实验四金属箔式应变片性能一全桥
金属箔式应变片实验

表1-1电桥输出电压与所加负载重量值 重 20 40 60 80 100 120 140 160 180 200 量 (g)
电压 19.6 39.0 58.9 78.8 98.6 118.3 137.8 157.2 176.7 196.5 (mV)
重 20 40 60 80 100 120 140 160 180 200 量 (g)
实验一 金属箔式应变片实验
1、 实验目的
了解金属箔式应变片的应பைடு நூலகம்效应,掌握直流全桥电桥的工作原理及
工作性能,理解电阻式传感器的工作原理与工作特性,加深实际测量系
统设计中桥式电路应用的认识。
二、实验仪器
应变式传感器实验单元、砝码、直流电压表、±15V电源、±4V电 源,传感器调理电路挂件。
三、实验原理
四、实验内容与步骤
1.应变片的安装位置如图1-1所示,应变式传感器已装在传感器实 验箱(一)上,传感器中各应变片已接入模板的左上方的R1、R2、R3、 R4,可用万用表测量R1=R2=R3=R4=350Ω。
图1-1 应变式传感器安装示意图
图1-2 应变式传感器全桥实验接线图 2.把直流稳压电源接入“传感器调理电路”实验挂箱,检查无误 后,开启实验台面板上的直流稳压电源开关,调节Rw3使之大致位于中 间位置(Rw3为10圈电位器),再进行差动放大器调零,方法为:将差 动放大器的正、负输入端与地短接,输出端Uo2接直流电压表,调节实 验模板上调零电位器Rw4,使直流电压表显示为零,关闭直流稳压电源 开关。(注意:当Rw4的位置一旦确定,就不能改变。)
金属的电阻表达式为: (1) 当金属电阻丝受到轴向拉力F作用时,将伸长,横截面积相应减 小,电阻率因晶格变化等因素的影响而改变,故引起电阻值变化。对式 (1)全微分,并用相对变化量来表示,则有: (2) 若径向应变为,电阻丝的纵向伸长和横向收缩的关系用泊松比表示为, 因为=2(),则(2)式可以写成: (3) 式(3)为“应变效应”的表达式。称金属电阻的灵敏系数,从式 (3)可见,受两个因素影响,一个是(1+),它是材料的几何尺寸变 化引起的,另一个是,是材料的电阻率随应变引起的。对于金属材料而 言,以前者为主,则,对半导体,值主要是由电阻率相对变化所决定。 实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比 例。通常金属丝的灵敏系数=2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作 用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形, 其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变 化,根据(3)式,可以得到被测对象的应变值,而根据应力应变关 系: (4) 可以测得应力值σ。通过弹性敏感元件,将位移、力、力矩、加速度、 压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成 各种应变式传感器。
金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验本实验旨在通过测试金属箔式应变片的不同结构(单臂、半桥、全桥)对应变的检测效果进行比较。
实验采用了五个不同力值的负载,并通过相应的电桥电路将应变信号转化成电压信号进行读数。
实验过程中,我们首先制备了三种不同结构的金属箔式应变片。
单臂应变片的结构只有一个箔片悬挂在支架上,一端连接到外接电路中,另一端用隔绝材料与支架接触。
半桥应变片由两个箔片组成,一端紧贴在支架上,另一端则悬挂在外接电路中。
全桥应变片则是由四个箔片组成的,互相垂直组成一个正方形,四个角分别连接外接电路。
制备完成后,我们将三种结构的应变片依次进行了负载实验。
实验结果显示,三种类型的应变片在不同力值下的电压变化情况基本类似,但不同结构之间仍存在着一定差异。
在相同情况下,半桥和全桥应变片的电压输出量均高于单臂应变片。
当负载力值增大时,差别也更加明显。
数据分析后,我们认为这是由于半桥和全桥结构的电桥电路更为复杂,能够更好地抵消环境中的噪声影响,从而提高了测量精度。
在实验中,我们还发现了一个问题,即金属箔式应变片在不同应变方向下的电性能并不相同。
我们在测试中对金属箔的垂直方向和水平方向分别进行了测试,结果表明,垂直方向的应变片输出电压更稳定、更大。
我们分析认为,这是因为垂直方向对应的应变载荷更加均衡,能够更好地发挥应变片本身的性能。
总的来说,本实验通过比较不同结构的金属箔式应变片,揭示了应变载荷和电桥电路复杂性对应变检测的影响。
这有助于我们在实际测量和应用中更好地选择和使用相应的结构来满足不同的检测需求,提高测量精度和可靠性。
金属箔式应变片:单臂、半桥、全桥比较(自检实验一)

实验报告实验项目名称:金属箔式应变片:单臂、半桥、全桥比较同组人试验时间年月日,星期,节实验室K2,508传感器实验室指导教师一、实验目的1、了解金属箔式应变片,单臂、半桥、全桥的工作原理和工作情况。
2、验证单臂、半桥、全桥的性能及相互之间的关系。
二、实验原理电阻丝在外来作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为:式中为电阻丝电阻相对变化,K为应变灵敏系数,为电阻丝长度相对变化。
同时,由于应变片敏感栅丝的温度系数的影响,以及应变栅线膨胀系数与被测试件的线膨胀系数不一致,产生附加应变时,在被测体受力状态不变时,由于温度影响,输出会有变化。
金属箔式应变片是用光刻、腐蚀等工艺制成的一种很薄的金属箔栅,箔栅厚一般在0.003-0.01mm之间,箔材表面积大,散热条件好。
金属箔式应变的电阻变化范围很小,用欧姆表测量其阻值的变化十分困难,所以我们一般会用电桥来测试金属箔式应变的变化,将电阻的变化量转换成电压的变化量。
图6.1 应变电桥电路由于电压源电桥的测试精度受电源电压波动影响,测量灵敏度也随之变化,所以本实验是有恒流源供电:,(2-1)图6.1(a)为单臂电桥电路,R1为应变片电阻,R2、R3、R4为固定电阻,,代入式(2-1)。
图6.1(b)为半桥电桥电路,R1、R2为应变片电阻,R3、R4为固定电阻,,代入式(2-1)。
图6.1(c)为全桥电桥电路,R1、R2、R3、R4为应变片电阻,,,代入式(2-1)。
三、所需单元及部件STIM-01模块、STIM-05模块;±15V电源、万用表;电子连线若干四、实验步骤一、单臂电桥性能实验1、按图6.2连接好各模块,接上模块电源。
2、称重盘上不放任何东西,使STIM-01模块差动放大器上的增益调节到最大,调节STIM-05模块上的电位调节旋钮,使STIM-01模块差分放大输出OUT1接近于0V(用万用表测得)。
传感器金属箔式应变片全桥性能实验

实验四金属箔式应变片——全桥性能实验
一、实验目的
掌握全桥测量电路的原理及优点。
二、实验原理
全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KE 。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、实验设备
THVZ-1型传感器实验箱中应变式传感器实验单元、砝码、万用表、信号调理挂箱、应变式传感器调理模块。
四、实验内容与步骤
根据4-1接线,实验方法与实验二相同。
将实验结果填入表;进行灵敏度和非线性误差计算。
图4-1 应变式传感器全桥实验接线图
五、实验注意事项
1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2.电桥的电压为±5V,绝不可错接成±15V。
金属箔式应变片交流全桥实验报告doc

金属箔式应变片交流全桥实验报告篇一:自动化传感器实验报告三__金属箔式应变片——全桥性能实验实验三项目名称:金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的原理及优点。
二、基本原理全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KE?。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、需用器件和单元传感器实验箱(一)中应变式传感器实验单元,传感器调理电路挂件、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。
四、实验内容与步骤1.根据图3-1接线,实验方法与实验二相同。
将实验结果填入表3-1;进行灵敏度和非线性误差计算。
图3-1 应变式传感器全桥实验接线图五、实验注意事项1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2.电桥的电压为±5V,绝不可错接成±15V。
一、实验目的了解全桥测量电路的原理及优点。
二、基本原理全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=1KE?。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、需用器件和单元传感器实验箱(一)中应变式传感器实验单元,传感器调理电路挂件、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。
四、实验内容与步骤1.根据图3-1接线,实验方法与实验二相同。
将实验结果填入表3-1;进行灵敏度和非线性误差计算。
表3-1全桥输出电压与加负载重量值图3-1 应变式传感器全桥实验接线图2五、实验注意事项1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2.电桥的电压为±5V,绝不可错接成±15V。
传感器实验

实验一 (1)金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压U O14/εEK =。
三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。
四、实验步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。
传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。
加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。
2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源。
图1-1 应变式传感器安装示意图3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。
检查接线无误后,合上主控箱电源开关。
调节Rw 1,使数显表显示为零。
金属箔式应变片传感器性能研究实验报告

南昌大学物理实验报告课程名称:普通物理实验(3)实验名称:金属箔式应变片传感器性能研究学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1.了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。
2.比较全桥、、半桥与单臂电桥的不同性能、了解其特点。
3.了解全桥测量电路的优点及其在工程测试中的实际应用。
二、实验仪器:应变传感器实验模块、托盘、砝码、、数显电压表、±15V和±4V电源三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化。
1、单臂电桥实验如图1-1所示,R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥。
其输出电压()1211o R nU E R n ∆≈∙∙+ E 为电桥电源电压,R 为固定电阻值,上式表明单臂电桥输出为非线性,存在着非线性误差2、半桥差动电路如图1-2,不同受力方向的两只应变片接入电桥作为邻边。
图1-2电桥输出灵敏度提高,非线性得到改善,当两只应变片的阻值相同、应变数也相同时,半桥的输出电压为E 为电桥电源电压,上式表明,差动半桥输出与应变片阻值变化率呈线性关系。
3、全桥测量电路如图1-3,受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,当应变片初始值相等,变化量也相等时,其桥路输出:11o R U E R ∆=E 为电桥电源电压,上式表明,全桥输出灵敏度比半桥又提高了一倍。
四、 实验内容:1、单桥性能测试(1)变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用多用表测量判别,R1=R2=R3=R4=350Ω.(2)从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接,输出端U02接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V,Rw4的位置确定后不能改动。
《传感器原理及应用》实验报告

