初一数学有理数的四则运算

合集下载

初一有理数的四则混合运算

初一有理数的四则混合运算

底数第5讲 有理数的四则混合运算一、知识梳理(一)有理数乘方1.求n 个相同因数的积的运算叫做乘方.2.一般地,在na 中,a 取任意有理数,n 取正整数. 应当注意,乘方是一种运算,幂是乘方运算的结果. 当na 看作a 的n 次方的结果时,也可以读作a 的n 次幂.3.na就是表示n 个a 相乘,所以有n a a a a a =⋅⋅⋅⋅⋅⋅⋅⋅ (1) 横向观察:正数的任何次幂都是正数;负数的奇次幂是负数,偶数幂是正数;零的任何次幂都是零.(2) 纵向观察:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等. (3) 任何一个数的偶次幂都是非负数.当0a 时,0na (n 是正整数);当0a时,0n a (n 是正整数).(以上为有理数乘方运算的符号法则)22nna a(n 是正整数);2121n n aa(n 是正整数)20n a ≥(a 是有理数,n 是正整数)(二)在没有括号的不同级运算中,先算乘方再算乘除,最后算加减.二、典例剖析专题一:有理数的乘方例1:计算下列各题,把答案填在横线上。

①42= ;② 32= ;③25= ;④35= ;⑤42-)(= ; ⑥32-)(= ; ⑦25-)(= ; ⑧35-)(= ; 【变式】1、计算下面各题,把答案填在横线上。

①3)]3([--= ; ②2)4(--= ; ③3)34(--= ;④432-= ;⑤2)02.0(--= ; ⑥3211(--= ;⑦22)32(3-⨯-= ;⑧2)]3()2[(-⨯-= ; ⑨33)43()43(-⨯= ;⑩67)25.0(4-⨯= 。

2、计算下列各题: ①2011122)1()1()1(-+---+n n(n 为正整数)②212221(5)5(5)(2000)(2000n n n n+-+⨯-+⨯专题二:有理数的混合运算例2: (1)44)32()3()2(22222-÷--⨯-----(2)200832222)1()3()31(3.02.13-÷-⨯-+÷⨯-(3)(乘方意义的理解)()()22222235333⎛⎫+-++-⨯ ⎪⎝⎭【变式】(1)4251(5)()0.813-÷-⨯-+-(2)2211(0.51)()[2(3)]3---⨯-⨯--(3)22+(-2)3×5-(-0.28)÷(-2)2(4)4322111(0.5)[2(3)]0.5338---÷⨯-----例3:①()()()()()45221387152-⨯-÷+-⨯---②()197265213112-1912-222⨯-+⎪⎭⎫ ⎝⎛+-⨯⎪⎭⎫ ⎝⎛⨯-③()34221110.5230.5338⎛⎫⎡⎤---÷⨯----- ⎪⎣⎦⎝⎭④()()()233321211320.1252132⎡⎤⎛⎫-⨯--÷-⎢⎥⎪⎝⎭⎢⎥⎣⎦⎡⎤⨯+-⨯-⎣⎦【变式】①2421111225326412⎡⎤⎛⎫⎛⎫-÷-+⨯--÷⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦; ②222112382323⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫--÷--⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭专题三:有理数的绝对值及平方的非负性及其应用例4:已知y x ,满足()04122=-+-x y ,求:y x +的值.【变式】已知()131200820052+-y y x 与互为相反数,求222y xy x ++的值.四、创新探究(培优训练)1、当_____=x 时,12)3(2+-x 的值最小,最小值为_________; 当_____=x 时,53+-x 的值最大,最大值为_________;2、设有理数a 、b 、c 满足a+b+c=0, abc>0, 则a 、b 、c 中正数的个数为_____个。

七年级有理数四则混合运算题九十道(有答案的)

七年级有理数四则混合运算题九十道(有答案的)

