最新江苏省常州市中考数学模拟考试试题附解析
最新江苏省常州市中考数学真题模拟试卷附解析

江苏省常州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列说法中合理的是( )A .天气预报员说今天某地区下雨的概率是90%,由此可以断定今天该地区一定要下雨B .小莹在10次抛图钉的试验中发现3次钉尖朝上,据此他说钉尖朝上的概率一定是30%C .某种福利彩票的中奖概率是1%,买一张这样的彩票不一定中奖,而买100张一定会中奖D .在一次课堂上进行的试验中,甲、乙两组同学估计一枚硬币落地后正面朝上的概率分别为0.48和0.522.如图,将一正方形按如图方式分成n 个全等矩形,上、下各横排两个,中间竖排若干个,则n 的值为( )A .12B .10C .8D .63.四边形ABCD 中,AC ,BD 相交于点O ,能识别这个四边形是正方形的为( )A .AO=BO=CO=DO ,AC ⊥BDB .AB ∥CD ,AC=BDC .AD ∥BC ,∠A=∠CD .AO=C0,BO=D0,AB=DC4.1x -1=1x 2-1的解为( ) A .0 B .1 C .-1D .1或-1 5.下列计算正确的是( ) A .222448a a a +=B .()()2322366x x x -+=-C .()428428a b a b -=D .()222141x x +=+6.如图,可知三年中该区平均每年销售盒饭( ) A . 96万盒B . 95.5万盒C .112万盒D .无法判断7.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,则下列方程正①② 确的是( ) ①8256x x -=+;②5(8)6(2)y y -=+;③5(8)6(2)y y +=-;④8256x x +=-.A .①③B .②④C .①②D .③④8.下列说法中,不具有相反意义的一对量是( )A .向东 2.5千米和向西2千米B .上升 3米和下降1.5米C .零上 6℃和零下5℃D .收入5000元和亏损5 000元 二、填空题9.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为______________.10.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是 .11.如图,把直线3y x =-向上平移后得到直线AB ,直线AB 经过点(m ,n ),且35m n +=,则直线AB 的解析式是 .12.如图,有四个立方体,每个立方体的表面都分别按相同次序涂黑、白、红、黄、蓝、绿六色,将四个立方体叠放在一起,只能看到它们的部分颜色,则这个几何体最左边的一个面的颜色是 色.解答题13. 已知23x y =⎧⎨=⎩是方程组2122x y kx y +=-⎧⎨+=-⎩的解,则k= . 14.已知方程组3523x y y x =-⎧⎨=+⎩,用代入法消去x ,可得方程____ _____(不要化简). 15.如图,已知ΔABC ≌ΔADE ,则图中与∠BAD 相等的角是 . 16.在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜 场.解答题17.如图,直线AB、CD相交于点O,若∠1=28°,则∠2= .18.一个长方体有条棱,有个面,有个顶点.19.计算:(1)36.6°+54°42′= ;(2)90°-23°26′= ;(3)180°-l5°24′-150°18′= .20.在统计分析数据时,常用的统计图有.三、解答题21.现有甲、乙两把不相同的锁,各配有 3 把钥匙,总共6把钥匙,从这 6 把钥匙中取2把,恰好能打开两把锁的概率是多少?要想打开甲、乙两把锁,至少取几把,至多取几把?22.如图,在四边形ABCD中,AC⊥BD,过四个顶点分别作对角线AC,BD的平行线,分别相交于E,F,G,H四点.求证:四边形EFGH是矩形.23.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Excel将按指定行的值和指定的“升序”或“降序”排序次序重新设定列.”这段话是对什么名称进行定义?24.解下列不等式:(1)4371x x+<-(2)324(5) 325x x xx+-+->--25.如图,已知线段a ,锐角∠α,画Rt △ABC ,使斜边AB=a ,∠A=∠α.26.如图,图中位置、尺寸修筑两条路,则草皮面积为多少?27.化简求值:22(2)(1)(1)(1)a b a b a b a +-+-++++,其中12a =,2b =-.28.计算:(1)(-2x )3·(4x 2y ) (2)(4×106)(8×104)·105(3)(m 3)4+m 10·m 2+m·m 5·m 629.某日小明在一条东西方向的公路上跑步;他从A 地出发,每隔 10 分钟记录下自己的跑步情况( 向东为正方向,单位:米):- l008, 1100 , -976 , 1010 , -827 , 9461小时后他停下来,此时他在A 地的什么方向?离A 地有多远?这 1小时内小明共跑了多远?30.如图,△ABC 中,DE ∥BC ,EF ∥AB ,23AE EC =,ABC 25S ∆=,求BFED S .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.A5.A6.A7.A8.D二、填空题9.()41,10.k>-1且k≠011.35y x =-+12.绿13.414.y=2(3y-5)+315.∠CAE16.617.28°18.12,6,819.(1)91°18′(2)66°34′ (3)14°18′20.条形统计图,折线统计图,扇形统计图三、解答题21.(1)设 1、2、3是开甲锁的钥匙,4、5、6是开乙锁的钥匙,任取 2 把共有 12、13、14、15,16,23,24,25,26,34,35,36,45,46,56 十五种,所以能打开甲、乙两把锁的概率为93155P == (2)至少取2把,至多取4把 22.先证□EFGH ,再证一个内角为直角即可23.按行排序24. (1)43x >;(2)6x ≥ 25.略26.28 m 227.22424a b ab ++,528.(1)-32x 5y ,(2)3.2×1016,(3)3m 1229.他在A 地的东面,离A 地245 米远,共跑了 5867 米 30.∵DE ∥BC ,EF ∥AB ,∴△ADE ∽△ABC,△CEF ∽△CAB, ∵23AE EC =,∴ 25AE AC =,∴4ADC S ∆=,又∵3,5CE AC =,∴9ECF S ∆=, ∴12BFED ABC ADE ECF S S S S ∆∆∆=--=.。
2024年江苏省常州市中考数学调研试卷

2024年江苏省常州市中考数学调研试卷一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的,请把答案直接填写在答题卡相应的位置上)1.(2分)关于x的一元二次方程x2﹣2x+m=0的一个根为﹣1,则m的值为()A.﹣3B.﹣1C.1D.22.(2分)Rt△ABC的边长都扩大2倍,则cos A的值()A.不变B.变大C.变小D.无法判断3.(2分)已知⊙O与直线l相交,圆心到直线l的距离为6cm,则⊙O的半径可能为()A.4cm B.5cm C.6cm D.7cm4.(2分)如图是二次函数y=ax2+bx+c的图象,则()A.a>0,c<0B.a>0,c>0C.a<0,c>0D.a<0,c<05.(2分)点A(5,3)经过某种图形变化后得到点B(﹣3,5),这种图形变化可能是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°6.(2分)随机抛掷一枚质地均匀的骰子1次,下列事件中概率最大的是()A.点数为2B.点数为3C.点数小于3D.点数为奇数7.(2分)某校用标准视力表检查全校学生的视力,并将全校学生的视力情况会制成如图的扇形统计图,则该校学生视力的中位数可能是()A.4.5B.4.7C.4.9D.5.18.(2分)如图,点A坐标为(﹣2,1),点B坐标为(0,4),将线段AB绕点O按顺时针方向旋转得到对应线段A′B′,若点A′恰好落在x轴上,则点B′到x轴的距离为()A.4√55B.8√55C.3√65D.8√65二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.(2分)一元二次方程x2﹣x=0的解是.10.(2分)已知圆锥的侧面积是4π,母线长为3,则它的底面圆半径为.11.(2分)已知一段公路的坡度是1:3,沿这条公路上坡走了10m,那么垂直高度上升了m.12.(2分)若抛物线y=x2﹣3x+ax+2的对称轴是y轴,则a的值是.13.(2分)如图,A、B、C、D均为正方形网格的格点,线段AB和CD相交于点P,则SS△PPPPPP SS△PPPPPP的值是.14.(2分)如图,yy=1xx和y=x的图象,若一个数x大于它的倒数,可知x的取值范围是.15.(2分)如图,已知AB是⊙O的直径,点C、D分别在两个半圆上,若过点C的切线与AB的延长线交于点E,∠E=50°,则∠D的度数为.16.(2分)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为2,以它的对角线的交点为位似中心,作它的位似图形A′B′C′D′,若AB:A′B′=1:2,则四边形A′B′C′D′的外接圆的半径为.17.(2分)定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C的对边的比叫做∠A的邻弦,记作thiA,即:ttℎii ii=∠ii的对边∠CC的对边=BBCC iiBB.如图,若∠A=45°,则thiA的值为.18.(2分)如图,P是第一象限内一次函数y=﹣2x+4图象上一动点,反比例函数yy=kk xx(kk≠0)经过点P,则k的取值范围是.三、解答题(本大题共10小题,共84分,请在答题卡指定区域内作答,解答应写出演算步骤)19.(6分)计算:2cccccc30°+tttttt60°−√2ccii tt45°.20.(8分)解方程:(1)(x﹣1)2=9;(2)x2+2x﹣4=0.21.(8分)为了解春节期间游客对我市旅游服务满意度,从中随机抽取部分游客进行调查,并将调查结果按照“A.非常满意;B.比较满意;C.基本满意;D.不满意”四个等级绘制成了如下不完整的条形统计图和扇形统计图:请根据以上统计图中的信息,回答下列问题:(1)抽样调查共抽取游客人;(2)请通过计算补全条形统计图,并求出A等级所在扇形统计图的圆心角度数;(3)春节期间,我市累计接待游客近1000万人次,请你估计对服务表示不满意的游客大约有多少万人次?22.(8分)2024年春节档电影票房火爆,电影《飞驰人生2》、《热辣滚烫》、《第二十条》深受观众喜爱.甲、乙两人从这三部电影中任意选择一部观看.(1)甲选择《热辣滚烫》的概率是;(2)请用列表或画树状图的方法求出甲、乙两人选择同一部电影的概率.23.(8分)如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,AD=DC.(1)连接AC,则∠BAC=°;(2)若P为四边形ABCD边上的一点,满足∠BPC=30°.请用无刻度的直尺和圆规作出所有的点P (不写作法,保留作图痕迹);(3)在(2)的条件下,若BC=2,则CP的长为.24.(8分)如图,Rt△ABC的两个顶点A、B都在反比例函数yy=kk xx(kk≠0)的图象上,AB经过原点O.斜边AC垂直于x轴,垂足为D.已知点A的坐标为(1,2).(1)求直线AB和反比例函数的解析式;(2)求Rt△ABC的面积.25.(8分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.26.(10分)图1是凸透镜成像示意图,蜡烛AC发出的光线CE平行于直线AB,经凸透镜MN折射后,过焦点F,并与过凸透镜中心O的光线CO交于点D,从而得到像BD.其中,物距AO=u,像距BO =v,焦距OF=f,四边形AOEC是矩形,DB⊥AB,MN⊥AB.(1)如图2,当蜡烛AC在离凸透镜中心一倍焦距处时,即u=f,请用所学的数学知识说明此时“不成像”;(2)若蜡烛AC的长为5cm,物距u=15cm,焦距f=10cm,求像距v和像BD的长.27.(10分)【发现问题】P是二次函数yy=14xx2的图象上一点,小丽描出OP的中点Q.当点P运动时,就得到一系列的中点Q,如图所示,她发现这些中点的位置有一定的规律.【提出问题】小丽通过观察,提出猜想:所描的中点都在某二次函数的图象上.【分析问题】若PP1(1,14),则中点Q1(,);若PP(mm,mm24),则中点Q (,).【解决问题】请帮助小丽验证她的猜想是否成立.【问题推广】若P是二次函数y=ax2(a≠0的常数)的图象上一点,在射线OP上有一点Q,满足OOOO OOOO=kk1(k为常数).当点P运动时,则点Q也在某函数的图象上运动,请直接写出该函数解析式(用a、k表示).28.(10分)定义:在平面直角坐标系xOy中,P、Q为平面内不重合的两个点,其中P(x1,y1),Q(x2,y2).若x1+y1=x2+y2,则称点Q为点P的“等和点”.(1)如图1,已知点P(2,1),求点P在直线y=x+1上“等和点”的坐标;(2)如图2,⊙A的半径为1,圆心A坐标为(2,0).若点P(0,m)在⊙A上有且只有一个“等和点”,求m的值;(3)若函数y=﹣x2+2(x≤m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2,当W1,W2两部分组成的图象上恰有点P(0,m)的两个“等和点”,请直接写出m的取值范围.2024年江苏省常州市中考数学调研试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的,请把答案直接填写在答题卡相应的位置上)1.