用JKFF触发器设计一个模为8的加法计数器

合集下载

实验三 异步模8加1计数器

实验三 异步模8加1计数器

实验三异步模8加1计数器
实验目的:1.熟练掌握脉冲异步时序电路的设计方法
2.加深对异步时序电路的理解
3.掌握计数器的设计原理
实验条件:
1.操作系统为WINDOWS 2000的计算机一台
2.Multisim 2001电子线路仿真软件一套
实验组件:1.二输入四与非门 74LS08 1片
2.双JK触发器 74LS73 2片
实验内容:
用J-K储发器作为存储元件设计一个异步模8加1计数器,该电路对输入端X出现的脉冲进行计数,当收到第8个脉冲时,输出端Z产生一个进位输出脉冲。

实验要求:
1.脉冲由方波发生器(5V /1KHZ)提供,也可用开关的闭合表示1次脉冲。

2.74LS73的CLR端必须接V CC。

3. 根据实验内容,写出设计过程,列出真值表、逻辑函数式,在Multisim 2001中画出逻辑图,并用逻辑分析仪测试结果。

下周三交实验报告。

附:1.74LS73芯片引脚图和JK触发器逻辑符号
2. 74LS08管脚图。

实验一、8位加法器的设计

实验一、8位加法器的设计

E D A技术实验报告题目实验一、8位加法器的设计学生姓名学号10100140所在学院物理与电信工程学院专业班级物理101班一、实验原理基本原理:调用库(USE IEEE.STD_LOGIC_ARITH.ALL)直接进行算术运算,以实现加法器功能,从而不用去编写全加器,即程序尽量简单化。

并用函数CONV_INTEGER(D)把输入的8位二进制数转换成整形数,再相加以十进制数在数码管上显示出来。

加法信号由(ST)控制,ST接一个正脉冲信号,当来一个下降沿时,就读进第一个8位二进制数,再来一个下降沿时就执行加法功能,前后两个8位二进制数相加。

进程process (p)就是把三位十进制数的百位、十位、各位分别取出来,再转换成4位逻辑位矢量。

一个简单加法器,能够实现加法运算并显示结果,在按键控制下,由开关变量以二进制(不超过8位)的形式送入加数和被加数,但必须以十进制的形式显示,按下加法按键后,以十进制方式显示结果。

根据要求首先加法器中必须有二进制(8位)转换成十进制电路,其次加法器中需要用开关变量来控制加数和被加数的输入,再次输入的二进制加数和被加数必须经过转换成十进制后显示,最后加法完成结果以十进制显示。

其二进制(8位)全为1时转换成十进制表示为255,先设三位分别表示十进制数的百位、十位和个位。

将二进制数分别减去100的二进制数,循环直至二进制数小于100,百位循环一次加一,根据同样的道理得出十位和个位。

加数和被加数的输入和显示,利用高低电平控制显示器,当电平为高电平时显示加数和被加数的和,利用选择器来分别选择输出显示,当低电平时分别显示输入的二进制加数和被加数。

加法器是数字系统中的基本逻辑器件,减法器和硬件乘法器都可由加法器来构成。

多位加法器的构成有两种方式:并行进位和串行进位。

并行进位加法器设有进位产生逻辑,运算速度较快;串行进位方式是将全加器级联构成多位加法器。

并行进位加法器通常比串行级联加法器占用更多的资源。

计算机组成原理实验报告-八位补码加减法器的设计与实现

计算机组成原理实验报告-八位补码加减法器的设计与实现

计算机科学与技术学院计算机组成原理实验报告书实验名称八位补码加/减法器的设计与实现班级学号姓名指导教师日期成绩实验1八位补码加/减法器的设计与实现一、实验目的1.掌握算术逻辑运算单元(ALU)的工作原理。

2.熟悉简单运算器的数据传送通路。

3.掌握8位补码加/减法运算器的设计方法。

4.掌握运算器电路的仿真测试方法二、实验任务1.设计一个8位补码加/减法运算器(1)参考图1,在QUARTUS II里输入原理图,设计一个8位补码加/减法运算器。

