单色仪的定标和光谱测量PPT课件
大学物理实验---单色仪的定标和光谱测量.docx

实验题目:单色仪的定标和光谱测量实验目的:了解光栅单色仪的原理,结构和使用方法,通过测量钨灯和汞灯的光谱了解单色仪的特点。
实验原理:一.光栅单色仪的结构和原理如下图所示,光栅单色仪由三部分组成:1、光源和照明系统,2、分光系统,3、接受系统。
单色仪的光源有:火焰、电火花、激光、高低压气体灯(钠灯、汞灯等)、星体、太阳等。
如下图所视,当入射光与光栅面的法线N的方向的夹角为©(见图)时,光栅的闪耀角为a取一级衍射项时,对于入射角为©而衍射角为e时,光栅方程式为:d(sin H sin 0)=入式中N 为光栅的总线数,在本实验中 N 为64 *200=76800, m 为所用的光的衍射级次,本实验中m 二雹实验中由于光学系统的象差和调整误差,杂散光和噪声的影响, 加上光源的谱线由于各种效应而发生增 宽,所以实际的谱线半角宽度远远大于理论值, 因此光谱仪的实际分辨本领远远小于 76800。
实验数据及数据处理:(数据以文本文档中为准)■ ■ » 11、 光栅单色仪的定标 ----- 钠灯光谱与标准值之间误差:??= --------------- =0.00%入Nd cos=d 9 = m d 入 d cos 9R= d x =mNFigure 1钠灯光谱主线系峰值数据: 1、589.0002、589.625实验报告589 .0BY 王有识页3实验报告?? =0.004%-|589 .625-589 .6|Figure 2钠灯光谱锐线系峰值数据: 1 、615.413 2 、616.050 与标准值之间误差:??=--------------- =0.002%1615 413-615 .4|?? —6154---------- =0.008%1616.050-616 ,0|2 = 616.0Figure 3钠灯光谱漫线系1页4 BY王有识?? = ------------------ =0.006%1497.812-497 .78|?? 49778 =0.01%|498 .250-498 .2| 2=498.22、 低压汞灯光谱测量峰值数据:1、568.250 、568.825与标准值之间误差:??= =0.009%1568 .250-568 .3|与标准值之间误差:??568・3 ------ =0.006% |568 .7-568 .86|22=568 .86Figure 4钠灯光谱漫线系2峰值数据:1、497.812 2 、498.250实验报告Figure 5低压汞灯黄光强峰值数据:1、576.925 2 、579.050与标准值之间误差:??= =0.006%1576 .925-576 .96|?? 576・96------- =0.003%|579 .050-579 ,07|2二579.07Figure 6低压汞灯蓝绿光强峰值数据:1、491.637 与标准值之间误差:??二 ------------- =0.008%|491 .637-491 .60|峰值数据: 1 、585.925ure 7低压汞灯2黄光589.000与标准值之间误差:??==0.0009%1585 .925-585 .92| ?? —585.92 =0.003%1589 .000 -589 .021本组实验由于测蓝绿光的弱光谱,而实验环境中并不是完全黑暗,难免会有光对实验产生干扰, 所以实验所得的图像很不理想, 但是还 是可以分辨出波峰。
单色仪的定标和光谱测量实验(1321室)