七年级有理数四则混合运算题九十道(有答案的)39+[-23]+0+[-16]= 0[-18]+29+[-52]+60= 19[-3]+[-2]+[-1]+0+1+2= -3[-301]+125+301+[-75]= 50[-1]+[-1/2]+3/4+[-1/4]= -1[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25[-26.54]+[-6.14]+18.54+6.14= -81.125+[-17/5]+[-1/8]+[-0.6]= -3[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)5+21*8/2-6-5968/21-8-11*8+61-2/9-7/9-564.6-(-3/4+1.6-4-3/4)1/2+3+5/6-7/12[2/3-4-1/4*(-0.4)]/1/3+222+(-4)+(-2)+4*3-2*8-8*1/2+8/1/8(2/3+1/2)/(-1/12)*(-12)(-28)/(-6+4)+(-1)2/(-2)+0/7-(-8)*(-2)(1/4-5/6+1/3+2/3)/1/218-6/(-3)*(-2)(5+3/8*8/30/(-2)-3(-84)/2*(-3)/(-6)1/2*(-4/15)/2/3-3x+2y-5x-7y有理数的加减混合运算回答者:370116 - 翰林文圣十八级1-22 10:56我来评论>>您觉得最佳答案好不好? 目前有 5 个人评价60% (3)40% (2)相关内容·初中一年级有理数混合计算题(300道以上)带答案·谁有小学六年级至初一有理数的计算的计算题啊?·关于有理数计算题和答案·谁有初一有理数计算题(我要1000道)·编写一个小学数学辅助教学软件,主要是测试小学低年... 更多关于300道简单的有理数运算的问题>>查看同主题问题:有理数的混合运算其他回答共 1 条1.计算题(1)3.28-4.76+1 - ;(2)2.75-2 -3 +1 ;(3)42÷(-1 )-1 ÷(-0.125); (4)(-48) ÷82-(-25) ÷(-6)2;(5)- +( )×(-2.4).2.计算题:(10′×5=50′)(1)-23÷1 ×(-1 )2÷(1 )2;(2)-14-(2-0.5)××[( )2-( )3]; (3)-1 ×[1-3×(- )2]-( )2×(-2)3÷(- )3 (4)(0.12+0.32) ÷[-22+(-3)2-3 ×];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624. [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-5968/21-8-11*8+61-2/9-7/9-564.6-(-3/4+1.6-4-3/4)1/2+3+5/6-7/12[2/3-4-1/4*(-0.4)]/1/3+222+(-4)+(-2)+4*3-2*8-8*1/2+8/1/8(2/3+1/2)/(-1/12)*(-12)(-28)/(-6+4)+(-1)2/(-2)+0/7-(-8)*(-2)(1/4-5/6+1/3+2/3)/1/218-6/(-3)*(-2)(5+3/8*8/30/(-2)-3(-84)/2*(-3)/(-6)1/2*(-4/15)/2/3-3x+2y-5x-7y75÷〔138÷(100-54)〕85×(95-1440÷24)80400-(4300+870÷15) 240×78÷(154-115)1437×27+27×563 〔75-(12+18)〕÷152160÷〔(83-79)×18〕280+840÷24×5325÷13×(266-250) 85×(95-1440÷24)58870÷(105+20×2) 1437×27+27×56381432÷(13×52+78) [37.85-(7.85+6.4)] ×30156×[(17.7-7.2)÷3] (947-599)+76×6436×(913-276÷23) [192-(54+38)]×67[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕(31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35)0.8×[(10-6.76)÷1.2](136+64)×(65-345÷23)(6.8-6.8×0.55)÷8.50.12×4.8÷0.12×4.8 (58+37)÷(64-9×5)812-700÷(9+31×11)(3.2×1.5+2.5)÷1.685+14×(14+208÷26)120-36×4÷18+35(284+16)×(512-8208÷18)9.72×1.6-18.305÷74/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/1012.78-0÷(13.4+156.6 )37.812-700÷(9+31×11)(136+64)×(65-345÷23)3.2×(1.5+2.5)÷1.685+14×(14+208÷26)(58+37)÷(64-9×5)(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)0.12×4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6120-36×4÷18+35 10.15-10.75×0.4-5.75.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷5232.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.65.