(整理)工程力学第六章答案梁的变形
工程力学在线作业答案

1. 梁的挠曲线近似微分方程,其近似的原因是( ) 横截面不一定保持平面 材料不一定服从胡克定律 梁的变形不一定是微小变形 二阶导数取代曲率,并略去剪力的影响
本题分值: 4.0 用户得分: 4.0 用户解答: 二阶导数取代曲率,并略去剪力的影响 【标准答案】 二阶导数取代曲率,并略去剪力的影响
第 6 页 共 97 页
4. 当单元体的对应面上同时存在切应力和正应力时,切应力互等定理失效。 错 对
本题分值: 4.0 用户得分: 0.0 用户解答: 对 【标准答案】 错
5. 工程中承受扭转的圆轴,既要满足强度的要求,又要限制单位长度扭转角的 最大值。
错 对
本题分值: 4.0 用户得分: 0.0 用户解答: 错 【标准答案】 对
本题分值: 4.0 用户得分: 4.0 用户解答: 外力分析-内力分析-应力分析-强度计算 【标准答案】 外力分析-内力分析-应力分析-强度计算
4. 圆周扭转时的变形以()表示。 延伸率 扭转角 挠度 线应变
本题分值: 4.0 用户得分: 4.0 用户解答: 扭转角 【标准答案】 扭转角
5. 两梁的横截面上最大正应力相等的条件是()。 MMAX 与横截面积 A 相等
本题分值: 4.0 用户得分: 0.0 用户解答: 对 【标准答案】 错
13. 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必 定是一个力。
错 对
本题分值: 4.0 用户得分: 4.0 用户解答: 错 【标准答案】 错
14. 由于失稳或由于强度不足而使构件不能正常工作,两者之间的本质区别在 于:前者构件的平衡是不稳定的,而后者构件的平衡是稳定的。
10. 设矩形对其一对称轴 z 的惯性矩为 I,则当其长宽比保持不变。而面积增加 1 倍时,该矩形对 z 的惯性矩将变为( )。
工程力学习题答案6廖明成

工程力学习题答案6廖明成第六章 杆类构件的内力分析习 题6.1 试求图示结构1-1和2-2截面上的内力,指出AB 和CD 两杆的变形属于哪类基本变形,并说明依据。
(a )(b )题6.1图解:(a )应用截面法:对题的图取截面2-2以下部分为研究对象,受力图如图一所示:BM图一图二由平衡条件得:0,AM=∑6320N F ⨯-⨯=解得:NF =9KNCD 杆的变形属于拉伸变形。
应用截面法,取题所示截面1-1以右及2-2以下部分作为研究对象,其受力图如图二所示,由平衡条件有: 0,OM =∑ 6210NF M ⨯-⨯-= (1)0,yF =∑ 60NSF F --=(2)将NF =9KN 代入(1)-(2)式,得:M=3 kN·mSF =3 KNAB 杆属于弯曲变形。
(b )应用截面法 ,取1-1以上部分作为研究对象,受力图如图三所示,由平衡条件有:0,Fx =∑20NF -=图三F NMNF =2KN0,DM =∑ 210M -⨯=M=2KNAB 杆属于弯曲变形6.2 求图示结构中拉杆AB 的轴力。
设由AB 连接的1和2两部分均为刚体。
题6.2图解:首先根据刚体系的平衡条件,求出AB杆的内力。
刚体1的受力图如图一所示D图一 图二平衡条件为:0,CM=∑104840D N F F ⨯-⨯-⨯=(1)刚体2受力图如图二所示,平衡条件为:0,EM =∑ 240NDF F ⨯-⨯=(2)解以上两式有AB 杆内的轴力为:NF =5KN6.3 试求图示各杆件1-1、2-2和3-3截面上的轴力,并做轴力图。
(a )C(b )(c )(d )题6.3图解:(a ) 如图所示,解除约束,代之以约束反力,做受力图,如图1a 所示。
利用静力平衡条件,确定约束反力的大小和方向,并标示在图1a 中,作杆左端面的外法线n ,将受力图中各力标以正负号,轴力图是平行于杆轴线的直线,轴力图线在有轴向力作用处要发生突变,突变量等于该处总用力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,轴力图如2a 所示,截面1和截面2上的轴力分别为1N F =-2KN2N F =-8KN ,(a )nkN(a 1)(2)C(b )CBkNb 1)(b 2)((b )解题步骤和(a )相同,杆的受力图和轴力图如(1b )(2b )所示,截面1和截面2上的轴力分别为1N F =4KN 2N F =6KN(c )解题步骤和(a )相同,杆的受力图和轴力图如(1c )(2c )所示,截面1,截面2和截面3上的轴力分别为1N F =3F 2N F =4F ,3NF =4FB C(c )4F(c 1)(c 2)(d)A D(d 1)(d 2)(d )解题步骤和(a )相同,杆的受力图和轴力图如(1d )(2d )所示,截面1和截面2上的轴力分别为1N F =2KN 2N F =2KN6.4 求图示各轴1-1、2-2截面上的扭矩,并做各轴的扭矩图。
工程力学:弯曲变形 习题与答案

