第一章 回顾与思考
第一章 回顾与思考

抢 答: 要使 ABCD成为矩形,需增加的条件是______
要使
ABCD成为菱形,需增加的条件是______
要使矩形ABCD成为正方形,需增加的条件是____ 要使菱形ABCD成为正方形,需增加的条件是____ 要使四边形ABCD成为正方形,需增加的条件是 ______
例1
已知:如图(4) 在正方形 ABCD 中,F 为CD 延长线 上一点,CE ⊥AF 于E ,交AD 于M , 求证:∠MFD =45°
例2.如图,矩形纸片ABCD中,AB=3厘米,BC=4厘 米,现将A、C重合,使纸片折叠压平,设折痕为 EF。试确定重叠部分△AEF的面积。
G
A
F
D
B
E
C
小结与收获
第一章 特殊平行四边形
回顾与思考
特殊四边形的关系
矩形
平行四边形 正方形
菱形
几种特殊四边形的性质:
项目 四边形
矩形
对边 平行且相等 平行 且四边相等 平行 且四边相等
角 四个角 都是直角 对角相等 邻角互补 四个角 都是直角
对角线 互相平分且相等 互相垂直平分,且每一 条对角线平分一组对角 互相垂直平分且相等,每 一条对角线平分一组对角
对称性 中心对称图形 轴对称图形 中心对称图形 轴对称图形 轴对称图形
菱形
中心对称图形
正方形
几种特殊四边形的常用判定方法:
四边形 矩形 条件 1、定义:有一角是直角的平行四边形 2、三个角是直角的四边形 3、对角线相等的平行四边形 1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形 3、对角线互相垂直的平行四边形 1、定义:一组邻边相等且有一个角是直角的平行四边形 2、有一组邻边相等的矩形 3、有一个角是直角的菱形
第一章直角三角形边角关系回顾与思考(教案)

在课程总结时,我发现部分学生对直角三角形边角关系在实际生活中的应用仍存在疑问。为了让学生更好地将所学知识应用于实际,我计划在今后的教学中,引入更多实际案例,让学生在解决实际问题的过程中,深化对知识点的理解。
五、教学反思
在今天的教学中,我重点关注了直角三角形边角关系这一章节的核心知识点。通过导入日常生活中的实际问题,我试图激发学生的兴趣,帮助他们理解数学知识在实际中的应用。在讲授过程中,我发现以下几点值得反思:
首先,学生对勾股定理的理解程度参差不齐。在讲解过程中,我注意到有些学生能够迅速掌握定理的推导和应用,而部分学生则对定理的理解较为吃力。针对这一现象,我考虑在今后的教学中,加强对定理推导过程的演示,并设计不同难度的练习题,以满足不同学生的学习需求。
-举例:使用平面几何图形或三维模型展示勾股定理的推导过程。
-难点2:三角函数值的计算与应用。学生可能在计算过程中混淆三角函数的定义,需要通过反复练习和实际应用案例来加深理解。
-举例:提供不同角度的三角函数值计算练习,并讲解在测量、导航等领域的应用。
-难点3:边角关系在实际问题中的综合应用。学生可能不知道如何将复杂的实际问题抽象为直角三角形的模型,需要教师引导和示范。
2.回顾与思考:
-通过对勾股定理的推导和应用实例,引导学生思考直角三角形边长之间的关系;
-结合锐角三角函数的定义与性质,探讨三角函数在直角三角形中的应用;
-引导学生运用互余两角的三角函数关系,解决实际问题;
-分析直角三角形的边角关系在生活中的应用,提高学生解决实际问题的能力。
七年级上学期数学章节知识点总结