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-63.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.65.8×(3.87-0.13)+4.2×3.7433.02-(148.4-90.85)÷2.5(一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(9)(-17/4)+(-10/3)+(+13/3)+(11/3)(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(11)(+1.3)-(+17/7)(12)(-2)-(+2/3)(13)|(-7.2)-(-6.3)+(1.1)|(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(15)(-2/199)*(-7/6-3/2+8/3)(16)4a)*(-3b)*(5c)*1/61. 3/7 × 49/9 - 4/32. 8/9 × 15/36 + 1/273. 12× 5/6 – 2/9 ×34. 8× 5/4 + 1/45. 6÷ 3/8 – 3/8 ÷66. 4/7 × 5/9 + 3/7 × 5/97. 5/2 -(3/2 + 4/5 )8. 7/8 + (1/8 + 1/9 )9. 9 × 5/6 + 5/610. 3/4 × 8/9 - 1/30.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.411. 7 × 5/49 + 3/1412. 6 ×(1/2 + 2/3 )13. 8 × 4/5 + 8 × 11/514. 31 × 5/6 – 5/615. 9/7 - (2/7 –10/21 )16. 5/9 × 18 – 14 × 2/717. 4/5 × 25/16 + 2/3 × 3/418. 14 × 8/7 – 5/6 × 12/1519. 17/32 – 3/4 × 9/2420. 3 × 2/9 + 1/321. 5/7 × 3/25 + 3/722. 3/14 ×× 2/3 + 1/623. 1/5 × 2/3 + 5/624. 9/22 + 1/11 ÷ 1/225. 5/3 × 11/5 + 4/326. 45 × 2/3 + 1/3 × 1527. 7/19 + 12/19 × 5/628. 1/4 + 3/4 ÷ 2/329. 8/7 × 21/16 + 1/230. 101 × 1/5 – 1/5 × 2131.50+160÷40 (58+370)÷(64-45)32.120-144÷18+3533.347+45×2-4160÷5234(58+37)÷(64-9×5)35.95÷(64-45)36.178-145÷5×6+42 420+580-64×21÷2837.812-700÷(9+31×11)(136+64)×(65-345÷23)38.85+14×(14+208÷26)39.(284+16)×(512-8208÷18)40.120-36×4÷18+3541.(58+37)÷(64-9×5)42.(6.8-6.8×0.55)÷8.543.0.12× 4.8÷0.12×4.844.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.645.6-1.6÷4= 5.38+7.85-5.37=46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.948.10.15-10.75×0.4-5.749.5.8×(3.87-0.13)+4.2×3.7450.32.52-(6+9.728÷3.2)×2.551.-5+58+13+90+78-(-56)+5052.-7*2-57/(353.(-7)*2/(1/3)+79/(3+6/4)54.123+456+789+98/(-4)55.369/33-(-54-31/15.5)56.39+{3x[42/2x(3x8)]}57.9x8x7/5x(4+6)58.11x22/(4+12/2)59.94+(-60)/101.a^3-2b^3+ab(2a-b)=a^3+2a^2b-2b^3-ab^2=a^2(a+2b)-b^2(2b+a)=(a+2b)(a^2-b^2)=(a+2b)(a+b)(a-b)2.(x^2+y^2)^2-4y(x^2+y^2)+4y^2 =(x^2+y^2-2y)^23.(x^2+2x)^2+3(x^2+2x)+x^2+2x+3 =(x^2+2x)^2+4(x^2+2x)+3=(x^2+2x+3)(x^2+2x+1)=(x^2+2x+3)(x+1)^24.(a+1)(a+2)+(2a+1)(a-2)-12=a^2+3a+2+2a^2-3a-2-12=3a^2-12=3(a+2)(a-2)5.x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2=(xz+yz)^2=z^2(x+y)^26.3(a+2)^2+28(a+2)-20=[3(a+2)-2][(a+2)+10]=(3a+4)(a+12)7.(a+b)^2-(b-c)^2+a^2-c^2=(a+b)^2-c^2+a^2-(b-c)^2=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)=(a+b-c)(a+b+c+a-b+c)=2(a+b-c)(a+c)8.WORD格式编辑整理x(x+1)(x^2+x-1)-2=(x^2+x)(x^2+x-1)-2=(x^2+x)^2-(x^2+x)-2=(x^2+x-2)(x^2+x+1)=(x+2)(x-1)(x^2+x+1)(尽力了!)专业知识分享。