(2分)关于x的一元二次方程x2﹣2x+m=0的一个根为﹣1,则m的值为()A.﹣3B.﹣1C.1D.2【解答】解:∵关于x的一元二次方程x2﹣2x+m=0的一个根是﹣1,∴(﹣1)2﹣2×(﹣1)+m=0,解得:m=﹣3.故选:A.2.(2分)Rt△ABC的边长都扩大2倍,则cos A的值()A.不变B.变大C.变小D.无法判断【解答】解:∵Rt△ABC的边长都扩大2倍,∴所得的三角形与原三角形相似,∴∠A的大小没有发生变化,∴cos A的值不变,故选:A.3.(2分)已知⊙O与直线l l的距离为6cm,则⊙O的半径可能为()A.4cm B.5cm C.6cm D.7cm【解答】解:∵⊙O和直线l相交,∴d<r,又∵圆心到直线l的距离为6cm,∴r>6cm,故选:D.4.(2分)如图是二次函数y=ax2+bx+c的图象,则()A.a>0,c<0B.a>0,c>0C.a<0,c>0D.a<0,c<0【解答】解:∵图象开口向上,∴a>0,∵图象与y轴正半轴相交,∴c>0,故选:B.5.(2分)点A(5,3)经过某种图形变化后得到点B(﹣3,5),这种图形变化可能是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°【解答】解:点A关于x轴的对称点的坐标为(﹣5,3),显然此点不是点B,所以A选项不符合题意.点A关于y轴的对称点的坐标为(5,﹣3),显然此点不是点B,所以B选项不符合题意.如图所示,分别过点A和点A′作x轴和y轴的垂线,垂足分别为M和N,因为∠A′OA=∠NOM=90°,所以∠A′ON=∠AOM.又因为A′O=AO,∠A′NO=∠AMO,所以△A′NO≌△AMO(AAS),所以A′N=AM=3,NO=MO=5,故点A′的坐标为(﹣3,5).此点与点B重合.所以C选项符合题意.同理可得,当点A绕原点顺时针旋转90°时,旋转后的对应点坐标为(3,﹣5).此点显然不是点B.所以D选项不符合题意.故选:C.6.(2分)随机抛掷一枚质地均匀的骰子1次,下列事件中概率最大的是()A.点数为2B.点数为3C.点数小于3D.点数为奇数【解答】解:A、朝上一面的点数是2的概率为16;B、朝上一面的点数是3的概率为16;C、朝上一面的点数小于3的概率为13;D、朝上一面的点数为奇数的概率为12;故选:D.7.(2分)某校用标准视力表检查全校学生的视力,并将全校学生的视力情况会制成如图的扇形统计图,则该校学生视力的中位数可能是()A.4.5B.4.7C.4.9D.5.1【解答】解:把全校学生的视力从低到高排列,排在中间的数在4.6﹣4.7,所以该校学生视力的中位数可能是4.7.故选:B.8.(2分)如图,点A坐标为(﹣2,1),点B坐标为(0,4),将线段AB绕点O按顺时针方向旋转得到对应线段A′B′,若点A′恰好落在x轴上,则点B′到x轴的距离为()A.4√55B.8√55C.3√65D.8√65【解答】解:如图,连接OA,OB′,过点B′作B′H⊥x轴于点H,过点A作AT⊥OB于点T.∵点A坐标为(﹣2,1),点B坐标为(0,4),∴AT=2,OT=1,OB=4,∴OA=√22+12=√5,∴OA=OA′=√5,∵S△OA′B′=S△OAB=12×4×2=4,∴12OOii′⋅BB′HH=4,∴B′H=2×4�5=8�55,∴点B′到x轴的距离为8√55,故选:B.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.(2分)一元二次方程x2﹣x=0的解是x1=0,x2=1.【解答】解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故答案为:x1=0,x2=1.10.(2分)已知圆锥的侧面积是4π,母线长为3,则它的底面圆半径为43.【解答】解:设圆锥的底面圆半径为r,由题意得,1×2π×r×3=4π,解得,r=43.故答案为:43.11.(2分)已知一段公路的坡度是1:3,沿这条公路上坡走了10m,那么垂直高度上升了√10m.【解答】解:如图.Rt△ABC中,tan B=13,AB=10m,设AC=x m,则BC=3x m,根据勾股定理得:x2+(3x)2=102,解得x=√10(负值舍去).∴垂直高度上升了√10m,故答案为:√10.12.(2分)若抛物线y=x2﹣3x+ax+2的对称轴是y轴,则a的值是3.【解答】解:∵抛物线y=x2﹣2x+ax+2的对称轴是y轴,∴−−3+tt2=0.∴a=3.故答案为:3.13.(2分)如图,A、B、C、D均为正方形网格的格点,线段AB和CD相交于点P,则SS△PPPPPP SS△PPPPPP的值是14.【解答】解:连接AE、BC,设每个小正方形的边长都为1,如图,由勾股定理得AC=BE=√12+22=√5,AE=BC=√32+32=3√2,∴四边形ACBE是平行四边形,∴BE∥AC,∵B、E、D三点在同一条直线上,∴BD∥AC,∴△PBD∽△P AC,∵BE=DE,∴BD=2BE=2AC,∴BBBB AAAA=2,∴SS△PPPPPP SS△PPPPPP=(AAAA BBBB)2=14.故答案为:14.14.(2分)如图,yy=1xx和y=x的图象,若一个数x大于它的倒数,可知x的取值范围是﹣1<x<0或x>1.【解答】解:令1xx=x,解得x=±1,∴函数yy=1xx和y=x的图象的交点的横坐标为﹣1和1,由图象可知当﹣1<x<0或x>1时,一次函数y=x的图象在反比例函数y=1xx的上方,∴根据图象可知x的取值范围是﹣1<x<0或x>1.故答案为:﹣1<x<0或x>1.15.(2分)如图,已知AB是⊙O的直径,点C、D分别在两个半圆上,若过点C的切线与AB的延长线交于点E,∠E=50°,则∠D的度数为70° .【解答】解:∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠E=50°,∴∠COE=90°﹣∠E=40°,∴∠AOC=180°﹣∠COE=140°,∴∠D=12∠AOC=70°,故答案为:70°.16.(2分)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为2,以它的对角线的交点为位似中心,作它的位似图形A′B′C′D′,若AB:A′B′=1:2,则四边形A′B′C′D′的外接圆的半径为2.【解答】解:连接B′D′,∵正方形ABCD与正方形A′B′C′D′是位似图形,AB:A′B′=1:2,∴正方形ABCD与正方形A′B′C′D′的面积比为1:4,∵正方形ABCD的面积为2,∴正方形A′B′C′D′的面积为8,∴正方形A′B′C′D′的边长为2√2,∵四边形A′B′C′D′是正方形,∴∠A′=90°,∴B′D′=�(2√2)2+(2√2)2=4,∴四边形A′B′C′D′的外接圆的半径为2,故答案为:2.17.(2分)定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C的对边的比叫做∠A的邻弦,记作thiA,即:ttℎii ii=∠ii的对边∠CC的对边=BBCC iiBB.如图,若∠A=45°,则thiA的值为√2.【解答】解:作BH⊥AC于H,设BH=x,∵∠A=45°,∴△ABH是等腰直角三角形,∴AB=√2BH=√2x,∵∠C=30°,∴BC=2BH=2x,∴thiA=BBCC iiBB=2xx�2xx=√2.故答案为:√2.18.(2分)如图,P是第一象限内一次函数y=﹣2x+4图象上一动点,反比例函数yy=kk xx(kk≠0)经过点P,则k的取值范围是0<k≤2.【解答】解:联立方程组�yy=−2xx+4yy=kk xx,消掉y得﹣2x+4=kk xx,整理得2x2﹣4x+k=0,∵点P是两个函数的交点,方程组有解,∴Δ=16﹣4×2k≥0,∴k≤2,反比例函数图象在第一象限,k>0,∴0<k≤2.故答案为:0<k≤2.三、解答题(本大题共10小题,共84分,请在答题卡指定区域内作答,解答应写出演算步骤)19.(6分)计算:2cccccc30°+tttttt60°−√2ccii tt45°.【解答】解:2cccccc30°+tttttt60°−√2ccii tt45°=2×�32+√3−√2×�22=√3+√3−1=2√3−1.20.(8分)解方程:(1)(x﹣1)2=9;(2)x2+2x﹣4=0.【解答】解:(1)∵(x﹣1)2=9,∴x﹣1=±3,则x1=4,x2=﹣2;(2)∵x2+2x﹣4=0,∴x2+2x=4,则x2+2x+1=4+1,即(x+1)2=5,∴x+1=±√5,∴x1=﹣1+√5,x2=﹣1−√5.21.(8分)为了解春节期间游客对我市旅游服务满意度,从中随机抽取部分游客进行调查,并将调查结果按照“A.非常满意;B.比较满意;C.基本满意;D.不满意”四个等级绘制成了如下不完整的条形统计图和扇形统计图:请根据以上统计图中的信息,回答下列问题:(1)抽样调查共抽取游客50人;(2)请通过计算补全条形统计图,并求出A等级所在扇形统计图的圆心角度数;(3)春节期间,我市累计接待游客近1000万人次,请你估计对服务表示不满意的游客大约有多少万人次?【解答】解:(1)抽样调查的游客有:24÷48%=50(人);故答案为:50;(2)“基本满意”的游客有:50﹣10﹣24﹣2=14(人),补全条形图如图:A等级所在扇形统计图的圆心角度数为:360°×1050=72°;(3)1000×250=40(万人),答:估计对服务表示不满意的游客大约有40万人次.22.(8分)2024年春节档电影票房火爆,电影《飞驰人生2》、《热辣滚烫》、《第二十条》深受观众喜爱.甲、乙两人从这三部电影中任意选择一部观看.(1)甲选择《热辣滚烫》的概率是13;(2)请用列表或画树状图的方法求出甲、乙两人选择同一部电影的概率.【解答】解:(1)甲选择《热辣滚烫》的概率是13;故答案为:13;(2)用A、B、C分别表示电影《飞驰人生2》、《热辣滚烫》、《第二十条》,画树状图为:共有93种,所以甲、乙两人选择同一部电影的概率=39=13.23.(8分)如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,AD=DC.(1)连接AC,则∠BAC=30°;(2)若P为四边形ABCD边上的一点,满足∠BPC=30°.请用无刻度的直尺和圆规作出所有的点P (不写作法,保留作图痕迹);(3)在(2)的条件下,若BC=2,则CP的长为2或2√3或4.【解答】解:(1)如图,连接AC,∵BC∥AD,∠DCB=120°,∴∠D+∠DCB=180°,∴∠D=60°,∵DC=DA,∴△ACD是等边三角形,∴∠DAC=60°,∵AB⊥BC,∴∠CBA=∠BAD=90°,∴∠BAC=30°,故答案为:30;(2)如图所示,作AC的垂直平分线,垂足为O,以O为圆心,AO为半径画圆交CD,AD于点P1,P2,P3与A重合,点P1,P2,P3即为所求;(3)当P3与A重合时,∠BP3C=30°,此时CP3=2BC=4,连接CP2,∵AC为直径,∴CP2⊥AD,∴四边形BCP2A是矩形,∴CP2=AB=2√3,当CB=CP1时,∠CP1B=∠CBP1=30°,此时CP1=2,综上所述,CP的长为2或2√3或4.故答案为:2或2√3或4.24.(8分)如图,Rt△ABC的两个顶点A、B都在反比例函数yy=kk xx(kk≠0)的图象上,AB经过原点O.斜边AC垂直于x轴,垂足为D.已知点A的坐标为(1,2).(1)求直线AB和反比例函数的解析式;(2)求Rt△ABC的面积.【解答】解:(1)把(1,2)代入yy=kk xx(kk≠0)得:∴k=2,∴反比例函数的解析式为y=2xx,∵点A和B关于原点对称,∴点B坐标为(﹣1,﹣2),设直线AB解析式为y=ax,将点A(1,2)代入得:解得:a=2,∴直线AB解析式为y=2x;(2)∵A(1,2),B(﹣12,∴AB=�(−1−1)2+(−2−2)2=2√5,∵对角线AC垂直于x轴,∴∠AEO=∠ABC=90°,∵∠EAO=∠BAC,∴△AOE∽△ACB,∴OOOO AAOO=BBAA AABB,∴12=BBAA2√5∴BC=√5,∴Rt△ABC的面积=12×AB×BC=5.25.(8分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.【解答】(1)证明:∵AD=ED,∴∠EAD=∠E,∵AE∥BC,∴∠E+∠BCD=180°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BAD=∠EAD;(2)解:如图,连接AC,在△ADB和△ADE中,�iiBB=iiAA∠BBiiBB=∠AAiiBBiiBB=iiBB,∴△ADB≌△ADE(SAS),∴∠ABD=∠E,由圆周角定理得:∠ABD=∠ACD,∴∠ACD=∠E=∠EAD,∵∠E=∠E,∴△ACE∽△DAE,∴BBOO AAOO=AAOO AAOO,即3AAOO=AAOO4,解得:AE=2√3,∴AB=AE=2√3.26.(10分)图1是凸透镜成像示意图,蜡烛AC发出的光线CE平行于直线AB,经凸透镜MN折射后,过焦点F,并与过凸透镜中心O的光线CO交于点D,从而得到像BD.其中,物距AO=u,像距BO =v,焦距OF=f,四边形AOEC是矩形,DB⊥AB,MN⊥AB.(1)如图2,当蜡烛AC在离凸透镜中心一倍焦距处时,即u=f,请用所学的数学知识说明此时“不成像”;(2)若蜡烛AC的长为5cm,物距u=15cm,焦距f=10cm,求像距v和像BD的长.【解答】解:(1)∵四边形是矩形,∴AC=EO,∠CAO=∠AOE=90°,∴∠EOF=180°﹣∠AOE=90°,∴∠CAO=∠EOF=90°,∵AO=OF,∴△CAO≌△EOF(SAS),∴∠COA=∠EFO,∴CO∥EF,∴CO与EF没有交点,∴此时“不成像”;(2)∵CA⊥AB,DB⊥AB,MN⊥AB,∴∠CAO=∠DBO=∠EOF=90°,∵∠COA=∠BOD,∴△CAO∽△DBO,∴AAAA AAOO=BBBB BBOO,∴515=BBBB BBOO,∴BO=3BD,∵∠EFO=∠DFB,∴△EFO∽△DFB,∴OOOO OOOO=BBBB BBOO,∴510=BBBB OOBB−10,∴510=BBBB3BBBB−10,解得:BD=10,∴BO=3BD=30(cm),∴像距v为30cm,像BD的长为10cm.27.