七年级上学期数学章节知识点总结第一章:有理数1、知识点结构图如下:2、回顾与思考本章我们在小学学习的基础上,进一步认识了负数,使数的范围扩充到有理数。
引入负数不仅可以表示具有相反意义的量,而且还拓展了减法运算的范围。
由此,类似于x+2=1的方程就可以解了。
我们知道,有理数是整数与分数的统称。
由于整数可以看成是分母为1的分数,因此有理数可以写成qp (p、q 是整数,q≠0)的形式;另一方面,形如q p (p、q 是整数,q≠0)的数都是有理数。
所以,有理数可用q p (p、q 是整数,q≠0)表示。
本章我们研究了有理数的加、减、乘、除和乘方运算。
实际上,与负数有关的运算,我们都借助绝对值,将它们转化为正数之间的运算。
数轴不仅能直观表示数,而且还能帮助我们理解数的运算。
在运算的过程中,数形结合、转化是很重要的思想方法。
我们从具体数的加法和乘法中,归纳出了交换律、结合律和分配律等运算律。
运算律不仅能给数的运算带来方便,而且还是今后研究代数问题(如解方程、不等式等)的基础。
请你带着下面的问题,复习一下全章的内容吧。
1。
你能举出一些实例,说明正数、负数在表示相反意义的量时的作用吗?2。
你能用一个图表示有理数的分类吗?引入负数后,减法中哪些原来不能进行的运算可以进行了?3。
怎样用数轴表示有理数?数轴与普通直线有什么不同?怎样利用数轴解释一个数的绝对值和相反数?4。
有理数的加法与减法、乘法与除法各有什么关系?有理数的混合运算都能转化为加法与乘法运算吗?5。
有理数有哪些运算律?结合例子说明运算律在有理数运算中的作用。
第二章:整式的加减法1、知识点结构图如下:2、回顾与思考本章学习了整式的有关概念与整式的加减运算。
由具体的数到用字母表示数,可以简明地表达一些一般的数量和数量关系,给研究问题和计算带来方便,这是数学上的一个重大发展。
从数到式,字母参与运算,得到了各种式子。
其中表示数或字母的积的式子叫做单项式,几个单项式的和叫做多项式。
北师大版九年级数学下册:第一章 1《回顾与思考》精品教案

北师大版九年级数学下册:第一章 1《回顾与思考》精品教案一. 教材分析北师大版九年级数学下册第一章《回顾与思考》是对整个初中数学知识的总结与回顾。
本章通过对之前学习的知识进行梳理,帮助学生建立知识体系,提高解决问题的能力。
本节课的内容包括数的开方与乘方、勾股定理、相似三角形的性质等,旨在让学生通过回顾与思考,对所学知识有更深入的理解和掌握。
二. 学情分析九年级的学生已经掌握了初中阶段的大部分数学知识,对于数的开方与乘方、勾股定理、相似三角形的性质等概念和性质有一定的了解。
但部分学生在应用这些知识解决问题时,可能会出现混淆和错误。
因此,在教学过程中,需要关注学生的知识掌握情况,针对性地进行引导和讲解。
三. 教学目标1.帮助学生回顾和总结初中阶段的数学知识,建立知识体系。
2.提高学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.数的开方与乘方、勾股定理、相似三角形的性质等知识的运用。
2.学生对于实际问题进行分析,运用所学知识解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动回顾和总结所学知识。
2.通过实例分析,让学生运用所学知识解决实际问题。
3.采用小组合作学习的方式,培养学生的团队合作能力和沟通能力。
六. 教学准备1.准备相关知识点的PPT,用于呈现和讲解。
2.准备一些实际问题,用于引导学生运用所学知识解决。
3.准备黑板和粉笔,用于板书和标注。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,引导学生运用所学知识解决。
例如,计算一个房间的面积,或者计算一个三角形的周长等。
通过这些问题,激发学生的学习兴趣,并引出本节课的内容。
2.呈现(10分钟)利用PPT呈现本的回顾与思考的内容,包括数的开方与乘方、勾股定理、相似三角形的性质等。
在呈现过程中,引导学生主动回顾和总结所学知识,并与同学进行交流。
3.操练(10分钟)针对每个知识点,设计一些练习题,让学生独立完成。
第一章 丰富的图形世界 回顾与思考 课件(共19张PPT) 北师大版数学七年级上册

3n 条棱
丰 富
棱柱
截一个 几何体
圆柱
平面图形
的
圆锥
图 形
从正面看Biblioteka 世从上面看界
从左面看
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
如图,一个立体图形是由一个圆柱和两个小 正方体组成的,从正面看该立体图形得到的平面 图形是( B ).
点
丰 富 的
生活中的 立体图形
线 平面 面 曲面
柱体
所有侧棱长都相等
柱 体 的
上下底面的形状 相同
图 形 世
体 锥体 特 侧面都是长方形 球体 征 n 棱柱有 (n + 2)
界
个面,2n 个顶点,
1. 截面:用一个平面去截一个几何体,截出的 面叫作截面.截面的形状是平面图形.
2. 常见几何体的截面
几何体
截面形状
正方体
三角形、四边形(正方形、长方形、平 行四边形、梯形)、五边形、六边形
圆柱
圆、长方形、椭圆……
圆锥
圆、三角形……
球
圆
考点四:从三个方向看物体的形状 6. 举出一种几何体,使得从正面、左面、上面
看到的这个几何体的形状图都一样。你能举 出几种?与同伴交流。
从正面看 从左面看 从上面看
1. 几何体 从正面看 从左面看 从上面看
2. 从三个方向看组合体得到的图形
①画由小正方体组成的几何体从正面和左面看所得 图形的方法:先确定看到的面左右共有几列,每 一列共有几层;
②画从上面看所得图形,再看几何体的最上面的小 正方形前后共有几行,左右共有几列以及每个面 的位置关系.
二、点、线、面、体之间的关系
点――动→线直曲线线――――动动→→平曲面面――动→体(立体图形)
北师大版九年级数学上册第一章特殊的平行四边形回顾与思考优秀教学案例