有理数的四则运算(优质课件)

有理数的四则运算(优质课件)
有理数的四则运算(优质课件)
目 录
• 有理数的概念 • 有理数的加减法 • 有理数的乘除法 • 有理数的混合运算 • 有理数的四则运算在实际问题中的应用
01
有理数的概念
定义与性质
定义
有理数是可以表示为两个整数之 比的数,包括整数、分数和十进 制数。
性质
有理数具有封闭性、有序性、稠 密性和连续性等性质。
05
有理数的四则运算在实际问题 中的应用
数学建模
建立数学模型
将实际问题抽象为数学模型,运用有理数的四则 运算表示数量关系和变化规律。
确定变量和参数
识别问题中的变量和参数,为建模提供基础。
建立方程或不等式
根据问题描述,建立数学方程或不等式,以表达 数量之间的关系。
解决实际问题的方法与步骤
分析问题
异号两数相加,取绝对值较大数 的符号,并用较大的绝对值减去
较小的绝对值。即$a+b=-|ab|$或$a+b=|a-b|$。
一个数与零相加,仍得这个数。 即$a+0=a$。
运算技巧
凑整法
将加数或被加数拆分成易于计算的整 数或整十、整百的数,再进行计算。
分组法
转化法
将一些看似无法简化的有理数加法算 式转化为可以简化的形式,如利用相 反数的性质将减法转化为加法。
运算技巧
01
02
03
分解因式
将有理数乘法转化为整数 乘法,简化计算过程。
乘法分配律
利用乘法分配律简化计算, 例如a*(b+c)=a*b+a*c。
除法转化为乘法
利用除法与乘法的互逆关 系,将除法转化为乘法进 行计算。
04
有理数的混合运算
定义与性质

