《分式与分式方程》回顾与思考(一)

合集下载

苏科版数学八年级下册第10章《分式小结与思考》教学设计1

苏科版数学八年级下册第10章《分式小结与思考》教学设计1

苏科版数学八年级下册第10章《分式小结与思考》教学设计1一. 教材分析《苏科版数学八年级下册》第10章《分式小结与思考》主要内容包括分式的概念、分式的运算、分式的性质和分式的应用。

本章内容是八年级数学的重要内容,也是初中的难点之一。

通过本章的学习,使学生掌握分式的基本概念和运算法则,提高学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经学习了实数、代数式、方程等知识,具备了一定的数学基础。

但分式的概念和运算对学生来说较为抽象,需要通过实例和练习来加深理解。

同时,学生需要掌握分式运算的技巧和方法,提高解题速度和准确率。

三. 教学目标1.理解分式的概念,掌握分式的基本性质和运算法则。

2.能够运用分式解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.分式的概念和性质。

2.分式的运算方法和技巧。

3.分式在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究分式的概念和性质。

2.使用案例教学法,通过实例讲解分式的运算方法和技巧。

3.运用小组合作法,让学生在团队合作中解决实际问题。

六. 教学准备1.准备相关的教学案例和实例,用于讲解和练习。

2.准备分式的运算练习题,用于巩固和拓展。

3.准备投影仪和教学课件,用于展示和讲解。

七. 教学过程1.导入(5分钟)利用实例引入分式的概念,如面积的计算、比例问题等,引导学生思考分式的实际意义。

2.呈现(15分钟)讲解分式的概念和性质,如分式的定义、分式的基本性质等,并通过实例进行解释和展示。

3.操练(20分钟)进行分式的运算练习,如分式的加减乘除等,引导学生掌握分式的运算方法和技巧。

4.巩固(10分钟)让学生自主完成一些分式的运算题目,巩固所学知识,并找出存在的问题。

5.拓展(15分钟)利用分式解决实际问题,如工程问题、经济问题等,让学生运用所学知识解决实际问题。

6.小结(5分钟)对本节课的内容进行总结,强调分式的概念和性质,分式的运算方法和技巧,以及分式在实际问题中的应用。

《分式方程》(第1课时)——教学反思

《分式方程》(第1课时)——教学反思

《分式方程》(第1课时)教学反思一、基本情况本节课总体设计思路是→激发兴趣、主动探究→问题引导、落实目标→练习巩固、能力提升。

总体上能按计划开展教学活动,教学环节齐全,师生互动积极有效。

教师组织课堂有序,学生积极参与。

教学任务基本完成。

分式方式是在整式方程学习的基础上来展开,通过设计一个行船问题,而导入新课。

引导学生复习旧知识,发现新问题,交流合作解决新问题。

根据一元一次方程的解法步骤列出分式方程。

通过罗列八个方程,辨别分式方程和整式方程的区别。

两次小组活动从浅入深,让学生发现解分式方程的步骤,通过小结与归纳,引导学生理解“增根”的含义,以及检验的必要性。

分式方程的解法步骤通过课件动画的形式展示,加深学生印象。

二、存在不足及整改措施1.课时安排欠妥。

教学设计中教师要根据目的要求,内容多少,重点难点,学生的条件,以及教学设备等合理地分配教学时间。

2.讲授方式不灵活。

要注意节省时间,特别是在讲授新知识时,要抓住重点,不能企图一下讲深讲透。

要安排一定的练习时间。

通过练习的反馈,再采取必要的讲解或补充练习。

3.学生练习巩固不够。

关于检验是否为增根这个问题,练的少,讲的多,时间安排前松后紧,有一点拖堂。

要注意尽量安排全班学生的活动,如操作、练习巩固,解应用题等,避免由少数人代替全班学生的思维活动,使大多数学生成为旁观者。

4.过于关注学习困难学生。

每个学生是独特的,学生之间也存在巨大的差异。

课堂教学效率是整体教学效益的平衡结果,每一节课都不可能实现每一个教学目标人人都过关,不能因为个别同学目标未达成而牺牲整体的时间。

三、有效教学设想在本课的教学过程中,我认为应从帮助学生学习,交给学生学习方法入手:1. 分辨。