(2)创建波形文件,对该8位补码加/减法运算器进行功能仿真测试。

(3)测试通过后,封装成一个芯片。

2.设计8位运算器通路电路参考下图,利用实验任务1设计的8位补码加/减法运算器芯片建立运算器通路。

3.利用仿真波形,测试数据通路的正确性。

设定各控制信号的状态,完成下列操作,要求记录各控制信号的值及时序关系。

(1)在输入数据IN7~IN0上输入数据后,开启输入缓冲三态门,检查总线BUS7~BUS0上的值与IN0~IN7端输入的数据是否一致。

(2)给DR1存入55H,检查数据是否存入,请说明检查方法。

(3)给DR2存入AAH,检查数据是否存入,请说明检查方法。

(4)完成加法运算,求55H+AAH,检查运算结果是否正确,请说明检查方法。

(5)完成减法运算,分别求55H-AAH和AAH-55H,检查运算结果是否正确,请说明检查方法。

(6)求12H+34H-56H,将结果存入寄存器R0,检查运算结果是否正确,同时检查数据是否存入,请说明检查方法。

三、实验要求(1)做好实验预习,掌握运算器的数据传送通路和ALU的功能特性。

(2)实验完毕,写出实验报告,内容如下:①实验目的。

②实验电路图。

③按实验任务3的要求,填写下表,以记录各控制信号的值及时序关系。

表中的序号表示各控制信号之间的时序关系。

要求一个控制任务填一张表,并可用文字对有关内容进行说明。

⑤实验体会与小结。

四、实验预习内容1.实验电路设计原理及思路说明本实验利用基本逻辑门电路设计一位全加器(FA),如表1:加法又可以实现减法,所以使用了一个M输入来进行方式控制加减。

8位串行进位加法器

8位串行进位加法器

8位串行进位加法器实验报告一、实验目的使对quartus II的使用进行初步的了解,对于一些芯片的组合应用更加掌握。

二、实验内容设计8位串行进位加法器用半加器设计一个全加器元件,然后根据图4-38,在顶层设计中用8个1位全加器构成8位串行进位加法器。

给出时序仿真波形并说明之、引脚锁定编译、编程下载于FPGA中进行硬件测试。

完成实践报告。

三、实验步骤及各步结果1、分析8位串行全加器的层次结构2、半加器3、一位全加器output S,CO;wire S1,D1,D2;halfadder HA1(S1,D1,A,B);halfadder HA2(S,D2,S1,CI);or g1(CO,D2,D1);endmodule//8-bit full addermodule _8bit_adder(S,C7,A,B,C_1);input[7:0]A,B;input C_1;output [7:0]S;output C7;wire C0,C1,C2,C3,C4,C5,C6,C7;fulladderFA0(S[0],C0,A[0],B[0],C_1),FA1(S[1],C1,A[1],B[1],C0),FA2(S[2],C2,A[2],B[2],C1),FA3(S[3],C3,A[3],B[3],C2),FA4(S[4],C4,A[4],B[4],C3),FA5(S[5],C5,A[5],B[5],C4),FA6(S[6],C6,A[6],B[6],C5),FA7(S[7],C7,A[7],B[7],C6);endmodule4、软件使用(1)、新建一个工程,工程名为_8bit_adder(2)、新建一个Verilog HDL File文件并写入程序代码(3)、对写完的代码进行编译,发现没有错误(4)、新建一个波形文件(5)、新建(6)、插入程序后双击输入数值进行数据的输入(7)、输入相应的值(8)、仿真出来的结果(9)、按时序给输入端输入不同的数据(10)、继续仿真,波形如图(11)、时序仿真(12)、放大后这里出现了冒险竞争。