单色仪的定标和光谱测量实验(1321室)实验要求:实验前准备认真预习(1)认真阅读实验讲义或实验教材(2)准备预习报告注明:1、加入自己对实验原理的理解;2、实验课时必须带来,作为当堂打实验操作分的依据;3、认真预习者方可进入实验室进行操作准时进入实验室(1)不准迟到,请假需要提前上交书面申请(2)注意保持实验室卫生(3)严禁携带零食,注重仪表!例如:不穿拖鞋等行为(4)雨天请将雨伞放置在实验室门外仔细阅读听讲(1)认真听讲每个仪器的名称,作用及使用方法(2)阅读实验指导书实验进行时严肃认真,不得在实验室内打闹、嬉戏!严格遵守操作规程,严禁手碰透镜等光学仪器的光学面不得直视激光,以免损伤视网膜!严禁损坏仪器经指导老师签字或同意后,并清洁整理完毕方可离开!实事求是(1)认真观察、分析实验现象(2)如实记录实验数据,不得抄袭勇于创新积极思考并提出自己的建议或意见实验结束后及时认真完成实验报告!(实验目的、内容、实验原理、实验仪器、实验操作步骤、实验结果(包括数据处理分析和现象分析)、回答思考题)下次上课时必须交上,不得延误!单色仪的定标和光谱测量实验(1321室)实验目的:(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解;(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
实验简介单色仪(monochromator)是指从一束电磁辐射中分离出波长范围极窄单色光的仪器。
按照色散元件的不同可分为两大类:以棱镜为色散元件的棱镜单色仪和以光栅为色散元件的光栅单色仪。
单色仪的构思萌芽可以追述到1666年,牛顿在研究三棱镜时发现将太阳光通过三棱镜时被分解成七色光的彩色光光谱,牛顿首先将此分解现象称为色散。
1814年夫琅和费设计了包括狭缝、棱镜和视窗的光学系统并研究发现了太阳光谱中的吸收谱线(夫琅和费谱线)。
单色仪的定标和光谱测量

光栅单色仪的定标和光谱测量一、实验目的(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解。
(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
二、实验原理(见预习报告)三、实验仪器光栅光谱仪(单色仪)是一个光谱分析研究的通用设备,其元件主要包括:光栅及反射镜,准光镜和物镜,入射出射狭缝旋钮,信号接收设备(光电倍增管/CCD),计算机及软件系统,图7给出了典型光栅单色仪的结构图。
光栅光谱仪(单色仪)可以研究诸如氢氘光谱,钠光谱等元素光谱(使用元素灯作为光源),也可以作为更为复杂的光谱仪器的后端分析设备,比如激光喇曼/荧光光谱仪。
光栅由计算机软件控制步进电机驱动,可以获得较高的精度。
从图7可知,光源或照明系统发出的光束均匀地照亮在入射狭缝S1上,S1位于离轴抛物镜的焦平面上,光通过M1变成平行光照射到光栅上,再经过光栅衍射返回到M1,经过M2会聚到出射狭缝S2,由于光栅的分光作用,从S2出射的光为单色光。
当光栅转动时,从S2出射的光由短波到长波依次出现。
如果S2出射狭缝位置连接信号接收设备(光电倍增管/CCD ,),则可对出射光谱进行数据采集分析(部分内容请参考《大学物理实验》第二册中的“单色仪的使用和调整” )。
本实验使用的仪器:WDS-8型组合式多功能光栅光谱仪,焦距f=500 mm.光栅条数:1200 L/mm 。
狭缝宽度在0-2 mm 连续可调,示值精度0.01 mm 。
光电倍增管的测量范围:200-800 nm ;CCD 的测量范围:300-900 nm 。
图7 光栅单色仪的结构和原理四、实验内容(1):光栅单色仪的定标单色仪的定标指的是借助于波长已知的线光谱光源来对单色仪测量的波长进行标定,校正在使用过程中产生的波长位置误差,来保证测量的波长位置的准确性。
试验七单色仪的定标和滤光片

实验三单色仪的定标和滤光片光谱透射率的测定目的1、了解棱镜单色仪的构造原理和使用方法;2、以汞灯的主要谱线为基准,对单色仪在可见光区进行定标;*3、掌握用单色仪测定滤光片光谱透射率的方法。
仪器和用具反射式棱镜单色仪,溴钨灯(l2V,50W),直流稳压电源,汞灯,硅光电池,灵敏电流计,低倍显微镜,滤光片,会聚透镜(两片),毛玻璃。
原埋单色仪是一种分光仪器,它通过色散元件的分光作用,把一束复色光分解成它的"单色"组成。
单色仪依采用色散元件的不同,可分为棱镜单色仪和光栅单色仪两大类。
单色仪运用的光谱区很广,从紫外、可见、近红外一直到远红外。
对于不同的光谱区域,一般需换用不同的棱镜或光栅。
例如应用石英棱镜作为色散元件,则主要应用于紫外光谱区,并需用光电倍增管作为探测器;若棱镜材料用Nacl(氯化钠)、LiF(氟化锂)或KBr(溴化钾)等,则可运用于广阔的红外光谱区,用真空温差电偶等作为光探测器。