一、单选题1、研究梁的变形的目的是()。
A.进行梁的正应力计算B.进行梁的刚度计算C.进行梁的稳定性计算D.进行梁的剪应力计算正确答案:B2、图示圆截面悬臂梁,若直径d增大1倍(其它条件不变),则梁的最大正应力、最大挠度分别降至原来的()。
A.1/2 1/4B.1/4 1/8C.1/8 1/8D.1/8 1/16正确答案:D3、下面关于梁、挠度和转角的讨论中,正确的结论是()。
A.挠度最大的截面转角为零B.挠度最大的截面转角最大C.转角为零的截面挠度最大D.挠度的一阶导数等于转角正确答案:D4、已知两悬臂梁的抗弯截面刚度EI相同,长度分别为l和2l,在自由端各作用F1和F2,若二者自由端的挠度相等,则F1/F2=()。
A.2B.4C.6D.8正确答案:D5、梁上弯矩为零处()。
A.梁的转角一定为零B.梁的挠度一定为零C.挠度一定为零,转角不一定为零D.梁的挠曲线的曲率一定为零正确答案:D6、已知等直梁在某段上的挠曲轴方程w(x)=–Cx4,C为常量,则在该段梁上()。
A.分布载荷是x的一次函数B.分布载荷是x的二次函数C.无分布载荷作用D.有均匀分布载荷作用正确答案:D7、在等直梁弯曲变形中,挠曲线曲率最大值发生在()。
A.剪力最大处B.转角最大处C.弯矩最大处D.挠度最大处正确答案:C8、材料相同的(a)悬臂梁和(b)悬臂梁,长度也相同,在自由端各作用2P和P,截面形状分别是b(宽)×2b(高)、b×b。
关于它们的最大挠度正确的是()。
A.(a)梁最大挠度是(b)梁的1/4倍B.(a)梁最大挠度是(b)梁的1/2倍C.(a)梁最大挠度与(b)梁的相等D.(a)梁最大挠度是(b)梁的2倍正确答案:A9、已知简支梁的EI为常数,在梁的左端和右端分别作用一力偶m1和m2今欲使梁的挠曲线在x=l/3处出现一拐点,则比值m1/m2为()。
A.2B.3C.1/2D.1/3正确答案:C10、两根梁尺寸,受力和支承情况完全相同,但材料不同,弹性模量分别为E1和E2,且E1=7E2,则两根梁的挠度之比y1/y2为()。
工程力学第六章 弯曲变形

荷情况有关,而且还与梁的材料、截面尺寸、形
状和梁的跨度有关。所以,要想提高弯曲刚度,
就应从上述各种因素入手。
一、增大梁的抗弯刚度EI 二、减小跨度或增加支承 三、改变加载方式 48EI
作 业
1、2、4(a、e)
§6-3 用叠加法计算梁的变形 梁的刚度计算
一、用叠加法计算梁的变形
在材料服从胡克定律、且变形很小的前提下, 载荷与它所引起的变形成线性关系。 当梁上同时作用几个载荷时,各个载荷所引 起的变形是各自独立的,互不影响。若计算几个 载荷共同作用下在某截面上引起的变形,则可分 别计算各个载荷单独作用下的变形,然后叠加。
例: 梁AB,横截面为边长为a的正方形,
弹性模量为E1;杆BC,横截面为直径为d的圆 形,弹性模量为E2。试求BC杆的伸长及AB梁 中点的挠度。
例:用叠加法求图示梁B端的挠度和转角。
解:
二、梁的刚度计算
刚度条件:
max [ ] max [ ]
[w]、[θ]是构件的许可挠度和转角,它们决定
q
B
x
l
由边界条件: x 0时, 0 x l时, 0
ql 3 , D0 得: C 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
B
x
l
A qx (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
l 2
x
P AC 解: 段:M ( x ) x 2 y P EI " x 2 A P 2 EI ' x C x 4 l 2 P 3 EI x Cx D 12
自考工程力学试题及答案