8位二进制加法计算器

8位二进制加法计算器

一:本实验设计的是一个8为二进制加法计算器,其功能就是对两个八位的二进制数执行加法运算,并可以异步清零。

二:电路可划分为三部分:半加器、全加器和复位电路。

1、半加器:真值表a b so co0 0 0 00 1 1 01 0 1 01 1 0 1电路图2全加器:由半加器和或门组成电路图3复位电路:复位电路通过en控制,当en为‘1’时,执行加法运算,输出正确的值,当en为‘0’时,输输出及结果为全0.三:实验波形仿真和VHDL1、仿真图:2、VHDL代码1)半加器h_adder:library ieee;use ieee.std_logic_1164.all;entity h_adder isport (a,b :in std_logic;co,so :out std_logic);end entity h_adder;architecture fh1 of h_adder isbeginso <= not(a xor (not b));co <= a and b ; end architecture fh1;2)或门or2a:library ieee;use ieee.std_logic_1164.all;entity or2a isport (a,b :in std_logic;c: out std_logic);end entity or2a;architecture one of or2a isbeginc <= a or b ;end architecture one;3)全加器f_adder:library ieee;use ieee.std_logic_1164.all;entity f_adder isport (ain,bin,cin:in std_logic;cout,sum:out std_logic);end entity f_adder;architecture fd1 of f_adder iscomponent h_adderport (a,b :in std_logic;co,so :out std_logic);end component;component or2aport (a,b :in std_logic;c: out std_logic);end component;signal d,e,f: std_logic;beginu1:h_adder port map(a=>ain,b=>bin,co=>d,so=>e);u2:h_adder port map(a=>e,b=>cin,co=>f,so=>sum);u3: or2a port map(a=>d,b=>f,c=>cout);end architecture fd1;4)与门and2a:library ieee;use ieee.std_logic_1164.all;entity and2a isport (a,b :in std_logic;c: out std_logic);end entity and2a;architecture one of and2a isbeginc <= a and b ;end architecture one;5)顶层设计文件library ieee;use ieee.std_logic_1164.all;entity zong isport (a1,a2,a3,a4,a5,a6,a7,a8,b1,b2,b3,b4,b5,b6,b7,b8,en :in std_logic;solution1,solution2,solution3,solution4,solution5,solution6,solution7,solution8,solution9 :out std_logic );end entity zong;architecture fh1 of zong iscomponent h_adderport (a,b :in std_logic;co,so :out std_logic);end component;component f_adderport (ain,bin,cin:in std_logic;cout,sum:out std_logic);end component;component and2aport (a,b :in std_logic;c: out std_logic);end component;signale2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,e23,e24 :std_logi c;beginu1:and2a port map(a=>en,b=>a1,c=>e2);u2:and2a port map(a=>en,b=>a2,c=>e3);u3:and2a port map(a=>en,b=>a3,c=>e4);u4:and2a port map(a=>en,b=>a4,c=>e5);u5:and2a port map(a=>en,b=>a5,c=>e6);u6:and2a port map(a=>en,b=>a6,c=>e7);u7:and2a port map(a=>en,b=>a7,c=>e8);u8:and2a port map(a=>en,b=>a8,c=>e9);u9:and2a port map(a=>en,b=>b1,c=>e10);u10:and2a port map(a=>en,b=>b2,c=>e11);u11:and2a port map(a=>en,b=>b3,c=>e12);u12:and2a port map(a=>en,b=>b4,c=>e13);u13:and2a port map(a=>en,b=>b5,c=>e14);u14:and2a port map(a=>en,b=>b6,c=>e15);u15:and2a port map(a=>en,b=>b7,c=>e16);u16:and2a port map(a=>en,b=>b8,c=>e17);u17:h_adder port map(a=>e2,b=>e10,co=>e18,so=>solution1);u18:f_adder port map(ain=>e3,bin=>e11,cin=>e18,cout=>e19,sum=>solution2);u19:f_adder port map(ain=>e4,bin=>e12,cin=>e19,cout=>e20,sum=>solution3);u20:f_adder port map(ain=>e5,bin=>e13,cin=>e20,cout=>e21,sum=>solution4);u21:f_adder port map(ain=>e6,bin=>e14,cin=>e21,cout=>e22,sum=>solution5);u22:f_adder port map(ain=>e7,bin=>e15,cin=>e22,cout=>e23,sum=>solution6);u23:f_adder port map(ain=>e8,bin=>e16,cin=>e23,cout=>e24,sum=>solution7);u24:f_adder port map(ain=>e9,bin=>e17,cin=>e24,cout=>solution9,sum=>solution8);end architecture fh1;。