本实验所用玻璃棱镜单色仪仅适用于可见光区,用人眼或光电池作为光探测器。
图7-1所示为反射式棱镜单色仪的结构示意图,其外壳是圆形的,下方有驱动棱镜台转动的丝杆和读数鼓轮,外侧装有缝宽可调的入射狭缝S1,和出射狭缝S2。
其光学系统由下列三部分组成:1、入射准直系统由人射缝S1和凹面镜M1组成,因S1固定在M1的焦面上,它使S1发出的入射光束成为平行光束。
2、瓦兹握斯色散系统由玻璃棱镜P和平面镜M联合组装成一整体,安装在同一转台上,可以绕通过0点垂直于图面的轴线(棱镜顶角的等分面和底面的交线)转动,该系统的特点是平行光束通过后,以最小偏向角出射的单色光仍平行于原入射光。
即该系统为恒偏向色散装置。
3、出射聚光系统由凹面镜M2和出射缝S2组成,它将色散后沿不同方向传播的单色平行光经M2反射后,会聚在M2的焦面,即出射缝S2的平面上,因S2缝宽较小,从S2输出的是波段很窄的光,通常称为单色光。
随着棱镜台绕0轴转动,以最小偏向角通过棱镜的光束的波长也跟着改变,当最小偏向角由小变大时,从S2输出的单色光的波长将依次由长变短。
单色仪的定标

f
=
r
2(n −1)
(5―13―1)
式中, n 为透镜材料的折射率,它随着光波的波长不同而不同,波长 λ 越长,折
射率 n 就越小,焦距f就越大,反之亦然。所以由三棱镜分解出来各种不同波长的光波
通过凸透镜折射后所成的像不是在此透镜的单一焦平面上,而是在与主光轴有倾斜的
准焦平面上。
凹面反射镜的焦距为
f =r 2
缝S1对准凸透镜和汞灯所发出的光线。适
当调节透镜和汞灯的位置,使汞灯发出的
光成像在入射狭缝S1上。
3
S1
2
1
2.观测装置的调整
在出射狭缝S2前放一测微目镜或读数 显微镜,调节测微目镜,直至看清叉丝。 然后调节其物镜,看清出射狭缝S2和狭缝
S2
1 .汞灯 2 .短焦距凸透镜 4 3 .单色仪 4 .测微目镜
隐若现。这时,只有定下心来,耐心观察,才能看清楚。如汞灯的红谱线有三条,其
中一条波长为725.00纳米的暗谱线,看起来非常朦胧。(2)对于颜色的界定不明确, 特别是从一种颜色向另一种颜色过渡的过渡色很难分辨。如橙色与红色,初次接触难 于分清,只能边看边学,边认识。(3)观察光谱与个人眼睛的好坏有很大关系,好的 眼力,可多看出一些谱线,眼力差一些,就只能少Байду номын сангаас出一些谱线。
4.测量 为了准确测量,我们可以转动鼓轮,将汞灯光谱从红到紫来回多看几遍,并且将 鼓轮的读数范围确定下来。在基本辨认和熟悉全部23条谱线颜色特征以后,调节器观 测装置,把测微目镜的叉丝对准出射缝中央,向一个方向缓慢转动鼓轮,从红到紫, 读出每一条谱线所对应的鼓轮读数,重复读两次,并将数据填入下面的表5—13—1 中。 数据处理
2.单色仪(WDF型)的设计思路和实际光路图 为了使谱线像差小、成像清晰、集光本领强、体积小等技术指标更趋完善和使用 方便,人们在实际制造单色仪时,对某些具体结构作了重要改进。
单色仪的定标

单色仪定标曲线的标定是借助于已知线光谱源进行,为了获得较多的点,必须要有一组光源,通常采用汞灯、氢灯、钠灯、氖灯以及用铜、铁、锌做电极的弧光光源等。
3.将低倍显微镜置于出射狭缝处,对出射狭缝 的刀口调焦,使显微镜视场中观察到的谱线最清晰。为使谱线尽量细锐并有足够的亮度,应使入射缝 尽可能小,出射缝 可适当大些,根据可见光区汞灯主要谱线波长、颜色、相对强度和谱线间距辨认谱线。
4.使显微镜的十字叉丝先对准出射狭缝的中心位置,缓慢地转动鼓轮,直到谱线中心依次对准叉丝时,分别记录鼓轮读数( )和与其对应的谱线波长( ),重复测量三次,取其平均值。
弱
612.33
弱
红色
623.44
中
深红色
671.62
中
690.72
中
实验注意事项
狭缝是单色仪的精密元件,要特别小心使用,旋转测微螺旋调整缝宽时,动作要慢,切勿使狭缝的二刀口相碰,即不允许使测微螺旋读数为小于零。
思考题
1.如果发现单色仪定标曲线上相对于已知波长 的鼓轮读数 偏离了 ,能否将原定标曲线平移 后继续使用,为什么?