(10分)【发现问题】P是二次函数yy=14xx2的图象上一点,小丽描出OP的中点Q.当点P运动时,就得到一系列的中点Q,如图所示,她发现这些中点的位置有一定的规律.【提出问题】小丽通过观察,提出猜想:所描的中点都在某二次函数的图象上.【分析问题】若PP1(1,14),则中点Q1(12,18);若PP(mm,mm24),则中点Q(12m,18m2).【解决问题】请帮助小丽验证她的猜想是否成立.【问题推广】若P是二次函数y=ax2(a≠0的常数)的图象上一点,在射线OP上有一点Q,满足OOOO OOOO=kk1(k为常数).当点P运动时,则点Q也在某函数的图象上运动,请直接写出该函数解析式(用a、k表示).【解答】解:【分析问题】由中点坐标公式得:点Q1(12,18),点Q(12m,18m2),故答案为:12,18,12m,18m2,【解决问题】小丽她的猜想成立,理由:由【分析问题】点Q(12m,18m2),设x=12m,y=18m2,则m=2x,则y=18m2=18×(2x)2=12x2,即点Q在y=12x2;【问题推广】如图,过点P、Q分别作x轴的垂线PM、QN交x轴于点M、N,则△OPM∽△OQN,则OOOO OOOO=OOOO OOOO=kk,即ON=k•OM,设点P的坐标为:(t,at2),即ON=kt,同理可得:QN=kat2,即点Q的坐标为:(kt,kat2),设x=kt,y=kat2,则t=xx kk,则y=kat2=ka(xx kk)2=kk tt x2,即函数表达式为y=tt kk x2.28.(10分)定义:在平面直角坐标系xOy中,P、Q为平面内不重合的两个点,其中P(x1,y1),Q(x2,y2).若x1+y1=x2+y2,则称点Q为点P的“等和点”.(1)如图1,已知点P(2,1),求点P在直线y=x+1上“等和点”的坐标;(2)如图2,⊙A的半径为1,圆心A坐标为(2,0).若点P(0,m)在⊙A上有且只有一个“等和点”,求m的值;(3)若函数y=﹣x2+2(x≤m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2,当W1,W2两部分组成的图象上恰有点P(0,m)的两个“等和点”,请直接写出m的取值范围.【解答】解:(1)设点P(2,1)在直线y=x+1上“等和点”的坐标为(a,a+1),根据“等和点”定义得:a+a+1=2+1,解得:a=1,∴点P(2,1)在直线y=x+1上“等和点”的坐标为(1,2);(2)设点P(0,m)在⊙A上“等和点”的坐标为(x,y),根据“等和点”定义得:x+y=0+m,即y=﹣x+m,∴点P(0,m)的“等和点”在直线y=﹣x+m上,∵点P(0,m)在⊙A上有且只有一个“等和点”,∴直线y=﹣x+m与⊙A相切,如图,A(2,0),且⊙A的半径为1,则AB=AC=1,∠ABG=∠ACD=90°,当直线y=﹣x+m与BF重合时,G(m,0),F(0,m),∴OF=OG=m,∴△OFG是等腰直角三角形,∴∠AGB=45°,∵BF与⊙A相切,∴半径AB⊥BF,∴△ABG是等腰直角三角形,∴AG=√2,∴m=2+√2;当直线y=﹣x+m与CE重合时,D(m,0),E(0,m),同理可得:△ACD是等腰直角三角形,∴AD=√2,∴m=2−√2;综上所述,m的值为2+√2或2−√2;(3)函数y=﹣x2+2关于直线x=m的翻折后的抛物线解析式为y=﹣(x﹣2m)2+2,设点P(0,m)在W1,W2两部分组成的图象上“等和点”的坐标为(x,y),由题知:x+y=m,∴点P的“等和点”在直线y=﹣x+m上,联立方程组得�yy=−xx+mmyy=−(xx−2mm)2+2,整理得x2﹣(4m+1)x+4m2+m﹣2=0,Δ=(4m+1)2﹣4(4m2+m﹣2)=0,解得:m=−94,联立方程组�yy=−xx2+2yy=−xx+mm,整理得:x2﹣x+m﹣2=0,Δ=1﹣4(m﹣2)=0,解得:m=94,当m>94时,y=﹣(x﹣2m)2+2与y=﹣x+m有两个交点,此时y=﹣x+m与y=﹣x2+2有两个交点,∴当m>94时,W1,W2两部分组成的图象上恰有两个“等和点”,当x=m时,y=﹣m2+2,∴函数y=﹣x2+2(x≤m)与直线x=m的交点为(m,﹣m2+2),当(m,﹣m2+2)在直线y=﹣x+m上时,则﹣m2+2=﹣m+m,解得:m=−√2或m=√2,当m=−√2时,W1,W2两部分组成的图象上恰有1个“等和点”,如图,当m=√2时,W1,W2两部分组成的图象上恰有3个“等和点”,如图,∴当m<√2时,W1,W2两部分组成的图象上恰有2个“等和点”,∴当−√2<m<√2时,W1,W2两部分组成的图象上恰有2个“等和点”,综上所述,当−√2<m<√2或m>94时,W1,W2两部分组成的图象上恰有2个“等和点”.。
2023年江苏省常州市中考数学模拟检测试卷附解析

2023年江苏省常州市中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2. ,则a +bb 的值是( ) A .85 B .35C .32D .583.下列各点在抛物线23y x =上的是( ) A .(-1,-3)B .(一1,3)C .(-2,6)D .( 13,1)4.四边形ABCD 中,∠A :∠B :∠C :∠D=3:3:2:4,则此四边形是( ) A .一般四边形 B .平行四边形C .直角梯形D .等腰梯形5.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .AC=AFD .CH=HD 6. 解方程22(51)3(51)x x -=-的最适当的方法应是( ) A . 直接开平方法 B .配方法C .分式法D .因式分解法7.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( ) A .至多6人 B .至少6人 C .至多5人 D .至少5人 8.若4a <,则关于x 的不等式(4)4a x a ->-的解集是( ) A .1x >-B .1x <-C .1x >D .1x <9.下列图形中,不是正方体的表面展开图的是( )10.如图,在△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2B . 1:3C . 2: 3D . 1 : 411.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( ) A .随机事件 B .必然事件 C .不可能事件 D .以上都不是 12.在△ABC 中,若∠A =70°-∠B ,则∠C 等于( ) A .35°B .70°C .110°D .140°13.下列说法正确的是( )A . 如果一件事情发生的机会是 99. 9%,那么它必然发生B . 即使一件事情发生的机会是0.0l%,它仍然可能发生C . 如果一件事情极有可能发生,那么它必然发生D . 如果一件事情不太可能发生,那么它就不可能发生 14.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( )A .11B .-11C .5D .-215.近似数36.0是由四舍五入得到的近似数,在下列关于其精确度的叙述中正确的是( )A .36.0与36精确度相同B .36.0精确到个数C .36.0有三个有效数字D .36.0有两个有效数字二、填空题16.如图,△ABC 中,AB=AC ,∠A=45°,AC 的垂直平分线分别交AB ,AC 于D ,E 两点,连接CD .如果AD=1,那么tan ∠BCD=________.17.已知直角三角形两条直角边的长是6和8,则其内切圆的半径是______.18.已知反比例函数y=-8x的图象经过点P(a+1,4),则a=_____.-319.三角形中,和顶角相邻的外角的平分线和底边的位置关系是 .20.图形的平移和旋转都不改变图形的和.21.如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm2,四边形ABCD的面积是20cm2,则甲、乙、丙、丁四个长方形周长的总和为 cm.解答题三、解答题22.口袋里装有大小相同的卡片4张,且分别标有数字1,2,3,4.从口袋里抽取一张卡片不放回,再抽取一张.请你用列举法(列表或画树状图)分析并求出两次取出的卡片上的数字之和为偶数的概率.23.如图,一个底面直径AB=4 cm 的圆锥,内接一个底面直径为 2 cm,高线为 lcm 的圆柱. 求圆锥的高线和母线长.24.如图所示.在△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的平面直角坐标系,并写出A、B、C各点的坐标.25.一篇稿件有3020 千字,要8小时内打完,在第一小时内已打出 60 千字,问在剩余的时间内,每小时至少要打出多少字,才能按时完成任务?26.宏志高中高一年级近几年来招生人数逐年增加,去年达到 550 名,其中有面向全省招收的“宏志班”学生,也有一般普通班学生.由于场地、师资等限制,今年的招生人数最多比去年增加 100 人,其中普通班学生,可多招20%,“宏志班”学生可多招 10%,问今年最少可招收“宏志班”学生多少名?27.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元)1015305060人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?28.如图所示,点E,F是△ABC边AC,AB上的点,请问在BC边上是否存在一点N,使△ENF的周长最小?29.如图所示,已知∠E=∠F=90°,∠B=∠C ,AE=AF ,则以下结论有哪些是成立的? 并挑选一个将理由补充完整.①∠1=∠2;②BE=CF ;③CD=FN ;④△AEM ≌△AFN . 成立的有: .我选 ,理由如下:30.将下列各数按从小 到大的次序排列,并用“<”号连结起来.1211-,1413-,2423-,65-,4746-. 612142447511132346-<-<-<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.C5.D6.D7.B8.B9.C10.D11.BC13.B14.A15.C二、填空题 16.-117.218.19. 平行20.形状,大小21.48三、解答题 22.解法一:列表∴P (和为偶数)41123== 方法二:画树状图:∴P13.23.由题意得SO CD SO AB '=,即214SO SO-=,∴SO=2 cm,答:圆雉高为2 cm ,母线长为 cm .3(4,3)2(4,2)1(4,1)4(3,4)2(3,2)1(3,1)4(2,4)3(2,3)1(2,1)4(1,4)3(1,3)2(1,2)4321答案不唯一,略25.423千字26.100名27.解:(1)被污染处的人数为11人.设被污染处的捐款数为x元,则 11x+1460=50×38 ,解得x=40答:(1)被污染处的人数为11人,被污染处的捐款数为40元.(2)捐款金额的中位数是40元,捐款金额的众数是50元.28.图的画法是:作点E关于BC所在直线的对称点E′,连结FE′,交BC于N,即得△NEF的周长最小29.①②④,以下略30.612142447-<-<-<-<-511132346。
2024年江苏省常州市钟楼外国语学校中考数学模拟试卷(含解析)

2024年江苏省常州市钟楼外国语学校中考数学模拟试卷一、选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.(2分)﹣2的相反数是( )A.2B.﹣2C.D.2.(2分)下列计算结果正确的是( )A.(﹣a3)2=a9B.a2+a3=a5C.a2•a3=a6D.a5÷a3=a2 3.(2分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A.45°B.60°C.75°D.82.5°4.(2分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠B=34°,则∠APD的度数是( )A.66°B.76°C.75°D.67°5.(2分)2018年4月18日,被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )A.5.19×10﹣2B.5.19×10﹣3C.519×105D.519×10﹣6 6.(2分)如图,在△ABC中,∠B=70°,沿图中虚线EF翻折,使得点B落在AC上的点D处,则∠1+∠2等于( )A.160°B.150°C.140°D.110°7.(2分)如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率为( )A.B.C.D.8.(2分)已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC 的延长线交圆O于点E,则AE的长为( )A.B.1C.D.a二.填空题(本大题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.(2分)3﹣|﹣2|= .10.(2分)计算:+= .11.(2分)分解因式:x3﹣4xy2= .12.(2分)在实数范围内有意义,则x的取值范围是 .13.(2分)已知关于x的方程2x2﹣mx﹣6=0的一个根是2,则m= .14.(2分)用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径是 .15.(2分)如图,每一个小方格的边长都相等,点A、B、C三点都在格点上,则tan∠BAC的值为 .16.(2分)如图,点O是正六边形ABCDEF的中心,以AB为边在正六边形ABCDEF的内部作正方形ABMN,连接OD,ON,则∠DON= °.17.