8位全加器的设计

8位全加器的设计

二、实验原理:一个8位全加器可以由2个4位全加器构成,加法器间的进位可以用串行方式实现,即将低位加法器的进位输出与相临的高位加法器的低进位输入信号相接。

4位全加器采用VHDL语言输入方式进行设计,将设计的4位全加器变成一个元件符号,在8位全加器的设计中进行调用。

三、实验内容和步骤:1. 采用VHDL语言输入方式设计4位全加器(1)打开QuartusII,执行File|New,在New窗口中的Device Design Files 中选择VHDL Files,然后在VHDL文本编译窗中输入程序。

执行File|Save As,找到已设立的文件夹,存盘文件名应该与实体名一致。

(2)将设计项目设置成可调用的元件选择File→create/update→create symbol Files for current file命令,将转换好的元件存在当前工程的路径文件夹中。

2.采用原理图输入方式设计8位全加器(1)打开QuartusII,执行File|New,选择block diagram/schematic file,在原理图编辑窗口中连接好8位全加器电路图(注意元件的调用),存盘。

(2)创建工程:执行File|New Project Wizard,选择目标芯片。

(3)编译:执行Processing|Start Compilation命令,进行编译。

(4)引脚锁定:在菜单Assignments中选Assignments Editor按钮,先单击右上方的Pin,再双击下方最左栏的“New”选项,弹出信号名栏,锁定所有引脚,进行编译,存盘。

选择编程模式1,键2、键1输入8位加数,键4、键3输入8位被加数,键8输入进位cin,数码管6/5显示和,D8显示进位cout。

5. 编程下载及验证:执行Tool|Programmer命令,选择program/config;执行start,进行验证,记录结果。

4位全加器的参考源程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY adder4b ISPORT(cin:IN STD_LOGIC;a,b:IN STD_LOGIC_VECTOR(3 DOWNTO 0);s:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);cout:OUT STD_LOGIC);END ENTITY adder4b;ARCHITECTURE art OF adder4b ISSIGNAL sint,aa,bb:STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINaa<='0'&a;bb<='0'&b;sint<=aa+bb+cin;s<=sint(3 downto 0);cout<=sint(4);END art;触发器功能的模拟实现三、实验内容:基本RS触发器、同步RS触发器、集成JK触发器和D触发器同时集成在一个芯片上,实现的原理图如下:输入信号Sd、Rd对应的管脚接按键开关,CLK1、CLK2接时钟源(频率<5Hz);J,K,D,R,S对应的管脚分别接拨码开关;输出信号QRS,NQRS,QRSC,NQRSC,QJK,NQJK,QD,NQD对应管脚分别接LED灯。