《传感器原理及实验》实验报告2011~2012学年第1学期专业测控技术及仪器班级姓名学号指导教师王慧锋电子与信息实验教学中心2011年9月实验一金属箔式应变片――单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理本实验说明箔式应变片及单臂直流电桥的原理和工作情况。
应变片是最常用的测力传感元。
电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态的变化。
电桥电路是最常用的非电量测量电路中的一种,当电桥平衡时,电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力情况。
单臂电桥输出电压U o1= EKε/4。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。
一直到做完实验三为止)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 金属箔式应变片性能——全桥四臂实验
一、实验目的:
了解金属箔式应变片,半桥单、双臂测量电路的工作原理和工作情形。
二、实验原理:
本实验说明箔式应变片及半桥单、双臂直流电桥的原理和工作情形。
电阻应变片是最经常使用的测力传感元件。
当用应变片测试时,应变片要牢固地粘贴在力灵敏物体(测件)表面,当测件受力发生形变(即为应变),应变片的灵敏栅随同变形,其电阻也随之发生相应的转变,通过测量电路,转换成电信号输出显示。
电桥电路是最经常使用的非电量电测电路中的一种,当电桥平稳时,桥路对臂电阻乘积
相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对转变率别离为1
1R R ∆、22R R ∆、3
3R R ∆、44R R ∆,当利用一个应变片时, R R R ∆=∑ ;当二个应变片组成差动状态工作,那么有R
R R ∆=∑2
;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,R R R ∆=∑4。
由此可知,单臂、半桥、全桥电路的灵敏度依次增大。
三、所需单元及部件:
直流稳压电源、电桥、差动放大器、双平行梁、四片应变片、F/V 表、主、副电源。
四、旋钮初始位置:
直流稳压电源打到±2V 档,F/V 表打到2V 档,差动放大增益最大。
五、实验步骤:
(1)、了解所需单元、部件在实验仪上的所在位置,观看梁上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下二片梁的外表各贴二片受力应变片。
(2)、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F/V 表的输入插口V i 相连;开启主电源;调剂差动放大器的增益到最大位置(顺时针将差动放大器的增益旋钮调整到最大),然后调整差动放大器的调零旋钮,直至使F/V 表显示为零。
关闭主电源,并将差动放大器的正(+)、负(-)极短接线全数撤去。
(3)、电桥的调零:依照如图1接线。
R 1、R 2、R 3、R 4为应变片。
将稳压电源的切换开关置±4V 档,F/V 表置2v 档。
开启主电源,调剂电桥平稳网络中的R W1,使F/V 表显示为零,等待数分钟后将F/V 表置2V 档,再调电桥R W1(慢慢地调),使F/V 表显示为零。
(4)、在传感器上放上一只砝码,记下现在的电压数值,然后每增加一只砝码记下一个娄值并将这些数值填入下表。
依照所得结果计算系统灵敏度S=V/W ,并作出V-W 关系曲线, V 为电压转变率, W 为相应的重量转变率。
重量()
电压()g m V
(5)、电桥的调零:依照如图2接线。
R 1、R 2、R 3、R 4为应变片。
将稳压电源的切换开关置±4V 档,F/V 表置2v 档。
开启主电源,调剂电桥平稳网络中的R W1,使F/V 表显示为零,等待数分钟后将F/V 表置2V 档,再调电桥R W1(慢慢地调),使F/V 表显示为零。
(6)、在传感器上放上一只砝码,记下现在的电压数值,然后每增加一只砝码记下一个娄值并将这些数值填入下表。
依照所得结果计算系统灵敏度S=V/W ,并作出V-W 关系曲线, V 为电压转变率, W 为相应的重量转变率。
重量()
电压()g m V
图3
(7)、电桥的调零:依照如图3接线。
R 1、R 2、R 3、R 4为应变片。
将稳压电源的切换开关置±4V 档,F/V 表置2v 档。
开启主电源,调剂电桥平稳网络中的R W1,使F/V 表显示为零,等待数分钟后将F/V 表置2V 档,再调电桥R W1(慢慢地调),使F/V 表显示为零。
(8)、在传感器上放上一只砝码,记下现在的电压数值,然后每增加一只砝码记下一个娄值并将这些数值填入下表。
依照所得结果计算系统灵敏度S=V/W ,并作出V-W 关系曲线, V 为电压转变率, W 为相应的重量转变率。
重量()
电压()g m V
图4
(9)、电桥的调零:依照如图4接线。
R 1、R 2、R 3、R 4为应变片。
将稳压电源的切换开关置±4V 档,F/V 表置2v 档。
开启主电源,调剂电桥平稳网络中的R W1,使F/V 表显示为零,等待数分钟后将F/V 表置2V 档,再调电桥R W1(慢慢地调),使F/V 表显示为零。
(10)、在传感器上放上一只砝码,记下现在的电压数值,然后每增加一只砝码记下一个娄值并将这些数值填入下表。
依照所得结果计算系统灵敏度S=V/W ,并作出V-W 关系曲线, V 为电压转变率, W 为相应的重量转变率。
重量()
电压()g m V
六、注意事项:
(1)、电桥上端虚线所示的四个电阻事实上并非存在,仅作为一标记,让学生组桥容易。
(2)、为确保实验进程中输出指示不溢出,可先将砝码加至最大重量,如指示溢出,适当减小差动放大增益,现在差动放大器没必要重调零。
(3)、做此实验时应将低频振荡器的幅度关至最小,以减小其对直流电桥的阻碍。
七、试探题:
(1)、本实验全桥测量进程中,电阻应变片R x1、 R x2、R x3、 R x4连接法有无要求?如有,请说明。
(2)、通过比较,能够看出半桥单臂、双臂和全桥四臂在实际测量中有何区别?
(3)、在半桥和全桥测量中,显现输出电压为负的情形,试分析缘故。
若是要使得现在输出电压为正,电路应如何调整?。