(2分)如图所示,在直角坐标系中,A点坐标为(﹣3,4),⊙A的半径为2,P为x轴上一动点,PB切⊙A于点B,则PB最小值是 .18.(2分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线AC∥y轴,且BD⊥AC.已知点A的横坐标为4,当四边形ABCD是正方形时,请写出m、n之间的数量关系 .三、解答题(本大题共7小题,共64分请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)计算:.20.(8分)解方程和不等式组:(1);(2).21.(10分)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.22.(10分)如图,已知反比例函数的图象与一次函数y=ax+b的图象相交于点A(2,3)和点B(n,﹣2).(1)求反比例函数与一次函数的解析式;(2)直接写出不等式的解集;(3)若点P是x轴上一点,且满足△PAB的面积是10,请求出点P的坐标.23.(10分)共享电动车是一种新理念下的交通工具;主要面向3km~10km的出行市场,现有A,B两种品牌的共享电动车,给出的图象反映了收费y(元)与骑行时间x(min)之间的对应关系,其中A品牌收费方式对应y1,B品牌的收费方式对应y2,请根据相关信息,解答下列问题:(1)说出图中函数y1、y2的图象交点P表示的实际意义;(2)求y1、y2关于x的函数解析式;(3)①如果小明每天早上需要骑行A品牌或B品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m/min,小明家到工厂的距离为9km那么小明选择 品牌共享电动车更省钱?(填“A”或“B”)②当x为何值时,两种品牌共享电动车收费相差3元?24.(10分)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是 ;(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=AB,点E、F分别在AC、BC边上,满足△BDF和△EDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=﹣3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB的中点,P、Q在△AOB的边上,当以P、B、Q为顶点的三角形与△PCB“共边全等”时,请直接写出点Q的坐标.25.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+x+6交x 轴负半轴于A,交正半轴于B,交y轴于C,OB=OC.(1)求抛物线的解析式;(2)如图1,点P是第三象限抛物线上一点,连接BP交y轴于点D,设点P 横坐标为t,线段CD长为d,求d与t的函数关系;(3)如图2,在(2)的条件下,过点C作BP的垂线,交x轴于点F,垂足为点G,E为CF上一点,连接BE,若BE=BD,∠BEG=2∠PBA,求点P 坐标.2024年江苏省常州市钟楼外国语学校中考数学模拟试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.(2分)﹣2的相反数是( )A.2B.﹣2C.D.【分析】根据相反数的定义进行判断即可.【解答】解:﹣2的相反数是2,故选:A.2.(2分)下列计算结果正确的是( )A.(﹣a3)2=a9B.a2+a3=a5C.a2•a3=a6D.a5÷a3=a2【分析】直接根据同底数幂的乘除运算法则计算判断即可.【解答】解:A.(﹣a3)2=a6,计算错误;B.a2+a3,不是同类项,不能合并;C.a2•a3=a5,计算错误;D.a5÷a3=a2,计算正确.故选:D.3.(2分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A.45°B.60°C.75°D.82.5°【分析】直接利用平行线的性质结合已知角得出答案.【解答】解:作直线l平行于直角三角板的斜边,可得:∠2=∠3=45°,∠5=∠4=30°,故∠1的度数是:45°+30°=75°.故选:C.4.(2分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠B=34°,则∠APD的度数是( )A.66°B.76°C.75°D.67°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,再根据三角形的外角性质即可得出结果.【解答】解:∵∠D=∠A=42°,∴∠APD=∠B+∠D=34°+42°=76°,故选:B.5.(2分)2018年4月18日,被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )A.5.19×10﹣2B.5.19×10﹣3C.519×105D.519×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00519=5.19×10﹣3,故选:B.6.(2分)如图,在△ABC中,∠B=70°,沿图中虚线EF翻折,使得点B落在AC上的点D处,则∠1+∠2等于( )A.160°B.150°C.140°D.110°【分析】由∠B=70°得∠BEF+∠BFE=110°,再根据翻折知∠BEF=∠DEF,∠BFE=∠DFE,即可求出∠1+∠2的值.【解答】解:∵∠B=70°,∴∠BEF+∠BFE=110°,∵翻折,∴∠BEF=∠DEF,∠BFE=∠DFE,∴∠BED+∠BFD=2(∠BEF+∠BFE)=2×110°=220°,∴∠1+∠2=180°×2﹣220°=140°,故选:C.7.(2分)如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率为( )A.B.C.D.【分析】采用列表法列出所有情况,再根据能让灯泡发光的情况利用概率公式进行计算即可求解.【解答】解:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是=,故选:B.8.(2分)已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC 的延长线交圆O于点E,则AE的长为( )A.B.1C.D.a【分析】此题可通过证△EAC≌△OAB,得AE=OA,从而求出EA的长;△EAC和△OAB中,已知的条件只有AB=AC;由AB=BD,得=,可得∠AED=∠AOB;四边形ABDE内角于⊙O,则∠EAB+∠D=180°,即∠EAC=180°﹣60°﹣∠D=120°﹣∠D;而∠ECA=180°﹣∠ACB﹣∠BCD=120°﹣∠BCD,上述两个式子中,由BD=AB=BC,易证得∠D=∠BCD,则∠ECA=∠EAC,即△EAC、△OAB都是等腰三角形,而两个等腰三角形的顶角相等,且底边AC =AB,易证得两个三角形全等,由此得解.【解答】解:如图,连接OE,OA,OB.∵△ABC是等边三角形,∴AB=BC=AC=BD=a,∠CAB=∠ACB=60°;∵AB=BD,∴,∴∠AED=∠AOB;∵BC=AB=BD,∴∠D=∠BCD;∵四边形EABD内接于⊙O,∴∠EAB+∠D=180°,即∠EAC+60°+∠D=180°;又∵∠ECA+60°+∠BCD=180°,∴∠ECA=∠EAC,即△EAC是等腰三角形;在等腰△EAC和等腰△OAB中,∠AEC=∠AOB,∵AC=AB,∴△EAC≌△OAB;∴AE=OA=1.方法2:∵BA=BC=BD=a,∴点A,C,D在以B为圆心,半径为a的圆上,∴∠ADC=∠ABC=30°,连接AO,EO,∴∠AOE=2∠ADE=60°,∴△AOE为等边三角形,∴AE=1.故选:B.二.填空题(本大题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.(2分)3﹣|﹣2|= 1 .【分析】先算|﹣2|,再求3与它的差得结果.【解答】解:3﹣|﹣2|=3﹣2=1故答案为:110.(2分)计算:+= 3 .【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.11.(2分)分解因式:x3﹣4xy2= x(x+2y)(x﹣2y) .【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)12.(2分)在实数范围内有意义,则x的取值范围是 x≥2 .【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x﹣2≥0,∴x≥2.故答案为:x≥2.13.(2分)已知关于x的方程2x2﹣mx﹣6=0的一个根是2,则m= 1 .【分析】根据一元二次方程解的定义,将x=2,代入原方程,然后解出m的值即可.【解答】解:由题意得:x=2,将x=2,代入方程2x2﹣mx﹣6=0得:2×22﹣2m﹣6=0,解得:m=1.故答案为:1.14.(2分)用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径是 1cm .【分析】首先求得扇形的弧长,即圆锥的底面周长,然后根据圆的周长公式即可求得半径.【解答】解:圆锥的底面周长是:2πcm,设圆锥的底面半径是r,则2πr=2π,解得:r=1.故答案为:1cm.15.(2分)如图,每一个小方格的边长都相等,点A、B、C三点都在格点上,则tan∠BAC的值为 .【分析】根据已知图形去添加合适得辅助线,从而得出∠CHA=90°,再求解即可.【解答】解:连接CH,由图可知∠CHA=90°,设小方格的边长为a,则AH==3a,CH==4a,故tan∠BAC===,故答案为:.16.(2分)如图,点O是正六边形ABCDEF的中心,以AB为边在正六边形ABCDEF的内部作正方形ABMN,连接OD,ON,则∠DON= 105 °.【分析】连接OA,OB,OE,OF,利用正六边形的性质得到OA=OB=OF=OE=OD,∠AOB=∠AOF=∠FOE=∠EOD=60°,则△OAB为等边三角形,D,O,A在一条直线上;利用正方形的性质,等边三角形的性质和等腰三角形的性质求得∠AON的度数,则结论可得.【解答】解:连接OA,OB,OE,OF,如图,∵点O是正六边形ABCDEF的中心,∴OA=OB=OF=OE=OD,∠AOB=∠AOF=∠FOE=∠EOD=60°,∴△OAB为等边三角形,∠AOF+∠FOE+∠EOD=180°,∴D,O,A在一条直线上,∠OAB=60°,OA=AB.∵以AB为边在正六边形ABCDEF的内部作正方形ABMN,∴∠NAB=90°,AB=AN,∴∠NAO=30°,OA=AN,∴∠AON=∠ANO==75°,∴∠NOD=180°﹣∠AON=105°.故答案为:105.17.(2分)如图所示,在直角坐标系中,A点坐标为(﹣3,4),⊙A的半径为2,P为x轴上一动点,PB切⊙A于点B,则PB最小值是 2 .【分析】此题根据切线的性质以及勾股定理,根据垂线段最短的性质进行分析,把要求PB的最小值转化为求AP的最小值,进而可以解决问题.【解答】解:如图,连接AB,AP.根据切线的性质定理,得AB⊥PB.要使PB最小,只需AP最小,则根据垂线段最短,则AP⊥x轴于P,此时P点的坐标是(﹣3,0),AP=4,在Rt△ABP中,AP=4,AB=2,∴PB==2.则PB最小值是2.故答案为:2.18.(2分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线AC∥y轴,且BD⊥AC.已知点A的横坐标为4,当四边形ABCD是正方形时,请写出m、n之间的数量关系 m+n=32 .【分析】设AC=BD=2t(t≠0),先确定出点A的坐标为(4,),C(4,),进而得出点D的坐标为(4﹣t,+t),代入y=求得t=4﹣,即可得到点C的坐标为(4,8﹣),从而得到8﹣=,整理得到m+n=32.【解答】解:当四边形ABCD为正方形时,设AC=BD=2t(t≠0).∵点A的横坐标为4,∴点A的坐标为(4,),C(4,),∴点D的坐标为(4﹣t,+t),∵点D在反比例函数y=的图象上,∴(4﹣t)(+t)=m,化简得:t=4﹣,∴点C的纵坐标为+2t=+2(4﹣)=8﹣,∴点C的坐标为(4,8﹣),∴8﹣=,整理,得:m+n=32.∴四边形ABCD是正方形时,m+n=32,故答案为m+n=32.三、解答题(本大题共7小题,共64分请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)计算:.【分析】首先计算零指数幂、特殊角的三角函数值、开平方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣2×1+1=2﹣2+1=1.20.(8分)解方程和不等式组:(1);(2).【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)方程两边都乘以(x﹣2)(x﹣3)得:x﹣3=2(x﹣2),去括号得:x﹣3=2x﹣4,解得:x=1,检验:当x=1时,(x﹣2)(x﹣3)≠0,∴x=1是原方程的解;(2),解不等式①得:x≥﹣1,解不等式②得:x<﹣,∴不等式组的解集是﹣1≤x<﹣.21.(10分)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.【分析】(1)用二元一次方程组解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组.(2)本问可以列出一元一次不等式组解决.用笔记本本数=48﹣钢笔支数代入下列不等关系,购买钢笔钱数+购买笔记本钱数≤200,笔记本数≥钢笔数,可以列出一元一次不等式组,求出其解集,再根据笔记本数,钢笔数必须是整数,确定购买方案.【解答】解:(1)设每支钢笔x元,每本笔记本y元.依题意得:,解得:,答:每支钢笔3元,每本笔记本5元.(2)设买a支钢笔,则买笔记本(48﹣a)本,依题意得:,解得:20≤a≤24,∴一共有5种方案.方案一:购买钢笔20支,则购买笔记本28本;方案二:购买钢笔21支,则购买笔记本27本;方案三:购买钢笔22支,则购买笔记本26本;方案四:购买钢笔23支,则购买笔记本25本;方案五:购买钢笔24支,则购买笔记本24本.22.(10分)如图,已知反比例函数的图象与一次函数y=ax+b的图象相交于点A(2,3)和点B(n,﹣2).(1)求反比例函数与一次函数的解析式;(2)直接写出不等式的解集;(3)若点P是x轴上一点,且满足△PAB的面积是10,请求出点P的坐标.【分析】(1)将点A坐标代入反比例函数解析式求出k,从而求出点B坐标,再通过待定系数法求一次函数解析式;(2)通过观察图象交点求解;(3)设点P坐标为(m,0),通过三角形PAB的面积为10及三角形面积公式求解.【解答】解:(1)将(2,3)代入得3=,解得k=6,∴反比例函数解析式为y=.∴﹣2n=6,解得n=﹣3,所以点B坐标为(﹣3,﹣2),把(﹣3,﹣2),(2,3)代入y=ax+b得:,解得,∴一次函数解析式为y=x+1;(2)由图象可得当x<﹣3或0<x<2时式;(3)设点P坐标为(m,0),一次函数与x轴交点为E,把y=0代入y=x+1得0=x+1,解得x=﹣1,∴点E坐标为(﹣1,0).∴S△PAB=S△PAE+S△PBE=×3PE+×2PE=PE,∴PE=10,即|m+1|=10,解得m=3或m=﹣5.∴点P坐标为(3,0)或(﹣5,0).23.(10分)共享电动车是一种新理念下的交通工具;主要面向3km~10km的出行市场,现有A,B两种品牌的共享电动车,给出的图象反映了收费y(元)与骑行时间x(min)之间的对应关系,其中A品牌收费方式对应y1,B品牌的收费方式对应y2,请根据相关信息,解答下列问题:(1)说出图中函数y1、y2的图象交点P表示的实际意义;(2)求y1、y2关于x的函数解析式;(3)①如果小明每天早上需要骑行A品牌或B品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m/min,小明家到工厂的距离为9km那么小明选择 B 品牌共享电动车更省钱?(填“A”或“B”)②当x为何值时,两种品牌共享电动车收费相差3元?【分析】(1)根据函数图象可得交点P的坐标,结合x,y所表示的实际意义即可解答;(2)利用待定系数法即可求解,注意y2为分段函数;(3)①先根据“时间=路程÷速度”求出小明从家骑行到工厂所需时间,再分别求出选择A和B品牌共享电动车所需费用,比较即可求解;②分两种情况讨论:当0<x≤10时,y2﹣y1=3;当x>10时,y2﹣y1=3或y1﹣y2=3.以此列出方程,求解即可.【解答】解:(1)由图象可得,P(20,8),交点P表示的实际意义是:当骑行时间为20min时,A,B两种品牌的共享电动车收费都为8元;(2)设y1=k1x,将点(20,8)代入得,20k1=8,解得:k1=0.4,∴y1=0.4x(x>0),由图象可知,当0<x≤10时,y2=6,设当x>10时,y2=k2x+b,将点(10,6),(20,8)代入得,,解得:,∴当x>10时,y2=0.2x+4,∴;(3)①小明从家骑行到工厂所需时间为=30(min),A品牌所需费用为0.4×30=12(元),B品牌所需费用为0.2×30+4=10(元),∵12>10,∴选择B品牌共享电动车更省钱;故答案为:B;②当0<x≤10时,y2﹣y1=3,∴6﹣0.4x=3,解得:x=7.5,当x>10时,y2﹣y1=3或y1﹣y2=3,∴0.2x+4﹣0.4x=3或0.4x﹣(0.2x+4)=3,解得:x=5(舍去)或x=35,综上,当x的值为7.5或35时,两种品牌共享电动车收费相差3元.24.(10分)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是 ③ ;(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=AB,点E、F分别在AC、BC边上,满足△BDF和△EDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=﹣3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB的中点,P、Q在△AOB的边上,当以P、B、Q为顶点的三角形与△PCB“共边全等”时,请直接写出点Q的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到△ADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成△PCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当△BDF≌△EFD,且是共边全等时,∠BFD=∠EDF,∴DE∥BC,∵△ABC是等边三角形,∴△ADE是等边三角形,∵AD=,∴DE=AE=BF=2,∴CF=BC﹣BF=4,②如图2,当△BDF≌△EDF,且是共边全等时,BD=DE=6﹣AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,∴∠FEC=∠EDA,又∠C=∠A=60°,∴△FEC∽△EDA,∴,设CE=a,则EF=2a,∴,解得a=,∴,EF=,∴CF=6﹣(10﹣2)=2﹣4,综上所述,CF=4或;(3)联立,解得,∴A(3,3),令y=﹣3x+12=0,得x=4,∴B(4,0),∴OB=4,∵C为OB中点,∴OC=2,∴C(2,0),由题可得,P点只能在边OA和OB上,①P在OA上时,如图3,△PBC≌△BPQ,∴∠CPB=∠QBP,CP=QB,∴四边形PCBQ为平行四边形,∵C为OB中点,∴P为OB中点,又PQ∥OB,∴Q为AB中点,∴Q(),②当P在OA边上,如图4,△PBC≌△PBQ,∴BQ=BC=2,如图5,过A作AD⊥OB于D,则AD=3,OD=3,∴BD=OB﹣OB=1,∴tan∠ABO=,过Q作QE⊥OB于E,∵tan∠ABO=,∴设BE=a,则QE=3a,∵BE2+QE2=QB2,∴a=,∴,OE=4﹣a=4,∴,③当P在OA边上,Q在OA边上时,如图6,△PBQ≌BPC,∴PA=BC=2,OP=PB=4,过P作PF⊥OB于F,∵∠AOB=45°,OP=4,∴PF=OP=2,∴,设Q(b,b),∴,∴,∴,④当P在OB上,Q在OA上时,△PBC≌BPQ,如图7,∴S△PBC=S△BPQ,过C,Q分别作AB得垂线,垂足分别为M,N,∴,CM∥QN,∴CM=QN,∴四边形CMNQ是平行四边形,∵C为OB中点,∴Q为AO中点,∴Q(),综上所述,Q()或()或()或().25.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+x+6交x 轴负半轴于A,交正半轴于B,交y轴于C,OB=OC.(1)求抛物线的解析式;(2)如图1,点P是第三象限抛物线上一点,连接BP交y轴于点D,设点P 横坐标为t,线段CD长为d,求d与t的函数关系;(3)如图2,在(2)的条件下,过点C作BP的垂线,交x轴于点F,垂足为点G,E为CF上一点,连接BE,若BE=BD,∠BEG=2∠PBA,求点P 坐标.【分析】(1)由待定系数法即可求解;(2)求出直线BP的表达式为:y=﹣(t+3)(x﹣6),即可求解;(3)证明△COF≌△BOD(AAS)、△CKN≌△EGB(AAS)和△NKF≌△BGF (AAS),得到OF=OB=2=OD,求出直线BD的表达式为:y=x﹣2,即可求解.【解答】解:(1)由函数的表达式知,点C(0,6),而OB=OC=6,则点B(6,0),将点B的坐标代入函数表达式得:0=36a+6+6,解得:a=﹣,故函数的表达式为:y=﹣x2+x+6;(2)设点P(t,﹣t2+t+6),由点P、B的坐标得,直线BP的表达式为:y=﹣(t+3)(x﹣6),则点D(0,2t+6),则d=CD=6﹣2t﹣6=﹣2t;(3)在y轴左侧取点N使ON=OF,过点N作NK⊥CG于点K,则∠NCK=2∠OCF,∵∠COF=∠BGF=90°,∠GFB=∠CFN,∴∠OBD=∠OCF=∠OCN,∵∠BEG=2∠PBA,∴∠BGE=∠NCK.∵OB=OC,∠BOD=∠COF=90°,∠OBD=∠OCF,∴△COF≌△BOD(AAS),∴OF=OD,BD=CF,∵∠BGE=∠NCK,BE=BD=CN,∠CKN=∠EGB=90°,∴△CKN≌△EGB(AAS),∴KN=BG,∵∠NKF=∠BGF=90°,∠NFK=∠BFG,∴△NKF≌△BGF(AAS),∴NF=BG,而ON=OF,则OF=OB=2=OD,则点D(0,﹣2),由点B、D的坐标得,直线BD的表达式为:y=x﹣2,联立上式和二次函数表达式得:﹣x2+x+6=x﹣2,解得:x=6(舍去)或4,即点P(4,﹣).。
江苏省常州市第二十四中学、教科院、市实验中学联考2024届九年级下学期中考一模数学试卷(含解析)

数学试题一、选择题:(本大题共8小题,每小题2分,共16分)1.(2分)把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是( )A.﹣6+3=9B.﹣6﹣3=﹣3C.﹣6+3=﹣3D.﹣6+3=3解答:解:由题意可知:﹣6+3=﹣3,故选:C.2.(2分)计算(﹣a)3•a2的结果是( )A.﹣a6B.a6C.﹣a5D.a5解答:解:(﹣a)3•a2=﹣a3•a2=﹣a5,故选:C.3.(2分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是( )A.m≤﹣1B.m≤1C.m≤4D.解答:解:∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值范围是m≤1.故选:B.4.(2分)下列几种著名的数学曲线中,不是轴对称图形的是( )A.B.C.D.解答:解:A.不是轴对称图形,故此选项符合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项不合题意.故选:A.5.(2分)王老汉要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD应该是△ABC的( )A.角平分线B.中线C.高线D.以上都不是解答:解:由三角形的面积公式可知,三角形的中线把三角形分为面积相等的两部分,∴他所作的线段AD应该是△ABC的中线,故选:B.6.(2分)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A=88°,∠C=42°,AB=60,则点A到BC的距离为( )A.60sin50°B.C.60cos50°D.60tan50°解答:解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin B=60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.7.(2分)如图,已知∠AOB=60°,以点O为圆心,与角的两边分别交于C,D两点,D为圆心,大于,两条圆弧交于∠AOB内一点P,连结OP,过点P作直线PE∥OA交OB于点E,过点P作直线PF ∥OB交OA于点F,OP=6cm,则四边形PFOE的面积是( )A.B.C.D.解答:解:过P作PM⊥OB于M,由作图得:OP平分∠AOB,∴,∴,∴,∵PE∥OA,PF∥OB,∴四边形OEPF为平行四边形,∠EPO=∠POA=30°,∴∠POE=∠OPE,∴OE=PE,设OE=PE=x cm,在Rt△PEM中,PE2﹣MP2=EM2,即:,解得:,∴.故选:B.8.(2分)如图①,底面积为30cm2的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②,若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱体的底面积为( )cm2.A.24B.12C.18D.21解答:解:根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了:42s﹣24s=18(s),这段高度为:14﹣11=3(cm),设匀速注水的水流速度为x cm3/s,则18•x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;“几何体”下方圆柱的高为a,则a•(30﹣15)=18×5,解得a=6,所以“几何体”上方圆柱的高为11﹣6=5(cm),设“几何体”上方圆柱的底面积为S cm2,根据题意得5•(30﹣S)=5×(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.故选:A.二、填空题:(本大题共10小题,每小题2分,共20分)9.(2分)25的算术平方根是 5 .解答:解:∵52=25,∴25的算术平方根是5.故答案为:5.10.(2分)当a ≠﹣2 时,分式有意义.解答:解:根据题意得,a+2≠0,解得a≠﹣2.故答案为:≠﹣2.11.(2分)因式分解:a2+8a+16= (a+4)2 .解答:原式=(a+4)2,故答案为:(a+4)2.12.(2分)若m<2<m+1,且m为整数,则m= 5 .解答:解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.13.(2分)图中的小正方形的边长都相等,若△MNP≌△MEQ,则点Q可能是图中的点 D .解答:解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故答案为:D.14.(2分)如图,在平行四边形ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E 处.若∠B=60°,AB=2,则△ADE的周长为 12 .解答:解:∵四边形ABCD是平行四边形,∠B=60°,AB=2,∴∠D=∠B=60°,CD=AB=2,∴由折叠得∠E=∠D=60°,CE=CD=2,∵将△ADC沿AC折叠后,点D落在DC的延长线上的点E处,∴D、C、E三点在同一条直线上,∴DE=CE+CD=2+2=4,∠DAE=180°﹣∠E﹣∠D=60°,∴△ADE是等边三角形,∴AD=AE=DE=4,∴AD+AE+DE=3×4=12,∴△ADE的周长为12,故答案为:12.15.(2分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=8,AD=6,则AF的长为 .解答:解:∵四边形ABCD是矩形,∴AB=CD=8,∠ADC=90°,AB∥CD,∵AD=6,∴AC===10,∵点E是AB的中点,∴AE=AB=4,∵AB∥CD,∴∠CDE=∠DEA,∠DCF=∠CAE,∴△CDF∽△AEF,∴===2,∴AF=AC=,故答案为:.16.(2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为 x>3 .解答:解:由题意得,一次函数y=kx+b的图象经过(2,0),k>0,∴2k+b=0,∴b=﹣2k,∴不等式可化为:2kx﹣6k>0,解得x>3,故答案为:x>3.17.(2分)初三(9)班同学在“2021义卖”活动中表现特别突出,他们设计了两款特别的产品.第一是“人分纪念品”套装,销售一件此产品可获利16%;第二是“一路向北”手提袋,销售一件此产品可获利24%;当销售量的比为3:2时,总获利为18%.当销售量的比为1:3时,总获利为 20.8% .解答:解:设一件“人分纪念品”套装卖x元,一件“一路向北”手提袋卖y元,则一件此产品可获利16%x 元,一件“一路向北”手提袋可获利24%y元,令“人分纪念品”的销售量为3a,则“一路向北”的销售量为2a,由销售量的比为3:2时,总获利为18%,得:=18%,解得x=2y,设销售量的比为1:3时,令“人分纪念品”的销售量为b,则“一路向北”的销售量为3b,则总获利为:===20.8%,即总获利为20.8%.故答案为:20.8%.18.(2分)如图,半圆O的半径为1,AC⊥AB,BD⊥AB,且AC=1,BD=3,P是半圆上任意一点,则封闭图形ABDPC面积的最大值是 2+ .解答:解:如图,连接DC,并延长交BA的延长线于点G,欲使封闭图形ACPDB的面积最大,因梯形ACDB的面积为定值,故只需△CPD的面积最小.而CD为定值,故只需使动点P到CD的距离最小.为此作半圆平行于CD的切线EF,设切点为P′,并分别交BD及BA的延长线于点F,E.连接OC,∵CA⊥AB,DB⊥AB,∴△CGA∽△DGB,∴=,∴GA=AO=AC=1.∴△ACO和△GAC是等腰直角三角形,∴∠GCA=∠OCA=45°,∴∠GCO=90°,∴OC⊥GD.OC⊥EF,∴切点P′就是OC与半圆的交点.即当动点P取在P′的位置时,到CD的距离最小,而OC=,∴CP´=﹣1,∴S△CP´D=×2×(﹣1)=2﹣,∴封闭图形ACPDB的最大面积为:×(1+3)×2﹣(2﹣)=4﹣2+=2+.故答案为:2+.三、解答题(本大题共10小题,第19题6分.第20-25题每题8分,第26-28题每题10分,共84分)19.(6分)计算:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0.解答:解:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0=﹣2++2﹣+1=1.20.(8分)解不等式组:,并求出它的正整数解.解答:解:,解不等式①得:x≤5,解不等式②得:x<14,所以不等式组的解集为x≤5,则不等式组的正整数解为1,2,3,4,5.21.(8分)某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.这20名居民讲座前、讲座后成绩得分统计图如图:b.这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下:平均数中位数方差讲座前72.071.599.7讲座后86.8m88.4c.结合讲座后成绩x,被抽取的20名居民中有5人获得“参与奖”(x<80),有7人获得“优秀奖”(80≤x <90),有8人获得“环保达人奖”(90≤x≤100),其中成绩在80≤x<90这一组的是:80 82 83 85 87 88 88根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“〇”圈出代表居民小张的点;(2)写出表中m的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有 64 人.解答:解:(1)如图所示:(2)讲座后成绩的中位数是第10和第11个数的平均数,所以m==87.5;(3)估计能获得“环保达人奖”的有160×=64(人).故答案为:64.22.(8分)完全相同的四张卡片,上面分别标有数字﹣1,2,1,﹣3,将其背面朝上,从中任意抽出1张(不放回),记为m,再抽一张记为n,以m作为M点的横坐标,n作为M点的纵坐标,记为M(m,n).(1)抽出一张卡片标有数字为正数的概率是 ;(2)用树状图或列表法求所有点M(m,n)的坐标,并且点M在第二象限的概率.解答:解:(1)由题意知,共有4种等可能的结果,其中抽出一张卡片标有数字为正数的结果有:2,1,共2种,∴抽出一张卡片标有数字为正数的概率是=.故答案为:.(2)列表如下:﹣121﹣3﹣1(﹣1,2)(﹣1,1)(﹣1,﹣3)2(2,﹣1)(2,1)(2,﹣3)1(1,﹣1)(1,2)(1,﹣3)﹣3(﹣3,﹣1)(﹣3,2)(﹣3,1)由表格可知,共有12种等可能的结果.其中点M在第二象限的结果有:(﹣1,2),(﹣1,1),(﹣3,2),(﹣3,1),共4种,∴点M在第二象限的概率为=.23.(8分)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.解答:(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.24.(8分)问题背景:新能汽车多数采用电能作为动力来,不需要燃烧汽油,这样就减少了二氧化碳等气体的排放,从而达到保护环境的目的.实验操作:为了解汽车电池需要多久能充满,以及充满电量状态下电动汽车的最大行驶里程,某综合实践小组设计两组实验.实验一:探究电池充电状态下电动汽车仪表盘增加的电量y(%)与时间t(分钟)的关系,数据记录如表1:电池充电状态时间t(分钟)0103060增加的电量y(%)0103060实验二:探究充满电量状态下电动汽车行驶过程中仪表盘显示电量e(%)与行驶里程s(千米)的关系,数据记录如表2:汽车行驶过程已行驶里程s(千米)0160200280显示电量e(%)100605030建立模型:(1)观察表1、表2发现都是一次函数模型,请结合表1、表2的数据,求出y关于t的函数表达式及e 关于s的函数表达式;解决问题:(2)某电动汽车在充满电量的状态下出发,前往距离出发点460千米处的目的地,若电动汽车行驶240千米后,在途中的服务区充电,一次性充电若干时间后继续行驶,且到达目的地后电动汽车仪表盘显示电量为20%,则电动汽车在服务区充电多长时间?解答:解:(1)根据题意,两个函数均为一次函数,设y=a1t+b1,e=a2s+b2,将(10,10),(30,30)代入y=a1t+b1得,解得,∴函数解析式为:y=t,将(160,60),(200,50)代入e=a2s+b2得,解得,∴函数解析式为:e=﹣+100.(2)由题意得,先在满电的情况下行走了w1=240km,当s1=240时,e1=﹣s1+100=﹣=40,∴未充电前电量显示为40%,假设充电充了t分钟,应增加电量:e2=y2=t,出发是电量为e3=e1+e2=40+t,走完剩余路程w2=460﹣240=220km,w2应耗电量为:e4=﹣w2+100=﹣=45,满电状态下剩余电量45%,据此可得:应耗电量100%﹣45%=55%,20=e3﹣e4=40+t﹣55,解得t=35,答:电动汽车在服务区充电35分钟.25.(8分)如图,在平面直角坐标系中,反比例函数,k>0)的图象经过点A(1,2),B (m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求反比例函数的表达式;(2)当△ABC的面积为4时,求B点坐标.解答:解:(1)把点A(1,2)代入反比例函数得,=2,∴k=2,∴反比例函数解析式为:;(2)把点B(m,n)代入反比例函数得,=n,∴B(m,),∴C(0,),BC=,∵S△ABC=),∴m=5,∴B的坐标为(5,).26.(10分)问题发现:如图1所示,将△ABC绕点A逆时针旋转90°得△ADE,连接CE、DB,根据条件填空:①∠ACE的度数为 45 °;②若CE=2,则CA的值为 ;类比探究:如图2所示,在正方形ABCD中,点E在边BC上,点F在边CD上,且满足∠EAF=45°,BE=1,DF=2,求正方形ABCD的边长;拓展延伸:如图3所示,在四边形ABCD中,CD=CB,∠BAD+∠BCD=90°,AC、BD为对角线,且满足AC=CD,若AD=3,AB=4,请直接写出BD的值.解答:问题发现:解:①将△ABC绕点A逆时针旋转90°得△ADE,∴∠DAB=∠CAE=90°,CA=EA,∴∠ACE=45°,故答案为:45;②∵△CAE是等腰直角三角形,∠ACE=45°,∴AC=CE•cos45°=2×=,故答案为:;类比探究:解:将△ABE绕A逆时针旋转90°得△ADG,如图所示:∵△ABE绕A逆时针旋转90°得△ADG,∴∠BAE=∠DAG,AE=AG,BE=DG=1,∠ABE=∠ADG=90°,∵∠ADC+∠ADG=180°,∴G、D、C共线,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAG+∠DAF=45°=∠EAF,即∠FAG=∠EAF,在△GAF与△EAF中,,∴△GAF≌△EAF(SAS),∴EF=GF,∵GF=GD+DF=1+2=3,∴EF=3,设正方形ABCD边长为x,则CE=x﹣1,CF=x﹣2,在Rt△CEF中,CE2+CF2=EF2,∴(x﹣1)2+(x﹣2)2=32,解得:x=或x=(舍去),∴正方形ABCD的边长为;拓展延伸:解:将△ADC绕C逆时针旋转至△CBE,连接AE,如图所示:∴AD=BE,CA=CE,∠ACD=∠ECB,∠ADC=∠EBC,∵CD=CB,∴∠BCD=∠ACE,,∴△DCB∽△ACE,∴,∵∠BAD+∠BCD=90°,∴∠ABC+∠ADC=270°,∵∠ADC=∠EBC,∴∠ABC+∠EBC=270°,∴∠ABE=90°,∴AE=,∴BD=.27.(10分)在一个三角形中,如果三个内角的度数之比为连续的正整数,那么我们把这个三角形叫做和谐三角形.(1)概念理解:若△ABC为和谐三角形,且∠A<∠B<∠C,则∠A= 30 °,∠B= 60 °,∠C= 90 °.(任意写一种即可)(2)问题探究:如果在和谐三角形ABC中,∠A<∠B<∠C,那么∠B的度数是否会随着三个内角比值的改变而改变?若∠B的度数改变,写出∠B的变化范围;若∠B的度数不变,写出∠B的度数,并说明理由.(3)拓展延伸:如图,△ABC内接于⊙O,∠BAC为锐角,BD为圆的直径,∠OBC=30°.过点A作AE ⊥BD,交直径BD于点E,交BC于点F,若AF将△ABC分成的两部分的面积之比为1:2,则△ABC一定为和谐三角形吗?”请说明理由.解答:解:(1)由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.可设n=2,由∠A:∠B:∠C=1:2:3,∴.故答案为:30;60;90.(2)∠B的度数不变.由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.∴∠B的度数不变,且∠B=60°.(3)△ABC一定为和谐三角形.理由如下:分两种情况讨论:①当S△ACF=2S△ABF时,如图1,连结OA,OC,过点O作OG⊥BC于点G.由OA=OB=OC=r,∠OBC=30°,可得∠OCB=30°,∠BOC=180°﹣30°﹣30°=120°.∴.∴.∵,∴.又∵S△ACF=2S△ABF,∴CF=2BF.∴.∵AF⊥BD,∠OBC=30°,∴∠AFB=60°=∠BAC.又∵∠ABF=∠CBA,∴△ABF∽△CBA.∴AB2=BF•BC.∴.∴解得:AB=r.∴△AOB为等边三角形.∵,∴.∴∠ABC=90°.∵30°:60°:90°=1:2:3,∴△ABC为和谐三角形.②当S△ABF=2S△ACF时,如图2,连结OA,OC,过点O作OG⊥BC于点G.同理可得OA=OB=OC=r,∠BAC=60°,,△ABF∽△CBA,∴AB2=BF•BC.∴.∴△AOB为等腰直角三角形.∴.∴∠ABC=75°.∵45°:60°:75°=3:4:5,∴△ABC为和谐三角形.综上所述,△ABC一定为和谐三角形.28.(10分)已知,抛物线y=x2﹣(2m+2)x+m2+2m与x轴交于A,B两点(A在B的左侧).(1)当m=0时,求点A,B坐标;(2)若直线y=﹣x+b经过点A,且与抛物线交于另一点C,连接AC,BC,试判断△ABC的面积是否发生变化?若不变,请求出△ABC的面积;若发生变化,请说明理由;(3)当5﹣2m≤x≤2m﹣1时,若抛物线在该范围内的最高点为M,最低点为N,直线MN与x轴交于点D,且,求此时抛物线的解析式.解答:解:(1)当m=0时,y=x2﹣2x,当y=0时,有x2﹣2x=0,解得x1=0,x2=2,∵A在B的左侧,∴点A坐标为(0,0),点B坐标为(2,0).(2)△ABC的面积不变.对于抛物线y=x2﹣(2m+2)x+m2+2m,当y=0时,有x2﹣(2m+2)x+m2+2m=0,解得:x1=m,x2=m+2.∵A在B的左侧,∴点A坐标为(m,0),点B坐标为(m+2,0),∴AB=2,∵直线y=﹣x+b经过点A(m,0),∴0=﹣m+b,∴b=m,∴y=﹣x+m,联立解得x1=m,x2=m+1,∵点C在y=﹣x+m上,当x2=m+1时,y C=﹣1,∴C点坐标为(m+1,﹣1).∴S△ABC=,∴△ABC的面积不发生变化,S△ABC=1.(3)∵5﹣2m≤x≤2m﹣1,∴5﹣2m<2m﹣1,∴m>.由题可知对称轴为x=m+1,则对称轴x=m+1,∵,即范围5﹣2m≤x≤2m﹣1的中点为x=2,∴,即抛物线的对称轴在直线x=2的右侧.①若2m﹣1≤m+1,m≤2,即<m≤2时,∵抛物线开口向上,当5﹣2m≤x≤2m﹣1时,y随x的增大而减小,如图,当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),当x=2m﹣1时,取最低点N(2m﹣1,m2﹣4m+3),分别过点M,N作x轴的垂线交于点H,G,则△MDH∽△NDG,∴,即,∴,解得m=1(舍)或m=2,∴当m=2时,抛物线的解析式为y=x2﹣6x+8.②若2<m+1<2m﹣1,即m>2,∴最低点在顶点处取得,∴N(m+1,﹣1),当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),由,得9m2﹣24m+15=3,解得,∵m>2,∴m1与m2不符合题意,舍去,综上所述,抛物线的解析式为y=x2﹣6x+8.。
2023年江苏省常州市中考数学模拟考试试卷附解析

2023年江苏省常州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小敏在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,若命中篮筐中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5 mD .4.6 m2.抛物线223y x x =-++的顶点在( )A . 第一象限B .第二象限 C. 第三象限 D . 第四象限 3.如图,在⊙O 中,直径CD=5,CD ⊥AB 于E ,OE= 0.7,则AB 的长是( ) A .2.4B .4.8C .1.2D .2.5 4.两个圆的圆心都是O ,半径分别为 r 1和 r 2,且 r 1<OA<r 2,那么点A 在( )A .半径为r 1的圆内B .半径为r 2 的圆外C .半径为r 1的圆外,半径为r 2的圆内D .半径为r 1的圆内,半径为r 2的圆外5.抛物线y =(x -1)2+2的对称轴是( )A .直线x =-1B .直线x =1C .直线x =-2D .直线x =2 6.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 7.下列图形中.成轴对称图形的是 ( )8.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:29.用四舍五入法对60340取近似数,保留两个有效数字,结果为( )A .6.03×104B .6.0×104C .6×104D .6.0×10310.某单位第一季度账面结余-1. 3 万元,第二季度每月收支情况为(收入为正):+4. 1 万 元,+3. 5 万元,-2. 4 万元,则至第二季度末账面结余为( )A .-0.3 万元B . 3.9 万元C .4.6 万元D .5.7 万元二、填空题11.一个凸多边形的内角和与外角和相等,它是 边形 . 12.定理“在一个三角形中,等角对等边”,它的逆定理是 .13.当2a =-时,2(1)a a +-= .14.请举出一个主视图和俯视图相同,但是左视图不同的几何体: .15.如图 ,直线a ∥b ,则∠ACB = .16.当x=2时,代数式ax 3+bx+1的值为6;那么当x=-2时,这个代数式的值是_____.17.一个汽车牌照在镜子中的像为,则该汽牌照号码为 .18.填空:(1)若1041n a a a ÷=,,则n= ; (2)若104n a a a ÷=,则n= ;(3)若1232n =,则n= ; (4)若0.000520 5.2010n =⨯,则n= .19.若223P a ab b =++,223Q a ab b =-+,则代数式[2()]P Q P P Q -----= .20.已知x 2+4x -2=0,那么3x 2+12x +2000的值为 .21.一个两位数,个位上的数字为a ,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题22.小明为了测量某一高楼 MN 的高,在离 N 点 200 m 的 A 处水平放置了一个平面镜,小明沿 NA 方向后退到点C 正好从镑中看到楼的顶点M ,若 AC=l5m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1 m).23.某市的A 县和B 县春季育苗,分别急需化肥90 t 和60 t ,该市的C 县和D 县分别储化肥l00 t 和50 t ,全部调配给A 县和B 县,已知C 、D 两县化肥到A 、B 两县的运费(元/吨)如下表所示:(1)设C 县运到A 县的化肥为x(t),求总运费W(元)与x(t)的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.24.已知分式:221A x =-,1111B x x=++-.()1x ≠±.下面三个结论:①A ,B 相等,②A ,B 互为相反数,③A ,B 互为倒数,请问哪个正确?为什么?25.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.26.某市汽车站A到火车站F有四条不同的路线.如图所示,其中最短的路线是什么?(用字母表示)?27.某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.28.如图是武汉市目前水资源结构的扇形统计图,请根据图形回答下列问题:(1)图中各个扇形分别代表了什么?你知道地下水所占的百分比是多少吗?(2)从统计图中你能确定武汉市的供水资源主要来自哪里?29.有一种“24 点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J、Q、K 分别表示11、12、13,A表示 1). 小明、小聪两人抽到的 4 张牌如图所示,这两组牌都能算出“24 点”吗?为什么?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?30.学校现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新建校舍的面积是拆除时校舍面积的3倍还多1000平方米.这样,计划完成的校舍总面积比现有校舍面积增加20%.已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,问完成计划需费用多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.C5.B6.A7.D8.A9.B10.B二、填空题四12.在一个三角形中,等边对等角13.114.答案不唯一,如横放的圆柱15.78°16.-417.SM1796318.(1)14;(2)14;(3)-5;(4)-419.12ab20.200621.1120a+三、解答题22.∴BC⊥CA,MN⊥AN,∴∠C=∠N,∵∠BAC=∠MAN..∴△BCA∽△MNA.∴BC ACMN AN=,即1.615200MN=, 1.620015213()MN m=⨯÷≈⋅.23.(1)W=10x+4800(40≤x≤90);(2)C县运到A县40 t,运到B县60 t;D县运到A县50 t 24.解:A B,互为相反数正确.因为:1111Bx x=-+-11(1)(1)(1)(1)x xx x x x-+=-+-+-(1)(1)(1)(1)x xx x--+=+-221Ax-==--.25.(2)26.从A经过线段BE到F27.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”28.(1)长江水,地下水,水库水,湖泊水;7% (2)长江水29.(1)小明抽到的牌可以这样算:①(3-2+5)×4=24,②(3+4+5)×2 = 24 ,③ 52 - 4 + 3 = 24 , ④5+3+42 =24 ,允许包含乘方运算时可列式为 5+3+24 =24 (2)小聪抽到的牌可以这样算:①(11 + 10)+(5-2) =24 ,②11×10÷5+2 = 24 ,③11×2+10÷5=24,④lO÷5×11+2=24,允许包含乘方运算时可列式为 52-11+10 =2430.3970000元。
最新江苏省常州市中考数学摸底测试试卷附解析

江苏省常州市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对2.用长度一定的绳子围成一个矩形,如果矩形的一边长 x (m )与面积 y (m 2)满足函数2(12)144y x =--+,当边长 x 1,、x 2、x 3满足123<12x x x <<时,其对应的面积yl 、y2、y 3 的大小关系是( )A .123y y y <<B .123y y y >>C .213y y y >>D .132y y y <<3.下列各式中不是二次根式的是( )A .12+xB .4-C .0D .()2b a -4. ) A . a ,b 均为非负数 B .0a ≥且0b > C .0a b > D .0a b≥ 5.已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a. 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A . (-1,B . (-1C -1)D .(-1) 6.已知点P 关于x 轴的对称点为(a ,-2),关于y 轴的对称点为(1,b ),那么点P 的坐标为( )A .(a ,-b )B .(b ,-a )C .(-2,1)D .(-1,2) 7.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为( )A .38B .39C . 40D .418.如图所示,将一张正方形纸片沿图①中虚线剪开后,能拼成图②中的四个图形,则其中轴对称图形的个数是( )A.1个B.2个C.3个D.4个9.如图,沿着图中的线从A走到B,至少要经过的角的个数是()A.2个B.3个C.4个D.5个10.用科学记数法表示430000是()A.43×104B. 4.3×l05 C.4.3×104 D.4.3×106二、填空题11.Rt△ABC的斜边AB=6厘米,直角边AC=3厘米,以C为圆心,2厘米为半径的圆和AB的位置关系是;4厘米为半径的圆和AB的位置关系是;若和AB相切,那么半径长为.12.如图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则∠ACP度数是.13.某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC= cm.14.在直角三角形中,两个锐角的差为20°,则两个锐角的度数分别为.15.定理“对角线互相平分的四边形是平行四边形”的逆定理是:.16.若x)322(成立,则x的取值范围为.)(-3⋅xx-x--=17.在直角坐标系内.点 P(-2,26)到原点的距离为.18.如果一个数的平方根是28-,那么这个数是,其中算术平方根是.a-和1a19.如图,如果 AB∥CD,∠1 = 57°,那么∠AEC= .20.已知∠A=40°,则∠A 的余角是 .三、解答题21.为了利用太阳光线或其他方法测量一棵大树的高度,准备了如下测量工具:•①镜子;②皮尺;③长为2m的标杆;④高为1.5m的测角仪,请你根据你所设计的测量方案,回答下列问题:(1)在你的设计方案中,选用的测量工具是(用工具序号填写)_______________.(2)在图中画出你的方案示意图.(3)你需要测量示意图中哪些数据,并用a 、b 、c 表示测得的数据__________.(4)写出求树高的算式,AB=___________m .22.若两圆的圆心距d 满足等式|4|3d -=,且两圆的半径是方程的27120x x -+=两个根,判断这两个圆的位置关系,并说明理由。
最新江苏省常州市中考数学全优模拟试卷附解析

江苏省常州市中考数学全优模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,用半径R=3cm ,r=2cm 的钢球测量口小内大的内孔的直径D .测得钢球顶点与孔口平面的距离分别为a=4cm ,b=2cm ,则内孔直径D 的大小为( )A .9cmB .8cmC .7cmD .6cm 2. 已知二次函数122++=bx x y (-4≤b ≤4),当b 从-4逐渐变化到4的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动 3.下列各条件不能确定圆的是( )A .已知直径B .已知半径和圆心C .已知两点D .已知不在一条直线上的三点4.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 5.抛物线221y x x =--+的顶点在( )A . 第一象限B .第二象限C .第三象限D .第四象限6.某电视机厂计划用两年的时间把某种型号的电视机成本降低36%,若每年下降的百分比相同,则这个百分比为( )A .16%B .18%C .20%D .22%7.若梯形的面积为28cm ,高为2cm ,则此梯形的中位线长是( ) A .2cm B .4cm C .6cmD .8cm 8.如图,在等腰梯形ABCD 中,5AB DC AD BC ==∥,,713DC AB ==,,点P 从点A 出发,以3个单位/s 的速度沿AD DC →向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s 9.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数是( )A . 50°B .30°C .20°D .15°10.为了解我市七年级20000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是( )A .20000名学生是总体B .每个学生是个体C .500名学生是抽取的一个样本D .每个学生的身高是个体11.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )A .等腰三角形顶角的平分线所在的直线是它的对称轴B . 等腰三角形底边上的中线所在的直线是它的对称轴C . 等腰三角形底边上的高线所在的直线是它的对称轴D .以上都对二、填空题12.如图,⊙O 1与⊙O 2交于点 A .B 且 AO 1、AO 2分别是两圆的切线,A 是切点,若⊙O 1的半径r 1 =3 cm ,⊙O 2的半径r 2 =4 cm ,则弦 AB = ㎝.13.己在同一直角坐标系中,函数11(0)y k x k =≠的图象与22(0)k y k x=≠的图象没有公共点,则12k k .(填“>”、“=”或“<”)14.如图,在△ABC 中,∠A=90°,BE 平分∠ABC ,DE ⊥BC ,垂足为 D ,若DE= 3cm ,则AE=cm.15.箱子中有6个红球和4个白球,它们除颜色外都相同,摇匀后,若随意摸出一球,摸到红球的概率是________.16.∠α的补角为125°,∠β的余角为37°,则∠α、∠β的大小关系为∠α ∠β(填“>”、“<”或“=”).17.在甲处工作的有272人,在乙处工作的有196人,如要使乙处工作的人数是甲处工作的人数的13,应从乙处调多少人到甲处? 设应从乙处调x 人到甲处,则可列方程为 .18.绝对值大于23小于83的整数有.三、解答题19.画出如图所示的物体的三视图.20.如图,已知有一腰长为 2 cm 的等腰直角△ABC 余料,现从中要截下一个半圆,半圆的直径要在三角形的一边上,且与另两边相切. 请设计两种栽截方案,画出示意图,并计算出半圆的半径.21.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?为什么?22.如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC•的中点,EF与BD 相交于点M. (1)求证:△EDM∽△FBM;(2)若DB=9,求BM.23.观察图,图①是面积为 1 的等边三角形,连结它的各边中点,挖去中间的三角形得 到如图②所示,再分别连结剩下的三角形各边中点,挖去中间的三角形得到如图③所示,继续用同样方法将得到图④,图⑤,图⑥…图n .(1)图②中空自部分面积为 , 图③中空白部分面积为 ,图④中空白部分面积为 .(2)猜想:图③中空白部分面积为 ;(3)根据以上结论可推知,图n 中空白部分面积为 .24.点 C 是线段 AB 的黄金分割点,且AC>BC .若 AB=2.求:(1)AC 与 BC 的长度的积;(2)AC 与 BC 的长度的比.25.如图,已知点 A .B 和直线l ,求作一圆,使它经过A 、B 两点,且圆心在直线l 上.. . l BB A B26.小桥的桥孔形状是一段开口向下的抛物线,其解析式是212y x =-,其中一4≤x ≤4. (1)画出这段抛物线的图象;(2)利用图象求:①当y=-2时,x 的对应值;②当水面离开抛物线顶点 2 个单位时水面的宽.27.甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x 千米,另一半时间每天维修公路y 千米.乙队维修前1千米公路时,每天维修x 千米;维修后1千米公路时,每天维修y 千米(x ≠y ).⑴求甲、乙两队完成任务需要的时间(用含x 、y 的代数式表示);⑵问甲、乙两队哪队先完成任务?28.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如 果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?29.已知分式2134x x +-,则: (1)当 x 取什么数时,分式无意义?(2)当 x 取什么数时,分式的值是零?(3)当1x =时,分式的值是多少?30.用代数式表示图中阴影部分的面积,并计算 x=10,y=14时的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.B6.C7.B8.B9.C10.D11.D二、填空题12. 24513. < 014.315.53 16. >17.1196(272)3x x -=+18. 1,2,-1,-2三、解答题19.20.如图的两种裁截方案:方案一:作∠CAB 的角平分线交 CB 于点0,以 0 为圆心,以 OC 为半径画半圆. 作OE ⊥AB. 则CO=EO ,由面积可得:AC BC AC CO OE AB ⋅=⋅+⋅,解得222OC =.方案二:作∠ACB 的角平分线交 AB 于点0,作 OD ⊥AC ,以 0为圆心,以 OD 为半径画半圆.作 OE ⊥CB ,则 OD=OE ,由面积可得0AC BC AC OD E CB ⋅=⋅+⋅,解得 OD=1. 21.直线AB 是⊙O 的切线.理由是:连结0C ,∵OA=OB ,CA=CB ,∴0C ⊥AB ,∴AB 是⊙O 的切线. 22.(1)略(2)3.23. (1) 34,916,2764;(2)81256;(3)13()4n - 24.∵点 C 是线段 AB 的黄金分割点,且 AC>BC . ∴51512AC AB -=-,2(51)35BC AB AC =-=--=-. (1)(51)(35)458AC BC ⋅=--=-(2)5115235AC BC -+==-25.画AB 的垂直平分线与直线l 的交点就是圆心,图略.26.(1)如图(2)①当 y=-2 时,2x =±②当水面离开抛物线顶点2 个单位时,水面的宽度为 4个单位.27.(1)甲、乙两队完成任务需要的时间分别为y x +4与xyy x +; (2) y x +4-xyy x +=0)()(2<+--y x xy y x (x ≠y ),∴甲队先完成 28.12 个月29.(1)43x =;(2)12x =-;3x = 30.19()2y y x --;12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省常州市中考数学模拟考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.给出下列四个事件:
(1)打开电视,正在播广告;
(2)任取一个负数,它的相反数是负数;
(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;
(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形.
其中不确定事件是()
A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)
2.已知△ABC如右图,则下列4个三角形中,与△ABC相似的是()
3.为解决药价偏高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设每次降价的百分率为x,该药品的原价是m元,降价后的价格是y元,则可列方程为()
A.y=2m(1-x)B.y=2m(1+x)C.y=m(1-x)2 D.y=m(1+x)2
4.已知点(0,0),(0,一2),(-4,0),(一1,2),(2,-2),(-2,4).其中在x 轴上的点的个数有()
A.0个B.1个C.2个D.3个
5.图 1 是甲、乙、丙三人玩跷枝的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()
A. B.C.D.
6.在数轴上表示不等式2
x≥-的解集,正确的是()
.
A.B.C.D.
7.已知甲、乙两组数据的平均数都是5,甲组数据的方差21
12
S =甲,乙组数据的方差21
10
S =
乙,则( ) A .甲组数据比乙组数据的波动大 B .乙组数据比甲组数据的波动大 C .甲组数据与乙组数据的波动一样大 D .甲、乙两组数据的波动性大小不能比较 8.与如图所示的三视图相对应的几何体是( )
A .
B .
C .
D .
9.某牛奶厂家接到 170万箱牛奶的订购单,预计每天加工完 10万箱,正好能按时完成,后因客户要求提前3天交货,设每天应多加工x 万箱,则可列方程( ) A .170170
31010x +=
+ B .170170
31010x -=+ C .
170170
31010
x -=
+
D .
170170
31010x
+=
+ 10.在a 2□4a □4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是( ) A .1
B .
1
2
C .
13
D .
14
11.汽车上山速度为 a (km/h ),下山的速度为b (km/h ),上山和下山行驶的路程相同,则 汽车的平均速度为( ) A .11a
b
+
B .1
a b
+ C .2ab
a b
+ D .
2
a b +
12.x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为( ) A .yx
B .100y x +
C .10x y +
D .100x y + 13.用长为 20m 的铁丝围成一个长方形方框使长为 6.2m ,宽为 x (m ),则可列方程为( )
A .2 6.220x +⨯=
B . 6.220x +=
C .2 6.220x +=
D .2( 6.2)20x +=
二、填空题
14.在一个有两层的书架中,上层放有语文、数学两本书,下层放有科学、英语、社会 3 本书,由于封面都被同样的纸包起来,无法辨认,现分别从上下层中各抽出一本书,恰好分别是数学和社会的概率是 .
15.数形结合是重要的数学思想.一次数学活动中,小明为了求12 +122 +123 +……+1
2n 的值,
设计了如图2所示的几何图形.请你利用这个几何图形求12 +122 +123 +……+1
2n 的值为
(结果用n 表示).
16.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形的面积为 2cm .
17.如图,在平面直角坐标系中,OA=10,点B 的坐标为(8,0),则点A 的坐标为 .
18.在△ABC 中,与∠A 相邻的外角等于l35°,与∠B 相邻的外角也等于l35°,则△ABC 是 三角形.
19.下图是由一些相同的小正方体构成的几何体的三视图,则这个几何体共有小正方体 个.
20.把梯形面积公式1
()2
S a b h =+变形成已知S ,b ,h 求a 的公式,则a = .
21.在每周一次的县长接待日中,各种问题都有所反映,一个月后对这些问题进行统计,并制成统计图如图. 则在这一个月内接待的300人次中,反映中小学收费问题的有 人次,反映土地审批的有 人次,反映房产质量的比反映停车问题的多 人次.
22.若223P a ab b =++,223Q a ab b =-+,则代数式[2()]P Q P P Q -----= .
23.计算:()()
4
6
22-÷-=___________.
三、解答题
24.如图,在半径为27m 的圆形广场中央点 0的上空安装一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面△SAB 的顶角为 120°,求光源离地面的垂直高度 SO.
25.某市市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至l28元,求这种药品平均每次降价的百分率是多少?
26.设a,b是一个直角三角形两条直角边的长,且2222
+++=,求这个直角三角
a b a b
()(4)21
形的斜边长.
3
27.已知:⊙0的半径为r,点0到直线l的距离为d,且r,d满足方程0
+
-d
-
r,试
)4
22=
(
7
判断⊙0与直线l的位置关系.
28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.
29.如图,四边形ABCD是轴对称图形:
(1)画出它的所有对称轴;
(2)若点P是BC上一点,则点P关于对称轴对称的点在哪条线段上?
30.解下列方程:
(1)3247
x x
-=-;
(2)43(20)57(20)
x x x x
--=--;
(3)
91
1 36
x x+
-=;
(4)
223
1 46
x x
+-
-=.
【参考答案】
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.
B
2.
C
3.
C
4.
C
5.
C
6.
D
7.
B
8.
A
9.
A
10.
B
11.
C
12.
D
13.
D
二、填空题 14. 1
6
15. 1-12
n 16.
36
17.
(8,6)
18.
等腰直角
19.
5
20.
2S bh
h
-21. 30,60,60
22.
12ab 23.
-4
三、解答题 24.
由已知得:SA=SB ,∠ASB= 120°,∴∠A=∠B=30°,
∵SO ⊥AB ,∴tan SO
A OA
=
,∴tan 27SO OA A ===
答:光源离地面的垂直高度为 9m .
25.
20%
26.
.
相离.
28.
略
29.
(1)图略;(2)在线段AB 或CD 上
30.
(1)合并同类项,得5x -=-,解得5x =.
(2)移项、合并并同类项,得4(20)x x -=,解得16x =. (3)去分母,得2916x x --=,解得1x =-. (4)去分母,得3(2)2(23)12x x +--=,解得0x =.。