色散棱镜 与平面反射镜 的组合,称为瓦兹渥斯色散系统(Wadsworth)。如图5.7-2所示,棱镜 和平面反射镜 安装在同一转台上一齐转动,转动的轴就是棱镜顶角等分面与底边的交线(通过 ,垂直于图面)。一般地, 上的入射光和经棱镜折射后的单色平行光之ቤተ መጻሕፍቲ ባይዱ的夹角 为定值,且有关系式
在瓦兹渥斯色散装置中,由于 的反射面与棱镜顶角等分线相垂直,即 ,所以 ,因此满足最小偏向角的光线通过这种色散装置之后仍平行于原来的入射线,相互之间仅发生一定的平移。这样转动转台,当 角增大时波长短的单色光可以射出;当 角减小时波长长的单色光可以射出。棱镜转动的位置有鼓轮刻度标志,因每一鼓轮刻度都和一定的单色光的波长相对应,因而只要有了单色仪的定标曲线——鼓轮刻度与光谱波长之间的对应曲线(又称色散曲线)就可以从鼓轮读数确定出射光的波长。
大学物理实验---单色仪的定标和光谱测量

G
M2 M1
S2 PMT
S1:入射狭缝 G:闪耀光栅 S2:出射狭缝 M2:反光镜 M1:离轴抛物镜 PMT:光电倍增管
如下图所视,当入射光与光栅面的法线N 的方向的夹角为φ(见图) 时,光栅的闪耀角为θ 。 取一级衍射项时,对于入射角为φ,而衍射角 为θ时,光栅方程式为: d(sinφ+sinθ)= λ
������2 =
|497.812−497.78| 497.78 498.2
2、498.250 =0.006% =0.01%
|498.250−498.2|
2、
低压汞灯光谱测量
页 5
BY 王有识
实 验 报 告
Figure 5 低压汞灯 黄光 强
峰值数据:1、576.925 与标准值之间误差:������1 =
λf
D;
= a= W0 0.86 a = n
Hale Waihona Puke λfD 时最佳 (D 为光栅的宽度, f 为等效会聚透
镜的焦距) 3、
单色仪的理论分辨本领如何计算?实际分辨本领如何测量和 计算?
答:理论分辨本领 R 的 R = λ = mN 计算: dλ m=1, 为光栅的总线条数。 N
m 为干涉级次,
实际分辨本领的测量和计算,原理和操作如下:
页 11
BY 王有识
实 验 报 告
LED 灯能让很小的通过电流几乎全部转化成可见光。 LED 灯具有以下优点: 一、高光效 LED 光效达 50~200 流明/瓦,光谱窄,单色性好,
几乎所有发出的光都可利用,且无需过滤直接发出色光。 二、高节能 具有电压低、电流小、亮度高的特性。一个 10~
12 瓦的 LED 光源发出的光能与一个 35~150 瓦的白炽灯发出的光能 相当。同样照明效果 LED 比传统光源节能 80%~90%。 三、 光色多 可以选择白色或彩色光, 红色、 黄色、 蓝色、 绿色、
实验十 单色仪的定标和波长的测定

a = a' …………………………………………………………⑤
f1 f2
上式表明,当出射缝宽和入射缝的像有同样宽度时,出射光强度最大,如果 上式简化为 。 a=a’
,则 f1=f2
若光谱宽度△λ增加 n 倍,则出射光通量将增加 n2倍。当△λ一定时,出射光通量与
棱镜的色散有关,对于不同波长的光输出,因色散不同,所以狭缝的宽度应随着改变,才能
1、 入射准直系统 组它成使,S1因由发入S出1射固的缝定入在S射1M光和1束凹的成面焦为镜面平上M行,1 光束。