初一数学有理数的四则运算规则

初一数学有理数的四则运算规则

初一数学有理数的四则运算规则有理数是数学中的一类数,包括整数、分数和小数,并且可以表示为有理数的除以非零的有理数,简言之,有理数是可以表达成两个整数比的数。

在初一数学学习中,有理数的四则运算是一个基础知识点,它包含了加法、减法、乘法和除法四种运算,掌握了这些运算规则,可以帮助我们更好地理解和解决有理数的计算问题。

下面将详细介绍有理数的四则运算规则。

一、有理数的加法1. 同号数相加:当两个有理数的符号相同,将它们的绝对值相加,符号保持不变。

例如,(-2) + (-3) = -5。

2. 异号数相加:当两个有理数的符号不同,将它们的绝对值相减,结果的符号和绝对值较大的数的符号相同。

例如,(+5) + (-3) = 2。

二、有理数的减法有理数的减法可以转化为加法运算,即将减法问题转化为加法问题。

例如,a - b = a + (-b)。

根据加法规则,可以进行相应的计算。

三、有理数的乘法1. 同号数相乘:当两个有理数的符号相同时,将它们的绝对值相乘,结果的符号为正。

例如,(+2) × (+3) = 6。

2. 异号数相乘:当两个有理数的符号不同时,将它们的绝对值相乘,结果的符号为负。

例如,(-2) × (+3) = -6。

四、有理数的除法有理数的除法可以转化为乘法运算,即将除法问题转化为乘法问题。

例如,a ÷ b = a × (1/b)。

根据乘法规则,可以进行相应的计算。

需要注意的是,在有理数的除法中,除数不能为0,因为任何数除以0都没有意义。

综上所述,初一数学学习中有理数的四则运算规则包括加法、减法、乘法和除法。

掌握了这些运算规则,能够帮助我们处理有理数的计算问题,进一步提高数学运算的准确性和效率。

在实际应用中,还需要结合具体问题来运用四则运算规则,灵活解决数学问题。

数学 第三讲有理数的四则运算

数学 第三讲有理数的四则运算

第三讲有理数的四则运算二有理数的加减法1. 有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数同0相加,仍得这个数。

2. 有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:(1)先确定加法类型(同号还是异号);(2)确定和的符号;(3)绝对值的加减运算。

3. 有理数加法的运算律(1)两个加数相加,交换加数的位置,和不变。

a+b=b+a(加法交换律)(2)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=a+(b+c)(加法结合律)4. 有理数加法的运算技巧(1)分数与小数均有时,应先化为统一形式。

(2)带分数可分为整数与分数两部分参与运算。

(3)多个加数相加时,若有互为相反数的两个数,可先结合相加,得零。

(4)若有可以凑整的数,即相加得整数时,可先结合相加。

(5)若有同分母的分数或易通分的分数,应先结合在一起。

(6)符号相同的数可以先结合在一起。

5. 有理数的减法法则减去一个数,等于加这个数的相反数。

a-b=a+(-b)6. 有理数减法的运算步骤(1)把减号变为加号(改变运算符号)(2)把减数变为它的相反数(改变性质符号)(3)把减法转化为加法,按照加法运算的步骤进行运算。

7. 有理数加减法混合运算的步骤(1)把算式中的减法转化为加法;(2)省略加号与括号;(3)利用运算律及技巧简便计算,求出结果。

注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即求几个正数、负数和0的和,这个和称为代数和。

为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,例如:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是正3,负0.15,负9,正5,负11的和。

北师大版 七年级数学上册 第一章第二节 有理数的四则运算 知识点

北师大版  七年级数学上册  第一章第二节  有理数的四则运算  知识点

有理数的四则运算1.4 有理数的加法【有理数加法法则】①同号的两个数相加,符号不变,并把两个加数的绝对值相加。

②异号的两个数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数的和为0;③0和任何一个有理数相加,仍得这个有理数。

加法交换律和结合律在有理数加法运算中依然成立。

即有理数中,依然满足a+b=b+a,(a+b)+c=a+(b+c)。

1.5有理数的减法【有理数的减法法则】减去一个数,等于加上这个数的相反数。

1.6有理数加减法的混合运算【代数和】我们把省略了正号(+)的几个有理数的和的式子叫做这几个数的代数和。

【去括号法则】①当括号前是“+”时,去掉括号和它前面的“+”,括号内各数的符号都不改变。

②当括号前是“-”时,去掉括号和它前面的“-”,括号内各数的符号都要改变。

【添括号法则】①添上前面带有“+”的括号时,括号内各数的符号都不改变。

②添上前面带有“-”的括号时,括号内各数的符号都要改变。

1.7有理数的乘法【有理数的乘法法则】①同号两数相乘得正,异号两数相乘得负,并把绝对值相乘。

②任何数和0相乘都得0。

乘法交换律、结合律和乘法对加法的分配律,在有理数的运算中仍然适用。

即ab=ba;(ab)c=a(bc);a(b+c)=ab+ac。

1.8有理数的除法【倒数】乘积为1的两个数互为倒数。

【有理数的除法法则】①同号两数相除得正,异号两数相除得负,并把绝对值相除。

②0不能做除数;0除以任何不为零的数都得0。

③某数除以一个不为零的数,等于乘以这个数的倒数。

1.9有理数的乘方【乘方】我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂,如果有n个a相乘,可以写成a n。