分清楚分式方程必须满足的两个条件⑴方程式里必须有分式;⑵分母中含有未知数。

2.转化。

分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种“转化”思想的教学。

《分式方程》观课报告

《分式方程》观课报告

分式方程观课报告一、观课背景本次观课的活动是由XXX机构组织的,旨在推广高中数学学科的教学经验和教学资源。

在本次活动中,我有幸参加了一节关于分式方程的高中数学课程。

二、教学内容回顾1. 分式方程的定义本节课的教学内容主要围绕着分式方程展开,教师首先向我们解释了分式方程的定义,即含有未知数的一元分式等式,其中分母不等于零。

2. 分式方程的解法接下来,教师向我们讲解了分式方程的解法。

在解分式方程时,我们需要对方程进行约分和通分,最终得到等价方程,进而求出未知数的值。

教师还通过多种实例,向我们展示了分式方程的解题方法。

例如,当分式方程中的未知数只有一次幂时,我们可以通过移项,把式子变形为一个线性方程,然后再进行求解。

3. 案例分析最后,教师还分析了多个实际问题,通过展示实践中的应用,让我们更深入地理解了分式方程的原理和解法。

其中,一个案例尤为生动:小明爱吃苹果,他去市场买了一些苹果,但因为吃的太快,第一天吃了一半,第二天又吃了三个,第三天吃了剩下的四分之一,第四天只剩下6个,问小明买了多少个苹果?通过分析这一案例,我们可以将此情况表示为一个分式方程,最终求解出小明一开始买了18个苹果。

三、教学特征评价1. 课程设置合理本次观课的分式方程教学内容紧密联系于生活实际,且难度适中。

在教学中,教师通过一些实例,让我们掌握了分式方程的基本解法和应用方法。

2. 教学形式多样教师采用了多种方式进行授课,例如结合练习、案例分析、举一反三等。

这不仅增强了教学的趣味性和吸引力,也使我们更好地掌握了知识点。

3. 学习氛围浓厚教师在授课中与学生的互动交流,让课堂氛围十分活跃,增加了学生学习的积极性。

同时,教师的耐心细致和认真负责的教学态度也给我们留下了深刻的印象。

四、总结与展望通过本次观课活动,我对分式方程的基本知识和解题方法有了更深入的了解。

同时,我也认识到在今后的学习中,需要多进行练习,才能更好地掌握和应用基础知识。

希望在今后的学习中,能够继续深入学习数学知识,并应用于实践中,做出更大的成绩和贡献。

新北师大版八年级数学下册《五章 分式与分式方程 回顾与思考》教案_13

新北师大版八年级数学下册《五章 分式与分式方程  回顾与思考》教案_13

《分式与分式方程》复习课一、 分式1.分式的概念:一般地,如果A 、B 都表示整式,且B 中含有字母,那么称AB 为分式.其中A 叫做分式的分子,B 为分式的分母.2.分式有无意义的条件:对于分式AB当_______时分式有意义;当_______时分式无意义.3.分式值为零的条件:当___________时,分式AB 的值为零.4.分式的基本性质:5.分式的符号法则: 考点1:分式的有关运算。

例1:如果分式211x x -+ 的值为0,那么x 的值为 .练习1.若分式13x +无意义,则 X 的值 .练习2.如果分式 的值为零,则a 的值为 . 考点2:分式的性质例2:如果把分式x x y +中的x 和y 的值都扩大为原来的3倍,则分式的值( )A.扩大为原来的3倍B.不变C.缩小为原来的D.缩小为原来的22a a -+练习3.下列变形正确的是( )22.a a A b b =22.a b a b B a a --=22.11x x C x x --=--y x xy y x D 9296.22=-二、 分式的运算。

分式的混合运算:先算 ,再算 ,最后算 ,有括号的先算 . 计算结果必须 .考点3:分式的运算 先化简,然后从5x 的范围内选取一个合适的整数作为x 的值代入求值。

三、分式方程1、分式方程的定义:分母中 的方程叫分式方程2、分式方程的解法:考点4:解下列分式方程1143(1)0;(2)2.1111x x x x x -+==--+++22211(1)11x x x x x x -+-÷-+-+(3)考点5、分式方程的应用。