2、 瓦兹渥斯色散系统 由玻璃棱镜 P 和平面镜 M 联合组装成一整体,安装在同一转台上,可以绕通过 O 点垂直于图面的轴线(棱镜顶角的 等分面和底面的交线)转动,该系统的特点是平行光束通过后,以最小的偏向角出射的单色 光仍平行于原入射光,即该系统为恒偏向色散装置。 3、 出射聚光系统 后光,,会通聚常由在称凹为面M单镜2的色M焦光2面和。,出即射出缝射S2缝组S成2,的它平将面色上散,后因沿S不2缝同宽方较向小传,播从的S单2输色出平的行是光波经段M很2 反窄的射 随着棱镜台绕 O 轴转动,以最小偏向角通过棱镜的光束的波长也随之改变,当最小 偏向角由1、小单变色大仪时的,光从谱S宽2 输度出的单色光的波长将依次由长变短。 若入射光从 S1 射入,入射缝宽为 a,则狭缝 S1 在出射缝 S2 的光谱面上成像,其像宽为
本实验选用汞灯作为已知线光谱的光源,在可见光区域(400-760nm)进行定标,然后
用定标曲线测出钠双黄线的波长。
[实验内容及步骤]
1、观察入射狭缝和出射狭缝的结构,了解缝宽的调节和读数以及狭缝使用时的注意事
项。因为两个缝的宽度直接影响出射光的强度和单色性,所以必须根据需要适当选择缝宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电倍增管使用注意事项
✓ 负高压可达900伏(光电倍增管加的电压为负高 压)先开电源,打开测量软件后,设定测量参数, 根据测量要求再调节负高压(关时一定要先关软 件,再关电源)。
✓ 一般在半小时后阳极电流达到稳定(暗电流)。 ✓ 输入光信号不可过强,光阴极面不可直接暴露在
光照下(特别是在加了电压的情况下,否则将烧 毁光电倍增管)。
1(3R p)2(nR d)2(n4,5)
s 1 .3 5 p 0 .8 6 d 0 .0 1
高压汞灯光谱测量
颜色
波长/nm
强度
△404.66
强
△407.78
中
紫色
410.81
弱
433.92
弱
434.75
中
△435.84
强
•
△491.60
强
蓝绿色
△496.03
中
汞
535.41
弱
灯
536.51
光栅与棱镜相比
优点
棱镜的工作光谱区受到 材料的限制(光的波长 小于120nm,大于 50m时不能用)
光栅的角色散率与波长 无关,棱镜的角色散率 与波长有关。
棱镜的尺寸越大分辨率 越高,但制造越困难, 同样分辨率的光栅重量 轻,制造容易。
缺点
光栅存在光谱重叠问题而 棱镜没有。
光栅存在鬼线(由于刻划 误差造成)而棱镜没有。
单色仪的接收系统—光电倍增管
光电倍增管工作原理
利用光电子发射效应和二次电子发射效应制 成的光电器件。光电倍增管是电流放大元件, 具有很高的电流增益,因而最适合于微弱信 号的检测。
优点是灵敏度高、稳定性好、响应速度快和 噪音低。
缺点是结构复杂、工作电压高、体积大。
使用光电倍增管应当了解它的特性,如它的 频率特性、时间特性、暗电流和噪声特性, 还有稳定性及对环境的要求等。
✓ 为了尽可能降低噪声在不使用光电倍增管的时候 要挡住入射光。
单色仪的分光系统—矩形光栅
入射光垂直矩形光栅时衍射光强的分布公式:
II0(s i n)2(ssiinN n)2
单缝衍射因子干涉因子
asin
dsin
a为光栅透光部分的宽度,N为光栅的总周期数
d为光栅的周期,为衍射角
单色光的光栅光强分布的曲线
单色仪的结构和原理
三部分—光源和照明系统、分光系统和接收系统
G
M2
S1
M1
S2 PMT
图1
S1:入射狭缝 S2: 出射狭缝 M1:离轴抛物镜 G: 闪耀光栅 M2:反光镜 PMT:光电倍增管
单色仪的照明系统
光源:火焰(燃烧气体:乙炔、甲烷、氢气) 电火花、电弧(电火花发生器)、 激光、高低压气体灯(钠灯、汞灯等)、 星体、太阳
三级物理实验
单色仪的定标和光谱测量
Monochromator Experiments
内容简介
单色仪的用途 光谱学发展史简介 单色仪的结构和原理 闪耀光栅的工作原理 单色仪的入射和出射狭缝 钠灯、He-Ne激光器、LED灯、汞灯的光谱测量 滤光片的吸收特性光谱测量 红宝石吸收和发射光谱测量, 罗丹明6G 溶液的发光和吸收光谱测量
w0
w
.