3. 小组合、交流,共同解决问题。通过小组合作,培养学生的团队合作精神,提高他们的沟通能力和协作能力。
3. 组织小组汇报,让学生分享自己的思路和方法,培养他们的语言表达能力和沟通能力。
(四)反思与评价
1. 引导学生对所学知识进行反思,巩固他们对特殊平行四边形性质的理解。
2. 组织学生进行自我评价和小组评价,让他们认识到自己的优点和不足,培养他们的自我管理能力。
3. 教师对学生的学习过程和结果进行评价,关注他们的成长,激励他们不断进步。
本案例的目标是让学生在回顾与思考特殊平行四边形的过程中,加深对数学知识的理解,提高数学思维能力、团队协作能力和语言表达能力,为今后的数学学习奠定坚实的基础。
二、教学目标
(一)知识与技能
1. 回顾特殊平行四边形的性质和判定方法,包括矩形、菱形、正方形的性质及其判定。
2. 培养学生运用特殊平行四边形的知识解决实际问题的能力,提高他们的数学思维能力。
4. 反思与评价,提高自我管理能力:引导学生对所学知识进行反思,巩固对特殊平行四边形性质的理解。组织学生进行自我评价和小组评价,让他们认识到自己的优点和不足,培养他们的自我管理能力。
5. 层次性作业,巩固知识与培养能力:布置具有针对性、层次性的作业,让学生在完成作业的过程中巩固对本节课知识的理解和应用。鼓励学生在完成作业后进行自我检查、反思,提高他们的自我管理能力。
(三)情感态度与价值观
1. 培养学生对数学学科的兴趣,激发他们继续探索数学知识的欲望。
2. 通过小组合作,让学生体验到团队协作的重要性,培养他们团结互助的品质。
湖南省益阳市第六中学七年级数学上册 第一章 本章回顾

第一章 本章回顾与思考教案(1)第18课时一、教学目标:回顾本章内容,梳理本章知识,建立一定的知识体系。
掌握有理数有关概念,熟练进行有理数加、减、乘、除、乘方运算及混合运算,并会利用运算律简化运算。
二、教材分析重点:梳理本章知识,建立知识体系。
难点:将新旧知识结合成一个有机的整体。
三、教学方法师生双主互动法 四、自主学习方案 回顾本章内容,思考下列问题(1)什么样的数叫正数、负数?0呢? (2)什么叫做有理数?有理数有几种分类方法?(3)什么样的直线叫做数轴?什么是相反数、绝对值、倒数?(4)如何比较两个有理数的大小?(5)有理数的运算有哪几种?运算的法则各是什么?有哪些运算律? (6)有理数的混合运算顺序是什么?五、教学过程(一)复习感知 教师活动:鼓励学生独立思考回答以上问题。
组织学生讨论交流,梳理本章内容。
(二)合作交流,解读探究先组织学生独立尝试,再师生共同解答。
1、在数轴上画出表示下列各数的点,并用“<”连接: )+(-, ),+,-(--, , ,-332.53422145.3解:,- )-(-)+(- -435.22335.3214<<+<<<-<2、比较下列各数的大小(1) 5465与-- (2)3243与--解:(1)因为54653024302530245454,30256565--==-==-<,所以,>, 3、计算:))+(--(-)--(-617.22312.2865引导学生把加减运算化为加法运算,并注意加法交换律的运用,经便简化运算。
解: 3110103122.72.28613165617.22312.2865 =+ =)+)+(-- =(-+-+原式=4、计算:87)12787431(÷--(三)精导精讲,运用提升P50复习题一A 组第1、2、3、4题(四)总结反思师生共同建立本章知识结构表(板书)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧分配律结合律交换律运算律乘方乘除加减运算法则有理数的运算有理数的大小比较绝对值相反数数轴有关概念有理数(五)课堂作业: P50复习题一B 组、 (六)教学反思。
北师大版八年级数学上册第一章勾股定理回顾与思考教学设计

