,1 号气球比2 号气球高? (2)在什么时候,2 号气球比1 号气球高?
h1
h2
气球1 海拔高度:y =x+5
气球2 海拔高度:y =0.5x+15
想一想
(1)在什么时候,1 号气球比2 号气球高? (2)在什么时候,2 号气球比1 号气球高? y
30 25 20 15 10 5 O
分析问题
一次函数 用方程观点看 y =0.5x+15
用函数观点看
二元一次方程 y -0.5x =15
二元一次方程 y =0.5x+15
从式子(数)角度看:
一次函数
二元一次方程
分析问题
从形的角度看,二元一次方程与一次函数有什么关
系? 在坐标系中画出以方程 y =0.5x+15 的解为坐标的 点组成的图形就是一次函 数y =0.5x+15 的图象. y y =0.5x+15
ax+b 与x轴的交点的横坐标的值”
b 2、当x a
时,一次函数y= ax+b( a≠0)的值0?
一元一次方程问题

人教版八下数学 学霸笔记整理19.2.3 一次函数与方程、不等式

人教版八下数学 学霸笔记整理19.2.3 一次函数与方程、不等式

人教版八下数学学霸笔记整理19.2.3 一次函数与方程、不等式1.因为任何一个以x为未知数的一元一次方程都可以变形为ax+b=0(a≠0)的形式,所以解一元一次方程相当于在某个一次函数y=ax+b的函数值为0时,求自变量x的值.2.因为任何一个以x为未知数的一元一次不等式都可以变形为ax+b>0或ax+b<0 (a≠0)的形式,所以解一元一次不等式相当于当某个一次函数y=ax+b的值大于0或小于0时,求自变量x的取值范围.3.一般地,因为每个含有未知数x和y的二元一次方程,都可以改写为y=kx+b(k,b是常数,k≠0)的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条直线.这样直线上每个点的坐标(x,y)都是这个二元一次方程的解.4.由含有未知数x和y的两个二元一次方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解这样方程组,相当于确定两条相应直线交点的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.1.解关于x的一元一次方程kx+b=0(k≠0)可以转化为:已知函数y=kx+b的函数值为0,求相应的自变量x的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标.2.用图象法求解问题,作图要准确.1.规律方法:(1)根据图象求关于x的不等式kx+b>mx+n的解的方法:①求当自变量x取何值时,直线y=(k-m)x+b-n上的点在x轴的上方;②求当x取何值时,直线y=kx+b上的点在直线y=mx+n上相应的点的上方.特别说明:不等号为“<”时,道理类似.(2)用图象法解二元一次方程组的一般步骤:①先把方程组中的两个二元一次方程转化成一次函数的形式;②建立平面直角坐标系,画出这两个一次函数的图象;③写出这两条直线的交点的横、纵坐标,从而得出二元一次方程组的近似解(横坐标为x,纵坐标为y).2.解题技巧:(1)在直角坐标系中,以二元一次方程kx-y+b=0的解为坐标的点的集合组成的图象就是一次函数y=kx+b 的图象.(2)由于两条直线的交点坐标是由这两条直线的解析式所组成的二元一次方程组的解,所以求两条直线的交点坐标时,通常把两个一次函数的解析式联立成二元一次方程组,通过解方程组求得.[典例精析]【例1】 如图,已知函数y=x-2和y=-2x+1的图象交于点P ,根据图象可得方程组{x -y =2,2x +y =1的解是( )A.{x =1,y =1B.{x =-1,y =-1C.{x =1,y =-1D.{x =-1,y =1解析:由y=x-2,得x-y=2;由y=-2x+1,得2x+y=1.由图象可知:函数y=x-2和y=-2x+1的图象的交点P 的坐标是(1,-1).∴方程组{x -y =2,2x +y =1的解是{x =1,y =-1.故选C . 答案:C 解题总结:二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【例2】 如图,直线y=kx+b 经过点A (-1,-2)和点B (-2,0),直线y=2x 经过点A ,则2x<kx+b<0的解集为( )A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0解析:2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.答案:B解题总结:解决此类问题关键是仔细观察图形,注意几个关键点(两直线的交点,直线与坐标轴的交点、原点等),数形结合求解即可.。

19.2.3一次函数与方程、不等式(第2课时)课件

19.2.3一次函数与方程、不等式(第2课时)课件

二、深入剖析,感悟新知
问题:1号探测气球从海拔5m处出发,以1m/min的速度 上升.与此同时,2号探测气球从海拔15m处出发,以 0.5m/min的速度上升.两个气球都上升了1h. (1)请用式子分别表示两个气球所在位置的海拔y (单位:m)关于上升时间x(单位:min)的函数关 系;
二、深入剖析,感悟新知
三、例题学习,提高认知
例2 如图,求直线l1与l2 的交点坐标.
y
分析:由函数图象可以求 直线l1与l2的解析式, 进而通过方程组求出交点坐标.
O x
四、随堂练习,巩固新知
1.教材第98页练习题. 2.已知一次函数y=3x+5与y=2x+b的图象交点为(-1,2), y 3 x 5, 则方程组 y 2 x b 的解是_______,b的值为______.
y x 5, 元一次方程组 y 0.5 x 15 的解吗?为什么?
三、例题学习,提高认知
例1 当自变量x取何值时,函数y=2.5x+1和y=5x +17 的值相等?这个函数值是多少?
Zx`````xk
方法一 :联立两个函数,得 2.5x+1=5x +17,解此方程; 方法二: 把两个函数转化为二元一次方程组,解方程组; 方法三: 画函数图象,求交点坐标.
Zxxk
二、深入剖析,感悟新知
思考:通过问题(2)、(3)的分析,我们能否概括 出二元一次方程的解和一次函数图象上的点的坐标之 间是什么关系?
Zxx```k
方程的解

一次函数图象上点的坐标
以二元一次方程的解为坐标的点,它都在其相应的 一次函数的图象上;一次函数图象上点的坐标,都 适合其相应的二元一次方程.

《19.2.3 一次函数与方程、不等式》教学设计教学反思-2023-2024学年初中数学人教版12八

《19.2.3 一次函数与方程、不等式》教学设计教学反思-2023-2024学年初中数学人教版12八

《一次函数与方程、不等式》教学设计方案(第一课时)一、教学目标1. 理解一次函数的概念,掌握一次函数的定义条件。

2. 通过一次函数的学习,掌握方程、不等式与一次函数的关系。

3. 提高分析问题、解决问题的能力,培养数学思维。

二、教学重难点1. 重点:一次函数的概念及图像性质。

2. 难点:运用一次函数解决实际问题,建立方程、不等式与一次函数的关系。

三、教学准备1. 准备教学用具:黑板、白板、投影仪等教学设备,以及几何画板等数学软件。

2. 准备教材和练习题:选择适合学生理解和应用的教材,同时准备一定量的练习题供学生练习。

3. 备课:深入理解一次函数与方程、不等式的关系,设计合理的教学计划,以使学生更好地理解和运用相关知识。

4. 准备课堂互动环节:为了活跃课堂气氛,激发学生的学习热情,准备组织一些互动环节,如小组讨论、抢答等,以增强学生的学习参与度。

5. 课后反馈:课后,我会收集学生的反馈,了解他们对知识的掌握情况,以便对教学计划进行调整和改进。

总之,我会尽心尽力地做好备课、授课和课后反馈三个环节,以确保学生能够充分理解和掌握一次函数与方程、不等式的关系,并能够灵活运用相关知识解决实际问题。

感谢您的支持和信任,期待与您共同探讨和进步!四、教学过程:本节课是《一次函数与方程、不等式》教学的第一课时,具体教学过程如下:(一)导入新课:1. 回顾一次函数的概念、性质和应用。

2. 引出方程、不等式与一次函数的关系。

3. 引导学生思考如何利用一次函数解决相关问题。

(二)新课教学:1. 讲解一次函数与方程的关系:通过实例引导学生发现一次函数与一元一次方程的关系,并总结规律。

2. 讲解一次函数与不等式的关系:通过实例引导学生发现一次函数与一次不等式的联系,并总结规律。

3. 练习:让学生完成相关练习题,巩固所学知识。

(三)小组合作:将学生分成若干小组,让小组内成员互相讨论、交流,共同解决遇到的问题。

教师在此过程中可以进行适当的引导和提示,帮助学生更好地进行讨论。

人教版数学八年级下册19.2.3《一次函数与方程、不等式说课稿

人教版数学八年级下册19.2.3《一次函数与方程、不等式说课稿

人教版数学八年级下册19.2.3《一次函数与方程、不等式说课稿一. 教材分析《一次函数与方程、不等式》是人教版数学八年级下册第19章第2节的一部分。

这部分内容是在学生已经掌握了函数、方程、不等式的基本概念和性质的基础上进行讲解的。

通过这部分的学习,使学生能够掌握一次函数与方程、不等式的关系,能够运用一次函数解决实际问题,培养学生解决实际问题的能力。

教材中通过丰富的例题和练习题,帮助学生理解和掌握一次函数与方程、不等式的解法与应用。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于函数、方程、不等式的概念和性质有一定的了解。

但是,对于一次函数与方程、不等式的关系,以及如何运用一次函数解决实际问题,还需要进一步的学习和引导。

因此,在教学过程中,需要注重学生的参与和实践,通过引导学生自主探索和合作交流,帮助学生理解和掌握一次函数与方程、不等式的关系,提高学生解决实际问题的能力。

三. 说教学目标1.知识与技能目标:使学生理解和掌握一次函数与方程、不等式的关系,能够运用一次函数解决实际问题。

2.过程与方法目标:通过学生的自主探索和合作交流,培养学生的解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自尊心,使学生感受到数学的实际应用价值。

四. 说教学重难点1.教学重点:一次函数与方程、不等式的关系,一次函数解决实际问题的方法。

2.教学难点:一次函数与方程、不等式的关系的理解,一次函数解决实际问题的方法的运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生自主探索和合作交流,培养学生的解决问题的能力。

2.教学手段:使用多媒体课件、黑板、粉笔等教学工具,帮助学生理解和掌握一次函数与方程、不等式的关系。

六. 说教学过程1.导入:通过一个实际问题,引发学生对一次函数与方程、不等式的关系的思考,激发学生的学习兴趣。

2.讲解:通过讲解一次函数与方程、不等式的关系,引导学生理解一次函数解决实际问题的方法。

19.2.3一次函数与方程不等式的关系(3个课时)

19.2.3一次函数与一元一次方程学习目标:1、理解一次函数与一元一次方程的关系,会根据图象解决一元一次方程求解问题。

2、学习用函数的观点看待方程的方法,经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题。

学习重点:利用一次函数知识求一元一次方程的解。

学习难点:一次函数与一元一次方程的关系发现、归纳和应用。

学习过程:活动一、课前小测1、一次函数12+=x y ,当=x 时,3=y ;当=x 时,0=y ;当=x 时,1-=y 。

2、一次函数,12+=x y ,x 轴交点坐标为________;与y 轴交点坐标_________;图像经过_______象限,y 随x 的增大而______,图像与坐标轴所围成的三角形的面积是 。

活动二:观察分析,探究新知 1、自主探究(1)解方程2x+20=0(2)当自变量x 为何值时,函数y=2x+20的值为0?解:(1) 2x+20=0(2) 当y=0时 ,即思考:上面两个问题实际上是______问题.(3)画出函数y=2x+20的图象,并确定它与x 轴的交点坐标.(思考:直线y=2x+20与x 轴交点坐标为(____,_____),这说明方程2χ+20=0的解是x=_____)2、合作交流(小组交流答成共识,然后展示交流成果 )从“函数值”看,“解方程ax+b=0(a ,b 为常数, a ≠0)”与“求自变量 x 为何值时,一次函数y=ax+b 的值为0”有什么关系?从图象上看呢?求一元一次方程ax +b =0(a ,b 是常数,a ≠0)的解,从“函数值”看就是某个一次函数b ax y +=求一元一次方程ax +b =0(a , b 是常数,a ≠0)的解,从“函数图象”看就是直线b ax y +=与x 轴的交点的活动三、师生互动,运用新知1、根据下列图像,你能说出哪些一元一次方程的解?并直接写出相应方程的解?1、直线3+=x y 与y 轴的交点是( )A 、(0,3)B 、(0,1)C 、(3,0)D 、(1,0) 2、直线3+=kx y 与x 轴的交点是(1,0 ),则k 的值是( ) A 、3 B 、2 C 、-2 D 、-3y=x-13600 OBt(分)S(米) A 153、直线y=x+3与x 轴的交点坐标为( , ),所以相应的方程x+3=0的解是x=4、直线y=3x+6与x 轴的交点的横坐标x 的值是方程2x+a=0的解,则a•的值是______5、弹簧的长度与所挂物体的质量的关系是一次函数,如图所示,请判断不挂物体时弹簧的长度是多少?活动五、课堂小结,巩固新知同学们,本节课你学到了那些重要的知识点或内容呢?请试着自己总结一下吧!活动六、作业1、有一个一次函数的图象,可心和黄瑶分别说出了它的两个特征. 可心:图象与x 轴交于点(6,0)。

19.2.3一次函数与方程、不等式、方程组


y2 1
y2 1
4、根据1中所填答案的图象求: (1)龟兔赛跑过程中的函数关系式(要注明各函数的自变量的 取值范围); 40t (0 t 5) 龟:S= 60 t 7 (0 t 35) 兔:S= 200 (5 t 35) 20t-500 (35 t 40)
(2)乌龟经过多长时间追上了兔子,追及地距起点有多远的路程? 60 70 200米 t=200 t= (分 ) 7 3
y= 4
(1)当 x = 3 时,函数值 y 为4。 (2)当x > 3 时,函数值 y >4。 (3)当x <3 时,函数值 y <4。
=1 当y1= y2时,x___ <1 >1 当y1> y2时,x___ >1 <1 当y1< y2时,x___
y1在y2的下方
看两直线的交点 y1在y2的上方
①0时时哪种物质的温度更高? ③哪种物质的温度先到达 3℃?哪种物质 2时时呢? ②何时两种物质的温度相等?何时甲的 4、下图是甲乙两种物质加热后温度随时 4时时呢?8时时呢? 的温度先到达 5℃? 温度大于乙的温度?何时甲的温度小于 间的变化而变化的图象: y y 2 x - 4 甲 乙的温度? 5 1 y乙 x 2 4 2 3
y
y = -x+6
6
A P
y=
6
1 2
2 O 4
x
B
x
求三角形面积
令y1=y2,先求x, 再把x代入求y
令x=0,求y
令y2=0,求x
令x=0,求y
令y1=0,求x
3 2k b 6 k 3 27 所以 8 即y=x+ (x≥2) 10k b 3 8 4 27

19.2.3一次函数与方程、不等式


用函数的观点看: 解一元一次方程 ax+b= k 就是求当函数值为k时对 应的自变量x的值.
2x +1=0 的解
y 3
y =2x+1
2
1 2x +1=3 的解 x 3 2 1
-2 -1 O 2x +1=-1 的解 -1
◆一元一次方程ax+b=k(a≠0)与函数y=ax+b
求ax+b=k(a≠0)的解
◆若作出y=2x+20的图像,(1)和(2)有什么关系?
从“形”的角度看:
直线y=2x+20的图象与x轴的 交点坐标为(_____ -10 ,_____ 0 ), 这说明方程2x+20=0的解是 -10 x=_____.
(10,0) -10 0
y
20
10
x
y=2x+20
从“形”上看
序号 1 一次函数问题 当x为何值时, y=2x+20的值为0 当x为何值时, y=2x-2的值为0 当x为何值时, y=-2x+3的值为0
◆从问题的本质上看,(1)和(2)有什么关系?
2x+20=0 本质上 解方程 (从“数” 2x+20=0, 的角度看) 得x=-10. y=2x+20
当函数值y为0时,所 对应的自变量x的值.
也就是:当y=0时,即 2x+20=0,解得x=-10.
从“数”上看
序号 一元一次方程问题 1 解方程 2x+20=0 一次函数问题 当x为何值时, y=2x+20的值为0?
2
3
解方程 -2x+2=0 解方程 -2x+2= -1 (先转化为-2x+3=0)