其中,an叫做a的n次方,也叫作a的n次幂;a叫做幂的底数,a可以取任何有理数;n可以叫做幂的指数,n可以取任何正整数。

1.10有理数的混合运算【第一级运算】加法和减法。

【第二级运算】乘法和除法。

【第三级运算】乘方。

有理数的四则运算[PPT课件希沃白板课件]人教版初一七年级上册数学

有理数的四则运算[PPT课件希沃白板课件]人教版初一七年级上册数学

试一试
现有四个有理数3,4,-6,10,将这四个数 (每个数只能用一次)进行加减乘除四则运算,使 其结果等于24,请写出一个符合条件的算式.
当堂练习
1.下列各式中,结果相等的是( D ) A.6÷(3×2)和 6÷3×2 B.(-120+400)÷20和-120+400÷20 C.-3-(4-7)和-3-4-7 D.-4×(2÷8)和-4×2÷8
做一做
一架直升飞机从高度为450m的位置开始,先以 20m/s的速度上升60s,后以12m/s的速度下降120s, 这时直升机所在的高度是多少?
解:450+20×60-12×120 =450+1200-1440 =210
答:这时直升机所在的高度是210m.
三 24点游戏
24点游戏规则
“从一副扑克牌(去掉大、小王)中任意抽取 4张,根据牌面上的数字进行混合运算(每张牌只 能用一次),使得运算结果为24或-24.其中红色扑 克牌代表负数,黑色扑克牌代表正数,J、Q、K
分别代表11、12、13”.
小飞抽到了这样几张牌:
+
+
+
+
他运用下面的方法凑成了24: 7×(3÷7+3)=24
问题1: 如果抽成这几张牌,你能凑成24吗?
+
+

+
7×[3÷7-(-3)]=24
问题2: 如果抽成这几张牌,你能凑成24吗?
+
+--
(-7)×[(-3)÷7-3]=24 7×[3+(-3)÷(-7)]=24
3 1 ( 1 ) 66
3 1 1 1 6 6 12
这个解法 是正确的