8位超前进位加法器

8位超前进位加法器

【verilog】8位超前进位加法器2010-12-22 21:16这是我的32位超前进位加法器的一部分。

其中的一个模块,一个8位的超前进位加法器。

我的32位的超前进位加法器是将4个模块再进行超前进位加法实现的。

也就是second level carry-lookahead adder:以下的代码就是上面的block0到block3。

代码://Written by alexyangfox#module eight_bit_unit(A,B,c0,G_level,PG_level,carry,sum);input [7:0] A; //加数Ainput [7:0] B; //加数Binput c0; //输入的进位c0 (Carry 0)output [7:0] sum; //输出和output G_level,PG_level,carry; //产生的极间PG(propagate)和G(generate)//因为我这里想要的是做2级超前进位加法器//一个32位的超前进位加法器由4个八位的超前进位加法器组成//然后四个加法器又被当作独立的模块,四个加法器再超前进位一次形成第二级wirepg0,pg1,pg2,pg3,pg4,pg5,pg6,pg7,g0,g1,g2,g3,g4,g5,g6,g7,c0,c1,c2,c3,c4,c5,c6,c7,c8;wire G_level,PG_level,carry;//全部 PG的计算(propagate)//有的人将PG定义为: PG=A + B//而我在此处使用通常定义: PG = A xor B//由于有这样的关系 A + B = (A xor B) + AB//但是AB已经在Gernerate中:C_n=Generator_(n-1) + Propagate_(n-1)*C_(n-1)//PG 和 G只是用来计算进位数的,所以使用哪种PG的定义并没有影响//在实际电路中,若使用PG=A+B的方案,还可以减少晶体管的使用//well,sth interesting :XOR is not "exclusive or" (nor),it's //"exclusive disjunction or"assign pg0=A[0]^B[0];assign pg1=A[1]^B[1];assign pg2=A[2]^B[2];assign pg3=A[3]^B[3];assign pg4=A[4]^B[4];assign pg5=A[5]^B[5];assign pg6=A[6]^B[6];assign pg7=A[7]^B[7];//计算所有的 Generate (G)assign g0=A[0] & B[0];assign g1=A[1] & B[1];assign g2=A[2] & B[2];assign g3=A[3] & B[3];assign g4=A[4] & B[4];assign g5=A[5] & B[5];assign g6=A[6] & B[6];assign g7=A[7] & B[7];//进位产生器//公式:C_n=Generator_(n-1) + Propagate_(n-1)*C_(n-1)//c1=g0 + pg0*c0assign c1=g0|( pg0 & c0);//c2=g1+ pg1*g0 + pg1*pg0*c0assign c2=g1|( pg1 & g0)|( pg1 & pg0 & c0);//c3=g2+ pg2*g1+ pg2*pg1*g0 + pg2*pg1*pg0*c0assign c3=g2|( pg2 & g1)|( pg2 & pg1 & g0)|( pg2 & pg1 & pg0 & c0);//c4= g3 + pg3*g2+ pg3*pg2*g1+ pg3*pg2*pg1*g0// + pg3*pg2*pg1*pg0*c0assign c4=g3|(pg3 & g2)|(pg3 & pg2 & g1)|( pg3 & pg2 & pg1 & g0)|(pg3 & pg2 & pg1 & pg0 & c0);//c5= g4 + pg4*g3 + pg4*pg3*g2+ pg4*pg3*pg2*g1// + pg4*pg3*pg2*pg1*g0 + pg4*pg3*pg2*pg1*pg0*c0assign c5=g4|( pg4 & g3)|( pg4 & pg3 & g2)|( pg4 & pg3 & pg2 & g1)|( pg4& pg3 & pg2 & pg1 & g0)|( pg4 & pg3 & pg2 & pg1 & pg0 & c0);//c6=g5 + pg5*g4 + pg5*pg4*g3 + pg5*pg4*pg3*g2// + pg5*pg4*pg3*pg2*g1 + pg5*pg4*pg3*pg2*pg1*g0// + pg5*pg4*pg3*pg2*pg1*pg0*c0assign c6=g5|( pg5 & g4)|( pg5 & pg4 & g3)|( pg5 & pg4 & pg3 & g2)|( pg5 & pg4 & pg3 & pg2 & g1)|( pg5 & pg4 & pg3 & pg2 & pg1 & g0)|( pg5 & pg4 & pg3 & pg2 & pg1 & pg0 & c0);//c7=g6 + pg6*g5 + pg6*pg5*g4 + pg6*pg5*pg4*g3 + pg6*pg5*pg4*pg3*g2// + pg6*pg5*pg4*pg3*pg2*g1 + pg6*pg5*pg4*pg3*pg2*pg1*g0// + pg6*pg5*pg4*pg3*pg2*pg1*pg0*c0assign c7=g6|( pg6 & g5)|( pg6 & pg5 & g4)|( pg6 & pg5 & pg4 & g3)|( pg6 & pg5 & pg4 & pg3 & g2)|( pg6 & pg5 & pg4 & pg3 & pg2 & g1)|( pg6 & pg5 & pg4 & pg3 & pg2 & pg1 & g0)|( pg6 & pg5 & pg4 & pg3 & pg2 & pg1 & pg0 & c0);//c8=g7 + pg7*g6 + pg7*pg6*g5 + pg7*pg6*pg5*g4 + pg7*pg6*pg5*pg4*g3 +pg7*pg6*pg5*pg4*pg3*g2// + pg7*pg6*pg5*pg4*pg3*pg2*g1 + pg7*pg6*pg5*pg4*pg3*pg2*pg1*g0//+ pg7*pg6*pg5*pg4*pg3*pg2*pg1*pg0*c0assign c8=g7|(pg7 & g6)|(pg7 & pg6 & g5)|(pg7 & pg6 & pg5 & g4)|(pg7 & pg6 & pg5 & pg4 & g3)|(pg7 & pg6 & pg5 & pg4 & pg3 & g2)|(pg7 & pg6 & pg5 & pg4 & pg3 & pg2 & g1)|(pg7 & pg6 & pg5 & pg4 & pg3 & pg2 & pg1 & g0)|(pg7 & pg6 & pg5 & pg4 & pg3 & pg2 & pg1 & pg0 & c0);//这句写成:c8=G_level|(pg7 & pg6 & pg5 & pg4 & pg3 & pg2 & pg1 & pg0 & c0);会减少器件使用,但是会增加延迟?//极间超前进位信号G_level和PG_level的产生//Actually I am building a two_level carry look ahead adder.//回顾上面C8的计算公式,将它拆解成两部分://C8=G_level + C0*PG_level//于是,我们很容易得到这个://G_level=item0+item1+...+item7//PG_level=pg7*pg6*pg5*pg4*pg3*pg2*pg1*pg0assign PG_level=pg7 & pg6 & pg5 & pg4 & pg3 & pg2 & pg1 & pg0;assign G_level=g7|(pg7 & g6)|(pg7 & pg6 & g5)|(pg7 & pg6 & pg5 & g4)|(pg7 & pg6 & pg5 & pg4 & g3)|(pg7 & pg6 & pg5 & pg4 & pg3 & g2)|(pg7 & pg6 & pg5 & pg4 & pg3 & pg2 & g1)|(pg7 & pg6 & pg5 & pg4 & pg3 & pg2 & pg1 & g0);//the parts above explains the term "Carry look_ahead"//计算输出结果//两个异或门(Xor GAtes)assign sum[0]=A[0] ^ B[0] ^ c0;assign sum[1]=A[1] ^ B[1] ^ c1;assign sum[2]=A[2] ^ B[2] ^ c2;assign sum[3]=A[3] ^ B[3] ^ c3;assign sum[4]=A[4] ^ B[4] ^ c4;assign sum[5]=A[5] ^ B[5] ^ c5;assign sum[6]=A[6] ^ B[6] ^ c6;assign sum[7]=A[7] ^ B[7] ^ c7;assign carry=c8;endmodule。

八位二进制加法计数器设计

八位二进制加法计数器设计

八位二进制加法计数器设计目录一、设计目的和要求 (1)1.课程设计目的 (1)2.课程设计的基本要求 (1)3.课程设计类型 (1)二、仪器和设备 (1)三、设计过程 (1)1.设计内容和要求 (1)2.设计方法和开发步骤 (2)3.设计思路 (2)4.设计难点 (4)四、设计结果与分析 (4)1.思路问题以及测试结果失败分析 (4)2.程序简要说明 (5)五、心得体会 (11)六、参考文献 (12)一、设计目的和要求1.课程设计目的设计一个带进位的八位二进制加法计数器:要求在MAX+plusⅡ10.2软件的工作平台上用VHDL语言层次设计出一个带进位的八位二进制加法器,并通过编译及时序仿真检查设计结果。

2.课程设计的基本要求全加器与带进位输入8位加法器设计要求我们通过8位全加器的设计掌握层次化设计的方法,充分理解全加器的设计过程,掌握一位全加器的程序,熟悉MAX+plusⅡ10.2软件的文本和原理图输入方法设计简单组合电路。

课程设计过程中要求能实现同步和异步的八位二进制全加器的设计。

3.课程设计类型EDA课程设计二、仪器和设备PC机、MAX+plusⅡ10.2软件三、设计过程1.设计内容和要求方法一:1.原理图输入完成半加器和1位全加器的设计,并封装入库2.层次化设计,建立顶层文件,由8个1位全加器串联构成8位全加器3.每一层次均需进行编译、综合、适配及仿真方法二:1. 原理图输入完成一个四位全加器的设计2.层次化设计,建立顶层文件,由2个4位全加器串联构成8位全加器3.每一层次均需进行编译、综合、适配及仿真2.设计方法和开发步骤加法器是数字系统中的基本逻辑器件。

例如:为了节省资源,减法器和硬件乘法器都可由加法器来构成。

但宽位加法器的设计是很耗费资源的,因此在实际的设计和相关系统的开发中需要注意资源的利用率和进位速度等两方面的问题。

多位加法器的构成有两种方式:并行进位和串行进位方式。

并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:用JKFF 设计模为8的加法计数器
步骤1: 分析题意 根据题目所给的条件,待设计的计数器默认为模为8的加法器,不需要求加载初值。

电路只需要故电路只需时钟输入端clk ,clk 作为电路的同步时钟,不必当做输入变量对待;输出一个8进制数要3个输出端,记为0Q 1Q 2Q 。

要有输出信号Y ,故共需要3个输出端。

因输出量0Q 1Q 2Q 就是计数值,故采用Moore 型电路较为合适。

步骤2:建立原始状态图 模8加法器要求逢8加1,。

有此状态图做出如图所示。

需要8个状态故不需要化简。

/Y /0 /0 /0
S0→
S1→
S2→
S3 ↑
/1 ↓
/0 S7←S6←S5←
S4
/0 /0 /0
步骤3:状态分配。

由于最大模的值为8,因此必须取代码位数n=3。

假设S0=000,S1=001,S2=010,S3=011,S4=100,S5=101,S6=110,S7=111.则可以做出状态转移表如图。

步骤4:选触发器,求时钟、输出、状态、驱动方程。

因需要3位二进制代码,选用三个CP 下降沿出发的J-K 触发器,分别用FF0,FF1,FF2表示。

有状态列表可作出次态卡诺图及输出函数的卡诺图,如图所示。

与J-K 触发器的特性方程
n
n n Q
K Q J Q
+=+1
比较得到驱动方程
输入 现态 次态
输 出
CP Q2 Q1 Q0 12
+n Q
11
+n Q
1
+n Q
Y 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 2 0 1 0 0 1 1 0 3 0 1 1 1 0 0 0 4 1 0 0 1 0 1 0 5 1 0 1 1 1 0 0 6 1 1 0 1 1 1 0 7
1
1
1
1
n
n Q Q 0
1
=+
10=J 1
0=K
n
n n n n Q Q Q Q Q 1
0101
1
+=+ n
Q J 0
1=
n
Q K 0
1=
n
n n n n n n n Q Q Q Q Q Q Q Q 1
2201201
2
++=+
n
n n Q Q Q Y 2
10=
n
n
Q Q K J 1
022==
步骤5:画出逻辑电路图
n
Q 0
n
n
Q Q 12
00 01 11 10
0 1 1 1 1 1
n
Q 0
n
n
Q Q 12
00 01 11 10
0 0 1 1 0 1
1
n
Q 0
n
n Q Q 1
2
00
01 11
10
0 0 0 1 1
1
1
1
n
Q 0
n
n
Q Q 1
2
00
01
11
10
0 0 0 0 0 1
1。

相关文档
最新文档