人教版八年级数学下册课件:19.2一次函数--2.3 一次函数与方程、不等式(2)一次函数与二元一次方程组


24
知识点三:二元一次方程组与一次函数的关系
学以致用
3.已知坐标平面上有两直线相交于一点(2,a),且两直线的方
程式分别为2x+3y=7,3x-2y=b,其中a,b为两数,求a+b之值
为何?( C)A.1 B.-1 C.5 D.-5
4.若一次函数y=k1x+b1与y=k2x+b2的图象没有交点,则关于x
∴OA=3,OB=1,∴AB=4.∴S△ABC=
1 2
×4×1=2.
27
知识点四:一次函数与方程(组)与几何图形的综合问题
典例讲评
解:(3)能,理由如下:设点P的横坐标为x, y

S△APB=
1 2
×4×|x|=6,
A C
解得x=±3.
O
x
B
把x=3代入y=-2x-1,得y=-7;
把x=-3代入y=-2x-1,得y=5;
情景引入
大家观察一次函数的解析式y=x+1,是否有过这样的 疑问:为什么一次函数的解析式与二元一次方程非常相似呢? 是的,你没有猜错,如果我们将一次函数的解析式看作为 一个元一次方程,那么,一次函数y=x+1上的每一个点坐 标就对应二元一次方程x-y+1=0上的一个解.一次函数图象 上有无数个点,二元一次方程也有无数个解.本节课,我们 就来看看一次函数与二元一次方程的关系.
y y=kx-1
A
O Bx C
31
知识点四:一次函数与方程(组)与几何图形的综合问题
学以致用
2.(3)①当点A运动到什么位置时, △AOB的面积是 ? ②在①成立的情况下,在两条坐标轴上是
否存在一定P,使△POA是等腰直角三角 形?若存在,请写出满足条件的所有点P 的坐标;若不存在,请说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环节
知识点
学生活动
教师活动
估时
二次备课
合作
交流
问如何在图象上看出函数值的大小?
答作一条x轴的垂线,如下图,此时x的值相同,它与哪一条射线的交点较高,就表示对应函数值较大,收费就较高;反之,它与另一条射线的交点较低,就表示对应函数值较小,收费就较低.从图中可以看出,如果每月复印页数在1200页左右,那么应选择乙复印社收
..
10
环节
知识点
学生活动
教师活动
估时
二次备课
总结
交流
两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.
使学生能够说出自己的错误,让全班学引以为戒.
3




19.2.3一次函数与方程、不等式(2)
一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是
方程组的解。




5
自主
探究
根据图象回答:
(1)乙复印社的每月承包费是多少?
(2)当每月复印多少页时,两复印社实际收费相同?
(3)如果每月复印页数在1200页左右,那么应选择哪个复印社
问“乙复印社的每月承包费”在图象上怎样反映出来?
答“乙复印社的每月承包费”指当x=0时,y的值,从图中可以看出乙复印社的每月承包费是200元.
问“收费相同”在图象上怎样反映出来?
答“收费相同”是指当x取相同的值时,y相等,即两条射线的交点.我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.
10
情感
态度
与价
值观
使学生体会到实际问题中数量之间的相互关系,学会用函数的思想去进行描述、研究其内在联系和变化规律;
重点
难点
理解二元一次方程组的解是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解
教法
学法
自主探究、类比归纳
环节
知识点
学生活动
教师活动
估时
二次备课
情境
导入
学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示
5
尝试应用Βιβλιοθήκη 自主探究自我尝试的题目12
拓展
提高
小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.小张的同学小王以前没有存过零用钱,听到小张在存零用钱,表示从小张存款当月起每个月存18元,争取超过小张.请你写出小张和小王存款和月份之间的函数关系,并计算半年以后小王的存款是多少,能否超过小张?至少几个月后小王的存款能超过小张?
店头中学教师课时教案
年级:八科目:数学编号:37
课题
19.2.3一次函数与方程、不等式(2)
课时
总3课时
课型
新授
第2课时
授课教师
主备人
陈前进
审阅教干
郇玉宝




知识

能力
使学生理解二元一次方程组的解是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解;
过程

方法
让学生了解到函数是刻画和研究现实世界数量关系的重要数学模型,也是一种重要的数学思想,培养和提高学生在数学学习中的创造和应用函数的能力.
相关文档
最新文档