-教学策略:采用小组合作、讨论交流的方式,引导学生主动发现勾股定理的规律。
2.突破难点,通过多种证明方法,帮助学生全面理解勾股定理。
-教学策略:呈现多种证明方法,如几何拼贴法、代数法、平面几何法等,让学生从不同角度理解定理的本质。
5.结合课堂所学,探讨勾股定理在以下特殊直角三角形中的应用:
-等腰直角三角形
- 30°-60°-90°直角三角形
- 45°-45°-90°直角三角形
作业要求:
1.请同学们认真完成作业,确保解答过程清晰、逻辑严密。
2.作业完成后,进行自我检查,确保答案正确无误。
3.互相交流、讨论作业中的问题,共同提高。
4.通过小组合作、讨论交流等形式,培养学生团队协作能力和表达能力。
(三)情感态度与价值观
1.培养学生对勾股定理的兴趣,激发学生学习数学的热情。
2.让学生感受数学的简洁美和逻辑美,增强对数学的热爱。
3.通过勾股定理的探究,培养学生勇于质疑、追求真理的精神。
4.培养学生面对困难时,保持积极向上的态度,勇于克服困难,解决问题。
1.充分利用学生已掌握的直角三角形知识,引导他们自主探究勾股定理的内涵和证明方法。
2.针对学生空间想象能力的差异,采用直观教具和多媒体辅助教学,帮助学生建立清晰的几何图形。
3.注重培养学生的逻辑思维能力,通过问题驱动、范例引导等方式,激发学生主动思考、分析问题的兴趣。
4.关注学生个体差异,创设分层教学情境,使每个学生都能在原有基础上得到提高。
4.培养学生运用勾股定理进行数学推理,提高逻辑思维能力。
(二)过程与方法
1.通过引导学生回顾勾股定理的发现过程,培养学生主动探究、发现问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 特殊平行四边形
回顾与思考
教学目标:
复习三种特殊平行四边形的性质及判定,及理解他们之间的关系。
(1)经历使用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.
(2)经历课前准备总结,探索三种特殊平行四边形的关系,发展总结归纳水平和初步的演绎推理的水平;
(3)在具体问题的证明过程中,有意识地渗透实验论证、逆向思维的思想,提升学生的水平。
教学重点:
(1) 三种特殊平行四边形性质和判定的复习.
(2) 三种特殊平行四边形的关系.
教学难点:总结关系方法的多样性和系统性。
教学过程:
本节课设计了五个教学环节:第一环节:交流创意,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。
一:交流创意,导入课题
内容:事先布置好任务,让学生用自己的方式总结三种特殊平行四边形的关系图,课堂上先交流讨论,引出关系图.
二:交流创意,总结归纳
内容:事先布置好任务,让学生用自己的方式总结三种特殊平行四边形的性质和判定方法。
目的:通过学生自己的作品入手,激发学生学习兴趣。
引出特殊平行四边形的性
质,判定表格,梳理本章知识。
三:小试牛刀,基础巩固
内容:一组考察基础的判断题:
1、一组对边平行的四边形是梯形。
()
2、一组对边平行,另一组对边相等的的四边形是平行四边形。
()
3、两条对角线相等的四边形是矩形。
()
4、一组邻边相等的的矩形是正方形。
()
5、对角线互相垂直的四边形是菱形。
()
6、两条对角线互相平分的四边形是平行四边形。
()
四:出示例题,总结方法
内容:两个例题,一个正方形,一个折叠问题。
例1:已知:如图(4)在正方形ABCD中,F为CD延长线上的一点,CE⊥AF于E,交AD于M,求证:∠MFD=45°
目的:解决学生本章中两个难点问题的困惑。
例2.如图,矩形纸片ABCD中,AB=3厘米,BC=4厘米,现将A、C重合,使纸片
折叠压平,设折痕为EF。
试确定重
F
G
C
E
D
B
A
叠部分△AEF的面积。
五:总结收获,拓展提升
内容:交流收获。
目的:本节课内容较多,协助学生总结知识和方法。
教学设计反思:。