初一数学有理数四则运算规则详解

初一数学有理数四则运算规则详解

初一数学有理数四则运算规则详解有理数是包括正整数、负整数、零以及所有正数和负数的数集。

在初一数学学习中,有理数的四则运算是一个十分重要的内容。

掌握有理数的四则运算规则能够帮助我们解决实际问题,下面我将详细介绍有理数的四则运算规则。

一、正数与正数的加法运算首先,我们来讨论两个正数的加法运算。

当两个正数相加时,我们只需将它们的数值相加即可,符号仍为正。

例如,3+4=7,5+2=7。

二、正数与正数的减法运算接下来,我们来讨论两个正数的减法运算。

当两个正数相减时,我们只需将被减数减去减数即可,符号仍为正。

例如,8-3=5,9-2=7。

三、正数与负数的加法与减法运算接下来,我们来讨论正数与负数的加法与减法运算。

当一个正数与一个负数相加时,我们先将它们的绝对值相加,然后取较大的符号作为结果的符号。

例如,3+(-5)=-2,8+(-6)=2。

当一个正数与一个负数相减时,我们只需将它们的绝对值相加,然后取被减数的符号作为结果的符号。

例如,7-(-4)=11,9-(-2)=11。

四、负数与负数的加法与减法运算现在,我们来讨论负数与负数的加法与减法运算。

当两个负数相加时,我们先将它们的绝对值相加,然后取较小的符号作为结果的符号。

例如,(-3)+(-5)=-8,(-8)+(-2)=-10。

当两个负数相减时,我们只需将它们的绝对值相减,然后取被减数的符号作为结果的符号。

例如,(-7)-(-4)=-3,(-9)-(-2)=-7。

五、有理数的乘法运算有理数的乘法运算规则较为简单。

当两个有理数相乘时,我们只需将它们的绝对值相乘,然后根据相乘结果的正负确定最终结果的符号。

例如,2×3=6,(-2)×4=-8。

六、有理数的除法运算有理数的除法运算也相对简单。

当两个有理数相除时,我们只需将除数的绝对值除以被除数的绝对值,然后根据除法的原理确定最终结果的符号。

例如,6÷3=2,(-8)÷4=-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学有理数的四则运算
有理数是指可以用分数的形式表示出来的数,包括正整数、负整数、0和分数。

在初一数学中,学生首次接触到有理数的概念和四则运算。

有理数的四则运算包括加法、减法、乘法和除法。

本文将为大家介绍
有关初一数学中有理数的四则运算的相关知识。

一、加法和减法
有理数的加法可分为相同符号的加法和不同符号的加法。

相同符号
的两个有理数相加,只需将它们的绝对值相加,并保持符号不变。

例如,5+3=8,-6+(-2)=-8。

不同符号的两个有理数相加,需要进行减法
运算。

将绝对值较大的数减去绝对值较小的数,并取绝对值较大的数
的符号作为结果的符号。

例如,6+(-3)=3,-4+5=1。

有理数的减法可以转化为加法来进行计算。

例如,7-3可以转化为
7+(-3),然后按照加法的规则进行计算。

同样地,减法的规则也适用于
不同符号的有理数。

例如,-4-(-2)可以转化为-4+2,然后进行加法运算。

二、乘法和除法
有理数的乘法可根据符号的不同分为三种情况。

1. 两个正数相乘,结果仍为正数。

例如,2乘以3等于6。

2. 两个负数相乘,结果也为正数。

例如,-2乘以-3等于6。

3. 一个正数和一个负数相乘,结果为负数。

例如,2乘以-3等于-6。

有理数的除法也可根据符号的不同分为三种情况。

1. 正数除以正数,结果仍为正数。

例如,6除以2等于3。

2. 负数除以负数,结果也为正数。

例如,-6除以-2等于3。

3. 正数除以负数或负数除以正数,结果为负数。

例如,6除以-2等
于-3。

需要注意的是,除数不能为0。

任何数除以0都是没有意义的。

三、运算顺序
在有理数的四则运算中,我们需要遵循一定的运算顺序。

根据数学
的运算律,我们先进行括号内的运算,然后进行乘法和除法运算,最
后进行加法和减法运算。

例如,计算5+2×3,我们先进行乘法运算,得出的结果再与5相加。

即5+2×3=5+6=11。

同样地,计算(3+4)×2-5,首先进行括号内的运算得到7×2-5,然后
依次进行乘法、减法运算,得到14-5=9。

四、综合运算
在初一数学中,有理数的四则运算往往会综合运用。

例如,计算5-
2×(3-1)÷2,我们首先进行括号内的运算得到5-2×2÷2,然后按照乘法和除法的先后顺序进行运算得到5-4=1。

或者计算3×(-5+2×4)-4÷2,我们首先进行括号内的运算得到3×(-
5+8)-4÷2,然后按照先乘除后加减的顺序进行运算得到3×3-2=7。

通过练习有理数的四则运算,同学们可以提高自己的计算能力和数学素养。

希望本文所介绍的有理数的四则运算相关知识对大家有所帮助。

总结:
本文介绍了初一数学中有理数的四则运算。

在加法和减法中,需要根据有理数的符号进行不同的操作;在乘法和除法中,需要注意结果的符号规律;在运算顺序上,需要遵循先括号后乘除再加减的规则。

通过练习和掌握有理数的四则运算,同学们可以提高数学能力和解决实际问题的能力。

希望大家能够通过学习数学,更好地理解和应用有理数的四则运算。

相关文档
最新文档