f D
an
f D
a/an
ห้องสมุดไป่ตู้狭缝的最佳宽度
狭缝宽度与分辨率、谱线强度的关系
RI
1
a/an
由上图可见缝宽过大时实际分辨率下降,缝宽过小时出射狭缝上得 到光强太小,取a=an最好。
实验内容
光栅单色仪的定标 高压汞灯光谱测量 红宝石晶体的发射和吸收光谱测量 滤光片的吸收曲线测量 罗丹明6G溶液的发射和吸收曲线测量 蓝色LED灯测量(400-550 nm)
1、形成阶段: 1666年牛顿在研究三棱镜时 发现将太阳光通过三 棱镜太阳光分解为七色光。 1814年夫琅和费设计了包括狭缝、棱镜和视窗的光 学系统并发现了太阳光谱中的吸收谱线(夫琅和费 谱线)。
2、研究室和应用阶段: 1860年克希霍夫和本生为研究金属光谱设计成较完 善的现代光谱仪—光谱学诞生。由于棱镜光谱是非 线性的,人们开始研究光栅光谱仪。
谱线的半角宽度 光栅的角色散本领
d Ndcos
D
d m d dcos
光栅的光谱分辨本领 R mN d
理论分辨本领计算实例:
m=1, N=64mm1200/mm=76800
闪耀光栅的原理
n为刻槽面法线方向
为光线的入射角
N为光栅面法线方向
为光线的衍射角
N
b 光栅的闪耀角
n -b
角度的符号规定(顺 时针为正)
光栅单色仪的定标
―――钠灯光谱
589.0 nm
589.6 nm
钠原子的光谱
光谱公式(里德堡常数R
)
主线系 589.0 nm/589.6 nm
1(3Rs)2 (3Rp)2
锐线系 616.0 nm/615.4 nm
1 R R
(3p)2 (5s)2
漫线系
568.3 nm/568.86 nm 497.78 nm/498.2 nm
单色仪的用途
从复色光源中提取单色光 测量复色光源的光谱:
研究目的—物质的辐射特性,光与物质的相互作用, 物质的结构(原子分子能级结构),遥远星体的温度、 质量、运动速度和方向。 应用范围—采矿、冶金、石油、燃化、机器制造、纺 织、农业、食品、生物、医学、天体与空间物理(卫 星观测)等等。
光谱学发展史简介
弱
的
绿色
△546.07
强
主
567.59
弱
要
发
黄色
射
谱
线
橙色
△576.96
强
△579.07
强
585.92
弱
589.02
弱
△607.26
弱
△612.33
弱
红色
△623.44
中
△671.62
中
深红色
△690.72
透光缝宽:a=0.01mm 光栅周期:d=0.02mm 光栅的总条数:N=4
透光缝宽:a=0.01mm 光栅周期:d=0.03mm 光栅的总条数:N=100
光栅方程式
描述各个干涉因子主极大的位置
d为光栅周期,为入射角,为衍射角,m为衍射级次, 为光的波长。
d(sis ni)n m
光栅的色散原理分辨本领
-
b
入射角与闪耀波长的关系
n ,m , .
b
b
几何光学的方向能量最大:
( )
b
b
b
m=1 一级闪耀波长为
d=1/1200mm
b
d(sin
sin(b
)
5o, 10 o, 30o
b 587, 600.5, 606.3 (nm)
光强曲线
单色仪狭缝宽度的讨论
1、设照明狭缝的光是完全非相干的(即每一点为独立的点光源)。 2、设狭缝为无限细,由衍射理论可知谱线的半宽度为: 3、当狭缝a逐渐变宽时的变化如下图所示: