密码学实验报告
密码学案例实验报告书

一、实验背景随着信息技术的飞速发展,信息安全问题日益突出。
密码学作为保障信息安全的核心技术,在数据加密、身份认证、数字签名等领域发挥着重要作用。
为了加深对密码学原理的理解,提高实际应用能力,我们开展了本次密码学案例实验。
二、实验目的1. 掌握DES加密算法的基本原理和操作步骤。
2. 熟悉RSA加密算法的原理和应用。
3. 学习数字签名技术的应用。
4. 培养动手实践能力,提高解决实际问题的能力。
三、实验内容1. DES加密算法(1)实验目的:了解DES加密算法的基本原理,掌握DES加密和解密过程。
(2)实验内容:① 设计一个简单的DES加密程序,实现明文到密文的转换。
② 设计一个简单的DES解密程序,实现密文到明文的转换。
(3)实验步骤:① 编写DES加密程序,输入明文和密钥,输出密文。
② 编写DES解密程序,输入密文和密钥,输出明文。
2. RSA加密算法(1)实验目的:了解RSA加密算法的基本原理,掌握RSA加密和解密过程。
(2)实验内容:① 设计一个简单的RSA加密程序,实现明文到密文的转换。
② 设计一个简单的RSA解密程序,实现密文到明文的转换。
(3)实验步骤:① 编写RSA加密程序,输入明文和密钥对,输出密文。
② 编写RSA解密程序,输入密文和私钥,输出明文。
3. 数字签名技术(1)实验目的:了解数字签名技术的基本原理,掌握数字签名的生成和验证过程。
(2)实验内容:① 设计一个简单的数字签名程序,实现签名生成和验证。
(3)实验步骤:① 编写数字签名程序,输入明文、私钥和签名算法,输出签名。
② 编写数字签名验证程序,输入明文、公钥和签名,验证签名是否正确。
四、实验结果与分析1. DES加密算法实验结果通过编写DES加密和解密程序,成功实现了明文到密文和密文到明文的转换。
实验结果表明,DES加密算法在保证数据安全的同时,具有较高的效率。
2. RSA加密算法实验结果通过编写RSA加密和解密程序,成功实现了明文到密文和密文到明文的转换。
维吉尼亚密码学实验报告

一、实验目的1. 理解维吉尼亚密码的原理和加密解密过程。
2. 掌握维吉尼亚密码的编程实现。
3. 破解维吉尼亚密码,提高密码学应用能力。
二、实验原理维吉尼亚密码是一种多表密码,它通过将明文与密钥进行组合,实现字符的替换加密。
加密过程中,密钥的长度决定了密钥表的大小,密钥表中的每一行对应一个密钥,加密时按照密钥表中的行进行替换。
解密过程则是加密过程的逆过程。
三、实验内容1. 维吉尼亚密码的加密与解密实现(1)加密① 创建密钥表:根据密钥长度生成密钥表,密钥表中每一行对应一个密钥,密钥长度等于明文长度。
② 对明文进行加密:将明文中的每个字符按照密钥表中的行进行替换,得到密文。
(2)解密① 创建密钥表:根据密钥长度生成密钥表。
② 对密文进行解密:将密文中的每个字符按照密钥表中的行进行替换,得到明文。
2. 维吉尼亚密码的破解(1)重合指数法① 计算密文的重合指数:将密文与英文常见单词的重合指数进行比较,选择重合指数最高的密钥长度。
② 遍历密钥长度:对于每个密钥长度,遍历26个可能的偏移量,计算重合指数,选择重合指数最高的偏移量。
③ 解密密文:根据密钥长度和偏移量,对密文进行解密,得到可能的明文。
(2)暴力破解法① 遍历密钥长度:遍历所有可能的密钥长度。
② 遍历密钥:对于每个密钥长度,遍历所有可能的密钥。
③ 解密密文:根据密钥长度和密钥,对密文进行解密,得到可能的明文。
四、实验步骤1. 创建密钥表根据密钥长度生成密钥表,密钥表中每一行对应一个密钥。
2. 加密明文将明文中的每个字符按照密钥表中的行进行替换,得到密文。
3. 解密密文将密文中的每个字符按照密钥表中的行进行替换,得到明文。
4. 破解密文(1)重合指数法① 计算密文的重合指数。
② 遍历密钥长度。
③ 遍历密钥。
④ 解密密文。
(2)暴力破解法① 遍历密钥长度。
② 遍历密钥。
③ 解密密文。
五、实验结果与分析1. 加密与解密实验结果表明,维吉尼亚密码的加密和解密过程能够正确实现,密文与明文能够成功还原。
现代密码算法实验报告(3篇)

第1篇一、实验目的1. 了解现代密码学的基本原理和数论基础知识;2. 掌握非对称密码体制的著名代表RSA加密算法的工作原理和流程;3. 设计实现一个简单的密钥系统;4. 掌握常用加密算法AES和DES的原理及实现。
二、实验内容1. RSA加密算法实验2. AES加密算法实验3. DES加密算法实验三、实验原理1. RSA加密算法RSA算法是一种非对称加密算法,由罗纳德·李维斯特、阿迪·沙米尔和伦纳德·阿德曼三位密码学家于1977年提出。
其基本原理是选择两个大质数p和q,计算它们的乘积n=pq,并计算欧拉函数φ(n)=(p-1)(q-1)。
选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。
计算e关于φ(n)的模逆元d。
公开密钥为(e,n),私有密钥为(d,n)。
加密过程为C=Me mod n,解密过程为M=Cd mod n。
2. AES加密算法AES(Advanced Encryption Standard)是一种分组加密算法,采用128位分组大小和128、192或256位密钥长度。
AES算法主要分为四个阶段:初始轮、密钥扩展、中间轮和最终轮。
每个轮包括字节替换、行移位、列混淆和轮密钥加。
3. DES加密算法DES(Data Encryption Standard)是一种分组加密算法,采用64位分组大小和56位密钥长度。
DES算法主要分为16轮,每轮包括置换、置换-置换、S盒替换和密钥加。
四、实验步骤及内容1. RSA加密算法实验(1)选择两个大质数p和q,计算n=pq和φ(n)=(p-1)(q-1);(2)选择一个整数e,满足1<e<φ(n)且e与φ(n)互质,计算e关于φ(n)的模逆元d;(3)生成公开密钥(e,n)和私有密钥(d,n);(4)用公钥对明文进行加密,用私钥对密文进行解密。
2. AES加密算法实验(1)选择一个128、192或256位密钥;(2)初始化初始轮密钥;(3)进行16轮加密操作,包括字节替换、行移位、列混淆和轮密钥加;(4)输出加密后的密文。
《密码学》课程设计实验报告-分组密码DES2

《密码学》课程设计实验报告实验序号:02 实验项目名称:分组密码AES图:AES轮函数结构图:AES轮密钥产生2.AES 算法的基本运算(重点) 方法:通过编程代码实现下列运算:(1)8(2)GF 上的加法(教材 p83定义3-2) (为了描述方便,用花括号表示16进制,下同) 例:{BC }⊕{6A }={D6}(下图中的A 3,3⊕K 3,3=B 3,3)计算或编程方法:按位异或(提示——C 、Java 等语言中的^运算符) (2)8(2)GF 上的多项式加法(教材 p83定义3-7) 例:a(x)={BC}x 3+{42} x 2+{9F} x+{4C}K(x)= {6A}x 3+{00} x 2+{5C} x+{57} a(x) ⊕K(x)= {D6}x 3+{42} x 2+{C3} x+{1B}计算或编程方法:按位异或(提示——C 、Java 等语言中的^运算符)A 0,0A 0,1A 0,2A 0,3A 1,0A 1,1A 1,2A 1,3A 2,0A 2,1A 2,2A 2,3A 3,0A 3,1A 3,2A 3,3K 0,0K 0,1K 0,2K 0,3K 1,0K 1,1K 1,2K 1,3K 2,0K 2,1K 2,2K 2,3K 3,0K 3,1K 3,2K 3,3+B 0,0B 0,1B 0,2B 0,3B 1,0B 1,1B 1,2B 1,3B 2,0B 2,1B 2,2B 2,3B 3,0B 3,1B 3,2B 3,3A 3,3 ⊕K 3,3 =B 3,3 (mod 2)对于AES 中的轮密钥加运算,即可以表示为对应“字节”的加法,每格相加,即定义3-2;也可以表示为对应32位“字”的加法,每列相加,即定义3-7;甚至可以表示为整个128位“状态”的按位异或。
思考:在不同CPU 架构下,哪种表示方法的执行速度最快?(4)8(2)GF 上的多项式乘法(教材 p83定义3-8、p93优化方案) (a )AES 中的列混合运算的实现其中的运算按列(32位字)实现,当然也可表述为下面的4×4的字节矩阵相乘:大家手工计算时,按列进行表述较为简单:例如下面的列混合计算:其中的第一列运算步骤为:在GF(28)中,加法就是按位XOR操作,乘法是根据在上述方程所示的规则执行的。
经典密码学实验报告

一、实验目的1. 了解经典密码学的基本原理和算法;2. 掌握古典密码的加密和解密方法;3. 通过编程实现古典密码的加密和解密过程;4. 体验古典密码的破解过程,加深对密码学原理的理解。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm三、实验内容本次实验主要涉及以下几种古典密码:1. 仿射密码2. 单表代替密码3. 维吉尼亚密码4. 移位密码1. 仿射密码(1)原理简介:仿射密码是一种单字母替换密码,加密公式为:Ci = (a pi + b) mod 26,其中,Ci 为密文,pi 为明文,a 和 b 为密钥。
(2)加密和解密代码实现:```pythondef encrypt(plain_text, a, b):cipher_text = ''for char in plain_text:if char.isalpha():cipher_text += chr(((ord(char.upper()) - ord('A') + a b) % 26) + ord('A'))else:cipher_text += charreturn cipher_textdef decrypt(cipher_text, a, b):plain_text = ''for char in cipher_text:if char.isalpha():plain_text += chr(((ord(char.upper()) - ord('A') - a b) % 26) + ord('A'))else:plain_text += charreturn plain_text```2. 单表代替密码(1)原理简介:单表代替密码是一种将明文中的每个字符映射到密文的密码,加密和解密过程是相反的。
密码学实验报告

密码学实验报告中文汉字的密码化实验1. 实验简介本实验旨在通过对中文汉字的密码化实验,探究密码学在信息安全领域中的应用。
在本实验中,我们将使用替换密码技术对中文汉字进行加密和解密,并评估其安全性和实用性。
2. 实验步骤2.1 选择密钥在开始实验之前,我们需要选择一个密钥。
密钥是密码算法的关键,它用于对明文进行加密和解密。
在本实验中,我们选择一个包含所有中文汉字的密钥表。
该密钥表将用于替换明文中的汉字,从而实现密码化。
2.2 加密过程加密过程涉及将明文中的汉字替换为对应的密钥表中的汉字。
我们将使用一种称为替换密码的技术来实现加密。
具体步骤如下:步骤一:准备明文 - 选择一段中文汉字作为明文。
步骤二:选择密钥表 - 使用预先准备好的密钥表,其中包含了所有中文汉字的替换映射关系。
步骤三:替换汉字 - 将明文中的每个汉字根据密钥表中的映射进行替换。
步骤四:生成密文 - 将替换后的汉字按照顺序组成密文。
2.3 解密过程解密过程即将密文还原为明文。
在我们的实验中,解密过程与加密过程密切相关,因为它需要使用相同的密钥表进行替换。
具体步骤如下:步骤一:准备密文 - 选择加密过程生成的密文作为输入。
步骤二:选择密钥表 - 使用和加密过程相同的密钥表。
步骤三:替换汉字 - 将密文中的每个汉字根据密钥表中的映射进行替换。
步骤四:生成明文 - 将替换后的汉字按照顺序组成明文。
3. 实验结果与讨论在本实验中,我们选择了一段中文汉字作为明文,并使用已准备好的密钥表进行加密和解密操作。
经过多次实验,我们得到了一些实验结果和相应的讨论。
3.1 加密结果经过加密过程,我们得到了一段由密文组成的结果。
加密后的密文将替换明文中的汉字,使其具有一定的保密性。
然而,我们也发现了一些问题:问题一:密文长度增加 - 密文的长度通常会大于明文的长度,这可能导致在传输和存储过程中的一些问题。
问题二:密钥表可预测 - 由于我们使用了固定的密钥表,攻击者有可能通过分析密文和明文之间的关系来推断出密钥表的内容。
密码学实验报告
密码学实验报告摘要:本实验旨在通过实践掌握基本密码学算法的原理和应用。
在本次实验中我们完成了Caesar密码、仿射密码、VIC密码和Hill密码的加密和解密过程,并进行了相应的分析和评价。
实验结果表明,不同的密码算法有各自的优缺点,应根据具体需求进行选择。
一、实验目的1.了解基本密码学算法的原理和应用。
2.通过实践掌握Caesar密码、仿射密码、VIC密码和Hill密码的加密和解密过程。
3.分析和评价各个密码算法的优缺点。
二、实验原理Caesar密码:是一种非常简单的单字母替换密码。
按照字母表上旋转的位置,每个字母都用它在字母表中的下一个字母替代。
仿射密码:通过将明文中的每个字母转换为另一个字母,实现加密。
明文中的每个字母通过使用一组固定的数学函数进行加密。
随机选择这些函数,并按正确的顺序应用它们。
VIC密码:将某些字母替换为其他字母组合的运算称为置换。
VIC密码使用10个钥匙,其中每个钥匙是一个置换。
通过使用不同的键,VIC密码可以很容易地产生四十亿多个不同的密码。
Hill密码:是一种基于线性代数理论的密码算法。
对于一个给定的矩阵α,Hill密码通过将明文划分为每个字母,然后将其与矩阵α乘法来加密,最后将结果映射回字母表中的字母。
三、实验过程1.实现Caesar密码的加密和解密。
2.实现仿射密码的加密和解密。
3.实现VIC密码的加密和解密。
4.实现Hill密码的加密和解密。
5.对各个密码算法进行分析和评价。
四、实验结果1.在Caesar密码中,明文是将每个字母按照一定的步长向右或向左移动来进行加密。
由于其简单性,Caesar密码的加密和解密都很容易,但安全性较低。
2.仿射密码是Caesar密码的扩展版本。
通过随机选择两个数字,仿射密码在加密的过程中使用模运算和线性函数组合对明文进行加密。
由于消息加密和解密都使用数学功能进行计算,因此密钥空间大于Caesar,也比较安全。
3.VIC密码使用多个置换键(通常为10),交替使用它们来完成加密和解密过程。
实验吧_密码学实验报告(3篇)
第1篇一、实验背景密码学是一门研究信息加密与解密的学科,它广泛应用于信息安全领域。
为了更好地理解密码学的基本原理和算法,我们选择了实验吧平台上的密码学实验进行学习。
本次实验旨在通过实际操作,加深对古典密码、对称密码和不对称密码等密码学基本概念的理解,提高密码学应用能力。
二、实验目的1. 理解并掌握古典密码的基本原理和算法;2. 掌握对称密码和不对称密码的基本原理和算法;3. 通过实验操作,提高密码学应用能力;4. 培养团队协作和解决问题的能力。
三、实验内容1. 古典密码实验(1)仿射密码原理:仿射密码是一种单字母替换密码,加密公式为:C = (aP + b) mod 26,其中C为密文字母,P为明文字母,a和b为密钥。
操作步骤:1)编写加密函数encrypt,实现仿射密码加密;2)编写解密函数decrypt,实现仿射密码解密;3)测试加密和解密函数,验证其正确性。
(2)单表代替密码原理:单表代替密码是一种将明文字符映射到密文字符的替换密码。
操作步骤:1)编写加密函数subencrypt,实现单表代替密码加密;2)编写解密函数subdecrypt,实现单表代替密码解密;3)测试加密和解密函数,验证其正确性。
(3)维吉尼亚密码原理:维吉尼亚密码是一种多字母替换密码,加密公式为:C = (P + K[i]) mod 26,其中C为密文字母,P为明文字母,K为密钥,i为索引。
操作步骤:1)编写加密函数vigenereencrypt,实现维吉尼亚密码加密;2)编写解密函数vigeneredecrypt,实现维吉尼亚密码解密;3)测试加密和解密函数,验证其正确性。
2. 对称密码实验(1)DES加密算法原理:DES(Data Encryption Standard)是一种分组加密算法,采用56位密钥,64位分组。
操作步骤:1)编写DES加密函数desencrypt,实现DES加密;2)编写DES解密函数desdecrypt,实现DES解密;3)测试加密和解密函数,验证其正确性。
《密码学》课程设计实验报告-分组密码工作模式
《密码学》课程设计实验报告实验序号:03 实验项目名称:分组密码工作模式分组工作模式具体说明➢电话本模式⏹直接利用分组密码对明文的各分组进行加密⏹缺点1.不能解决短块问题2.容易暴露明文的数据模式。
在计算机系统中,许多数据都具有某种固有的模式,这主要是由数据冗余和数据结构引起的。
例如,各种计算机语言的语句和指令都十分有限,因为在程序中便表现为少量的语句和指令的大量重复⏹流程图➢明密文链接模式⏹设明文M=(M1,⋯,M n),相应的密文C=(C1,⋯,C n)C i={E(M i⊕Z,K), i=1E(M i⊕M i−1⊕C i−1,K), i=2,⋯,n⏹特点1.加解密错误传播无界2.无法处理短块⏹流程图➢密文链接模式⏹由于明密文链接模式具有加解密错误传播无界的特性,而磁盘等文件通常希望错误传播有界,这时可采用密文链接模式⏹设明文M=(M1,⋯,M n),相应的密文C=(C1,⋯,C n)C i={E(M i⊕Z,K), i=1E(M i⊕C i−1,K), i=2,⋯,n⏹特点1.无法处理短块2.加密错误传播无界,解密错误传播有界➢输出反馈模式⏹将一个分组密码转换为一个密钥序列产生器,从而可以实现用分组密码按流密码的方式进行加解密。
⏹特点1.工作模式的安全性取决于分组密码本身的安全性2.可以解决短块加密3.无错误传播4.适用于加密冗余度较大的数据,例如语音和图像数据⏹流程图➢密文反馈模式⏹与输出反馈的工作原理基本相同,所不同的仅仅是反馈到移位寄存器R的不是E输出中的最右s位,而是密文c i的s位⏹流程图➢X CBC模式⏹X CBC模式解决了CBC模式要求明文数据的长度是密码分组长度的整数倍的限制,可以处理任意长的数据⏹优点1.可以处理任意长度的数据2.适用于计算产生检测数据完整性的消息认证码MAC⏹缺点1.使用3个密钥,密钥的存储和加解密控制都比较麻烦2.接受双方需要共享填充的消息长度➢CTR模式⏹与密文反馈工作模式和输出反馈工作模式一样,把分组密码转换为序列密码,在本质上是利用分组密码产生密钥序列,按序列密码的方式进行加密⏹优点1.可并行,效率高2.适合任意长度的数据3.加解密速度快⏹缺点1.没有错误传播,不适用于数据完整性验证⏹流程图五、分析与讨论1)分组密码不同的工作模式各有各的特点,例如有些工作模式需要处理短块,有些则不需要;有些模式具有错误传播无界的特性,有些则没有。
密码学相关实验报告
一、实验目的1. 理解并掌握常见的加密算法和密码体制的基本原理。
2. 学会使用密码学工具进行加密和解密操作。
3. 增强网络安全意识,提高对密码学在实际应用中的认识。
二、实验内容1. 仿射密码2. 单表代替密码3. 维吉尼亚密码4. AES加密算法三、实验原理1. 仿射密码:加密原理为将明文进行0~25字母编码,按照加密公式计算出密文对应位置的字母编码,最后从密文的字母编码还原出密文对应位置的字母。
解密原理与加密原理相反。
2. 单表代替密码:加密原理为利用代替表,将明文中的每个字符映射到密文。
解密原理为对代替表进行反向查找,由密文映射回明文。
3. 维吉尼亚密码:加密原理为通过加密方程Ci (pi k(i mod m)) mod 26,由明文得到密文。
解密原理为解密过程是加密过程的逆过程,通过解密方程pi (Cik(i mod m)) mod 26。
4. AES加密算法:是一种分组加密算法,将128位明文分为128位的数据块,使用密钥进行加密,得到128位的密文。
解密过程与加密过程相反。
四、实验步骤1. 仿射密码(1)选择明文:选择一段英文或数字,例如:"Hello World!"(2)选择密钥:选择一个密钥a和模数m,例如:a=5,m=26。
(3)加密:将明文进行0~25字母编码,按照加密公式计算出密文对应位置的字母编码,最后从密文的字母编码还原出密文对应位置的字母。
(4)解密:将密文进行0~25字母编码,按照解密公式计算出明文对应位置的字母编码,最后从明文的字母编码还原出明文对应位置的字母。
2. 单表代替密码(1)构造代替表:选择一个代替表,将明文中的每个字符映射到密文。
(2)加密:将明文中的每个字符按照代替表进行映射,得到密文。
(3)解密:将密文中的每个字符按照代替表的逆映射,得到明文。
3. 维吉尼亚密码(1)选择密钥:选择一个密钥,例如:"KEY"(2)加密:将明文和密钥进行异或操作,得到密文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《—现代密码学—》实验指导书适用专业:计算机科学与技术江苏科技大学计算机科学学院2011年11 月实验一古典密码实验学时:2学时实验类型:验证实验要求:必修一、实验目的编程实现古典密码的加解密方法。
二、实验内容(1)移位密码的加密和解密函数。
(2)仿射密码的加密和解密函数。
(3)维吉尼亚密码的加密和解密函数。
三、实验原理、方法和手段(1)移位密码对于明文字符x ,加密密钥k ,加密方法为,1,2,,25y x k k =+= 解密方法为,1,2,,25x y k k =-= (2)仿射密码对于明文字符x ,加密密钥(,)a b ,加密方法为,gcd(,26)1,1,2,,25y ax b a b =+==解密方法为1()x a y b -=-(3)维吉尼亚密码选取密钥字Key ,将明文按照密钥字长度分组,将明文与密钥字对应字符相加并对26求余,即为密文字符。
i i i y x k =+解密过程为i i i x y k =-四、实验组织运行要求本实验采用集中授课形式,每个同学独立完成上述实验要求。
五、实验条件每人一台计算机独立完成实验,有如下条件:(1)硬件:微机;(2)软件:VC++6.0、VC++.Net 2005。
六、实验步骤(1)将各函数编写完成;(2)在主函数中调用各函数,实现加密和解密。
七、实验报告实验报告主要包括实验目的、实验内容、实验原理、源程序及结果。
移位密码加密:#include<stdio.h>#define n 3 //移位位数void change(char string[]){int i;for(i=0;string[i]!='\0';i++){if(string[i]>='a'&&string[i]<='z')string[i]=(string[i]+n>='z'?string[i]+n-26:string[i]+n); }}void main(){char str[100];printf("请输入一段明文");gets(str);change(str);printf("密文为:\n");puts(str);}移位密码解密:#include<stdio.h>#define n 3 //移位位数void change(char string[]){int i;for(i=0;string[i]!='\0';i++){if(string[i]>='a'&&string[i]<='z')string[i]=(string[i]+n<'a'?string[i]-n+26:string[i]-n); }}void main(){char str[100];printf("请输入一段密文");gets(str);change(str);printf("明文为:\n");puts(str);}仿射密码加密:#include<stdio.h>void fun( char a[],int x,int y) {int i;for(i=0;a[i]!='\0';i++){a[i]=(x*(a[i]-97)+y)%26+97;}}main(){char string[100];int x,y;printf("输入");gets(string);printf("请输入密钥");scanf("%d,%d",&x,&y);printf("明文:%s\n",string);fun(string,x,y);printf("密文为:%s\n",string); }仿射密码解密:#include<stdio.h>void fun( char a[],int x,int y) {int i;for(i=0;a[i]!='\0';i++){a[i]=(x*(a[i]-97)+y)%26+97;}}main(){char string[100];int x,y;printf("输入");gets(string);printf("请输入密钥");scanf("%d,%d",&x,&y);printf("密文:%s\n",string);fun(string,x,y);printf("明文:%s\n",string);}密码加密:#include<stdio.h>void change(char old[],char new1[][5]){ int i,j,t;char temp[20][5];t=strlen(old);for(i=t;i<(5-t%5)+t;i++) //将一维数组old每5个分成一组不足5位的用X 补充old[i]='x';for(i=t+(5-t%5);i<100;i++)old[i]='\0';for(i=0;i<20;i++) //将一维数组old转换成一个20*5的二维数组tempfor(j=0;j<5;j++)temp[i][j]=old[5*i+j];for(i=0;i<20;i++) //密文字母交换顺序{new1[i][0]=temp[i][1];new1[i][1]=temp[i][4];new1[i][2]=temp[i][3];new1[i][3]=temp[i][0];new1[i][4]=temp[i][2];}}main(){char old[100],new1[20][5];gets(old);change(old,new1);printf("%s",new1);}密码解密#include<stdio.h>void change(char old[],char new1[][5]){ int i,j,t;char temp[20][5];t=strlen(old);for(i=0;i<20;i++) //将一维数组old转换成一个20*5的二维数组tempfor(j=0;j<5;j++)temp[i][j]=old[5*i+j];for(i=0;i<20;i++) //密文字母交换顺序{new1[i][1]=temp[i][0];new1[i][4]=temp[i][1];new1[i][3]=temp[i][2];new1[i][0]=temp[i][3];new1[i][2]=temp[i][4];}}main(){char old[100],new1[20][5];gets(old);change(old,new1);printf("%s",new1);}实验二序列密码实验学时:2学时实验类型:验证实验要求:必修一、实验目的编程实现序列密码RC4的加密方法。
二、实验内容序列密码RC4。
三、实验原理、方法和手段RC4首先进行S表的初始化:(1),0255i S i i =≤≤;(2)用密钥填充另一个256字节的数组K ,如果密钥长度小于256字节,则依次重复填充,直至填满这个数组。
(3)J =0;(4)对于I =0到255,重复以下步骤① (mod 256)I I J J S K =++;② 交换I S 和J S 。
RC4对下面(1)~(5)循环后,得出密钥流的一个字节z 。
(1)0,0I J ==;(2)1(mod 256)I I =+(3)(mod 256)I J J S =+(4)交换I S 和J S ;(5)I J t S S =+;(6)t z S =.四、实验组织运行要求本实验采用集中授课形式,每个同学独立完成上述实验要求。
五、实验条件每人一台计算机独立完成实验,有如下条件:(1)硬件:微机;(2)软件:VC++6.0、VC++.Net 2005。
六、实验步骤(1)将各函数编写完成;(2)在主函数中调用各函数,实现加密和解密。
七、实验报告实验报告主要包括实验目的、实验内容、实验原理、源程序及结果。
线性移位寄存器:#include<stdio.h>#include<math.h>char InputKey[4]; //输入的4位密钥字符int InitKey[32]; //密钥转化成的32位0或1的序列int Bit[8]; //明文中单个字符的位序列(通过for使Bit数组改变,逐一表示各个字符)int LFSRKey[32];char Out[2]; //每个字符加密后通过2位16进制表示char Info[1000]; //需要加密的明文,最多1000位,当然可以修改该值使之更大int tempInfo[1000]; //明文字符对应的Ascii值int InfoLength; //实际明文长度char Cipher[2000]; //密文// ( 32,7,5,3,2,1,0 )void KeyToBit(); // 把初始密钥转化成位序列void LFSR(); // LFSR序列加密void Output16(); // 把二进制转化为16进制void InfoToBit(int j); // 把输入的明文转化成位序列main(){int i,j ;char ans ;while ( 1 ){printf("\n*********************************************************** ****\n\n");printf("Please input the InitKey :\n"); // 输入四个字符作为初始密钥,老师要求:goodfor ( i=0 ; i<4 ; i++ )scanf("%c",&InputKey[i]);KeyToBit();printf("\nPlease input the Information encrypted ( End with \" # \") :\n"); // 输入需要加密的明文,以#作为结束符for ( i=0 ; i<1000 ; i++ ){scanf("%c",&Info[i]); // 记录输入的明文tempInfo[i] = Info[i] ; // 将Ascii值同步附给tempInfoif ( Info[i] == '#' ){InfoLength = i ;break ; // 遇到#则停止读取}}printf("\n*********************************************************** ****\n\n");printf("The Cipher is :\n");for ( i=0,j=0 ; i<InfoLength ; i++ ){InfoToBit(i); // 每个明文字符单独转化为8bit位序列,保存到Bit[8]LFSR(); // 加密Cipher[j] = Out[0] ;printf("%c",Cipher[j]);Cipher[j+1] = Out[1] ;printf("%c",Cipher[j+1]);j = j + 2 ;}printf("\n*********************************************************** ****\n\n");printf("Continue? y/n ? \n ");getchar(); // 消除前面输入的字符对本次输入的影响scanf("%c",&ans);getchar();if ( ans == 'n' ) // 按n不继续测试break ;}}void KeyToBit(){int i,j,r;for ( i=0 ; i<4 ; i++ ){r = InputKey[i] ;for ( j=0 ; j<8 ; j++ )Bit[j] = 0 ; // 每个密钥序列初始化为全0,避免上一次转化保存到Bit数组给本次转化的影响。