练习:1、从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.2、某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?22161.24x x x --=+-解方程:考点6:分式方程的增根和无解。

人教版八年级上册数学《分式方程》分式说课复习(分式方程及其解法)

人教版八年级上册数学《分式方程》分式说课复习(分式方程及其解法)

x+5=10.
解得
x=5.
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义.因 此x=5虽是整式方程x+5=10的解,但不是原分式 方程的解,实际上,这个分式方程无解.
巩固练习
练习3 解方程并检验.
1 2 . 2x x 3
解:最简公分母为
巩固练习
练习4
解关于x 的方程
x
a
a
b
1( b ≠ 1).
解:方程两边同乘x-a,得
a+b(x-a)= x-a
去括号,得 a+bx-ab =x-a
移项、合并同类项,得
(b-1)x = ab-2a
∴x
ab 2a b 1
检验:当 x
ab b
2a 1
时,∵
b

1,∴b-1
≠0,
x ab 2a
方程① 当v=6时,(30+v)(30-v)≠0,这就是说,去分
母时,方程①两边乘了同一个不为0的式子,因此
方程② 所当得x=整5时式,方(程x的-5)解(与x①+的5)解=相0,同这. 就是说,去分母
时,方程②两边乘了同一个等于0的式子,这时所 得整式方程的解使②出现分母为0的现象,因此这 样的解不是②的解.
解:设该厂原来每天加工x个零件,则采用新技 术后,每天加工2x个零件,
根据完成时间的等量关系,得
100 600 100 7
x
2x
去分母,得200 + 500 =14x,
解得
x = 50.
检验:x = 50时,2x ≠ 0.
所以x = 50是原方程的根.

分式方程(一)

分式方程(一)

第五章分式与分式方程4.分式方程(一)总体说明本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。

彼此之间由浅入深。

是“实际问题——分式方程建模——求解——解释解的合理性”过程。

本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。

同时应注意对学生实行过程性评价,要延迟评价学生运算的熟练水准,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。

一、学生起点分析学生的知识技能基础:能熟练准确地解一元一次方程;已学过度式的定义;理解分式有意义的条件;能利用分式的基本性质实行约分通分;课前预习知晓分式方程的概念。

学生活动经验基础:八年级的学生已经具备了一定的自主探究水平和分析问题的水平,并对发现新问题以及寻求解决办法有相当的兴趣和积极的愿望.二、教学任务分析教学时要有意识地进一步提升学生的阅读理解水平,鼓励学生从多角度思考问题,解释所获得结果的合理性。

对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提升分析问题与解决问题的水平。

本节课的具体教学目标为:1.理解分式方程的概念;2.能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描绘性定义。

3.在建立分式方程的数学模型的过程中培养水平和克服困难的勇气,并从中获得成就感,提升解决问题的水平。

三、教学过程分析本节课设计了5个教学环节:引入新课——探索新知——感悟升华——课堂反馈——自我小结第一环节引入新课活动内容:在这个章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题。

面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成计划任务。

原计划每月固沙造林多少公顷?分析:这个问题中有哪些已知量和未知量?已知量:造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务未知量:原计划每月固沙造林多少公顷这个问题中有哪些等量关系?实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷原计划完成的时间—完成实际的时间=4个月我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要___个月,实际完成一期工程用了____个月,根据题意,可得方程__________。

北师大版八年级下册数学《认识分式》分式与分式方程说课教学课件复习

北师大版八年级下册数学《认识分式》分式与分式方程说课教学课件复习

3
2
= ,分式无意义
0
三个条件
1.分式无意义的条件:
分母等于零
2.分式有意义的条件:
分母不等于零
3.分式的值等于零的条件:分子等于零且分母不等于零
+2

例3.已知分式
,当x=1时,分式无意义;当x=4时,分式的值为0.
求a+b的值.
解: ∵ 当x=1时,分式无意义,
∴ 1-a=0,a=1.
(2)解方程,求出所含字母的值.
(3)代入验证:将所求的值代入分母,验证是否使分母
为0,不为0此值即为所求,否则,应舍去.
(4)写出答案.
巩固练习
变式训练
下列判断错误的是 (
D )
2
A.当a≠0时,分式 a有意义
3a - 6
B.当a=2时,分式 2a + 1的值为0
a-2
C.当a>2时,分式
的值为正

0;
2a 1 2 ( 1) 1
当a=-1时

(2)当分母的值等于零时,分式没有意义,除此之
外,分式都有意义. 1
a .
由分母2a-1=0,得
2
所以,当
1
a 1
a
2 时,分式 2a 1 有意义.
巩固练习
变式训练
已知分式
x 1
有意义,则x应满足的
( x 1)( x 2)
(2)当x = -0.4时,
课堂检测
基础巩固题
3.下列分式中,无论x取何值,分式总有意义的是 (
1
A. 2
5x
1
B. 2
x +1
1
C. 3

初中数学_认识分式第一课时教学设计学情分析教材分析课后反思

初中数学_认识分式第一课时教学设计学情分析教材分析课后反思

八年级数学下册第五章《分式与分式方程》1.认识分式(一)[教学设计]一、教学目标知识与技能:通过用分式表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感;能用分式表示实际问题中的数量关系。

过程与方法:通过自主探索、小组合作交流的过程,归纳分式的概念,明确分式与整式的区别;进一步培养学生代数表达能力和有条理地思考问题的能力。

情感态度与价值观:培养学生观察、类比、讨论、交流的思想,感受知识的内在价值。

二、教学重、难点重点:分式的概念难点:分式有无意义、分式值为零条件的讨论三、教法、学法教学方法:合作交流、探究发现学法指导:分式是分数的代数化,学生可以通过类比进行分式的学习。

在教学中,教师引导学生学会观察、归纳,培养探究、自主学习能力。

四、教学过程(一)情境引入1.姚明与罚球命中率设计目的:一是通过计算罚球命中率及与分数的类比引出本节学习内容——分式,明确本节学习目标;二是通过学生喜欢的体育明星,也是2012年感动中国人物——姚明进行德育渗透,引导学生做有行动的追梦人!2.完成下列填空:(1)长方形长为a,宽为b,则这个长方形周长为___ ,面积为__。

(2)某县决定在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成原计划的任务.如果设原计划每月固沙造林x 公顷,那么原计划完成造林任务需要_______个月。

实际完成造林任务用了_____个月。

(3) 2010年上海世博会吸引了成千上万的参观者,某一时段内的统计结果显示,前 a 天日均参观人数 35 万人,后 b 天日均参观人数 45 万人,这(a + b)天日均参观人数为________万人。

(4)文林书店库存一批图书,其中一种图书的原价是每册 a 元,现每册降价 x 元销售,当这种图书的库存全部售出时,其销售额为 b 元.降价销售开始时,文林书店这种图书的库存量是____册。

(5)乐乐超市新进柠檬、草莓两种口味水果奶糖,每斤进价分别为a元、b元,超市将18斤柠檬味和12斤草莓味两种糖混合成了“缤纷果香”奶糖,则这种混合奶糖的定价为____________元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章分式与分式方程
回顾与思考(一)
总体说明
本节是第五章《分式与分式方程》的最后一节,占两个课时,这是第一课时,它主要让学生回顾在学习分式的基本概念与分式的运算时用到的几种法则,熟练掌握分式的运算法则,通过螺旋式上升的认识,让学生运用分逐步熟悉式运算的基本技能,培养学生的代数表达能力,通过本节课的教学使学生对分式的运算能有更深的认识.
一、学生知识状况分析
学生的技能基础:学生已经学习了分式及分式的运算等有关概念,对分式及其运算有了初步的认识,但对技巧性较高的运算题还不熟悉.
学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论等活动方法,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析
在本章的学习中,学生已经掌握了分式的概念与分式加减乘除法的运算,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的目标是:
知识与技能:
(1)使学生进一步熟悉分式的意义及分式的运算;
(2)提高学生分式的基本运算技能.
数学能力:
(1)提高学生的运算能力,发展学生的合情推理能力;
(2)注重学生对分式的理解,提高学生分析问题的能力.
三、教学过程分析
本节课设计了七个教学环节:回顾——想一想——做一做——试一试——再想一想——反馈练习——课后练习.
第一环节 回顾
活动内容:
1、分式的基本性质是什么?举例说明!
2、分式的乘除法的法则是什么?举例说明!
3、同分母的分式加减法的法则是什么?举例说明!
4、异分母的分式加减法的法则是什么?举例说明!
活动目的:
通过学生的回顾与思考,使学生对分式的基本性质、乘除法、加减法等基本运算有一个更深层次的认识.
教学效果:
有了前几节课的学习,学生对分式的基本性质及分式的运算等知识有了较清楚的认识与理解.
第二环节 想一想
活动内容:
填空题:
(1)如果某商品降价x %后售价为a 元,那么该商品的原价是 元.
(2)某人打靶,有m 次均打中a 环,有n 次均打中b 环,则此人平均每次中靶的环数是 .
(3)当x 时,分式x
x -+11有意义. (4)当x 时,分式)3x )(1x (92---x 的值为0.
活动目的:
加深学生对分式的一些基本概念的认识.
教学效果:
部分学生对第(4)小题中认为分子x 2–9的值为0,从而得出x 应为±3,原因是没有注意分母不能为0这一事实,经指点后,均能理解.
第三环节 做一做
活动内容:
1、化简下列各式:
(1)abc ac 1222- (2)a a a 2422
--
(3)82162+-x x (4)2
222444y x y xy x -+-
2、计算:
(1)xy xz yz xy 1693422∙ (2)3
118222-÷-x x (3)3
2103243++++-x x x x (4)34121331222+-+-∙-+--x x x x x x x 活动目的:
加强学生对分式的运算等基本技能的训练。

教学效果:
学生在完成异分母的加减法时思维上有一定的障碍.
第四环节 试一试
活动内容:
先化简,后求值:
x
x x x x -÷⎪⎭⎫ ⎝⎛+--2422 ,其中x =–1. 活动目的:
逐步提高学生的运算能力,发展学生的应用能力,提高解决问题的能力.
教学效果:
有了前面的运算基础,学生对先化简后求值这一类题的运算较为清楚.
第五环节 想一想
活动内容:
1、已知:311=-y x ,求y
xy x y xy x -+--22的值. 2、已知:0142=+-x x ,求221
x x +的值.
3、已知:4:3:2::=z y x ,求z y x z
y x ++++23432的值.
4、已知:)
3)(2(532-+=-++x x x x B x A ,求A 、B 的值. 活动目的:
使学生了解不同情况下分式的运算技巧.
教学效果:
因学生在此之前并未接触过这种题型,从而不知从何下手,但在老师的引导和启发下,部分学生能解决提出的问题.
第六环节 反馈练习
活动内容:
1、选择题:
(1)使分式2
2--x x 有意义的是 ( ) A 、2≠x B 、2-≠x C 、2±≠x D 、2=x
(2)若4x =5y ,则222y y x -的值是 ( )
A 、51-
B 、41
C 、169
D 、25
9- 2、填空:
(1)计算:y x a
xy 28512÷= ; (2)计算:=+-11
1x ; 3、已知:3
1-=x ,求x x x x x x --⎪⎭⎫ ⎝⎛++-÷-++11232)1)(2(1的值.
活动目的:通过设置恰当的、有一定梯度的题目,关注学生知识技能的发展和不同层次的需求.
教学效果:
学生能较好地掌握分式及其运算的基本知识与基本技能;
第七环节课后练习
课本第131页复习题第1、2、3题;
四、教学反思
分式是表示具体情境中数量的模型,它是分数的“代数化”,它的性质、运算与分数的性质、运算完全相似,它是代数运算的基础之一。

在教学过程中,注重对分式运算算理的理解是教学要注意的重点,没有必要一味地追求运算的复杂性与难度,否则会因为经常出现错误而导致学生对分式的运算失去信心,这是得不偿失的做法,也与《数学课程标准》所倡导的理念相违背。

在运算过程中,要注意部分学生将分式的运算与解分式方程混为一谈,不加思索地将分式的运算中的分母去掉,造成运算的不合理,在教学中要注意到发展学生的合情推理能力。

相关文档
最新文档