自考工程力学试题及答案一、选择题(每题2分,共20分)1. 工程力学中的静力学主要研究的是()。
A. 物体内部力的分布B. 物体在外力作用下的平衡状态C. 物体的变形D. 物体的运动答案:B2. 根据胡克定律,弹簧的形变量与作用力成正比,这个形变量是指()。
A. 长度B. 体积C. 形心的位移D. 任意两点间的直线距离答案:C3. 在材料力学中,下列哪项不是材料的基本力学性能?()A. 弹性B. 塑性C. 韧性D. 密度答案:D4. 力矩的国际单位是()。
B. 牛顿米C. 帕斯卡D. 焦耳答案:B5. 一个物体在三个共点力作用下保持平衡,若撤去其中一个大小为F 的力,其余两个力的合力大小为()。
A. FB. F/2C. 2FD. 无法确定答案:A6. 以下哪项不是梁的弯曲变形的主要原因?()A. 材料的弹性模量B. 荷载的大小和分布C. 梁的长度D. 支撑条件答案:C7. 根据达拉姆公式,圆轴扭转时,相对扭转角θ与扭矩T和极惯性矩J之间的关系是()。
A. θ = T/JB. θ = TJC. θ = J/TD. θ = T/(GJ)8. 在受压杆件的稳定性分析中,欧拉临界力是指()。
A. 杆件开始弯曲的临界力B. 杆件开始失稳的临界力C. 杆件断裂的临界力D. 杆件最大承受力答案:B9. 复合梁的弯曲刚度是各单独梁弯曲刚度之()。
A. 和B. 差C. 积D. 加权平均答案:A10. 在应力集中的分析中,应力奇异性是指()。
A. 应力值无限增大B. 应力梯度无限增大C. 应力值突然下降D. 应力值突然上升答案:A二、简答题(每题10分,共30分)1. 简述平面力系平衡的条件是什么?答案:平面力系平衡的条件是力系中所有力在X轴和Y轴方向上的合力分别为零,即ΣFx = 0,ΣFy = 0,同时所有力矩的合力也为零,即ΣM = 0。
2. 什么是应力集中?它对结构设计有何影响?答案:应力集中是指在结构的某些局部区域,由于几何形状、载荷方式或材料不连续等原因,应力值显著高于周围区域的现象。
工程力学试题及答案(六)

工程力学试题及答案(六)-2012一、填空题(每空1分,共44分)1.在分析两个或多个构件之间互相作用时,要注意________力与________力的关系。
2.作用于平面内A点的力F=10kN,如图示,向距A点为100cm的O点平移后,得到主矢量的大小为________和主矩大小为________。
3.设有一个力F,当力F与________轴________但________时有力F在X轴上的投影F X=0,力F对x轴之矩m x(F)≠0。
4.由平面假设所得到的轴向变形时,截面上的计算公式σ=N/A中的σ是________,这个公式不仅适用于________变形,而且也适用于________变形。
5.已知主动轮A输入功率为80马力,从动轮B和C输出功率为30马力和50马力,传动轴的转速n=1400转/分,那么,各轮上的外力偶矩的大小分别为m A=____ ,m B=______, m C=______。
6.图示结构中固定端A的反力为________、________、________。
7.图示各结构是静定还是静不定,及其静不定次数。
图(a)是________,(b)是________,(c)是________。
8.力的可传原理只适用于________体,而不适用于________体,因此不适用于研究力对物体的________效应。
9.若截面对于y轴和z轴的惯性积I yz=0,则此对轴称为________轴,若此对轴又通过形心,则称此对轴为________轴。
对称图形中含有对称轴的一对坐标轴必为________轴。
10.图示是梁的左段,A点力2P为反力,B点作用力P,C点作用力偶Pa,此时截面C的剪力Q C=________,弯矩M C=________。
11.矩形截面弯曲剪应力公式为τ=SI bZZ*,其中S*z是所求剪应力的点,画平行于中性轴的横线________截面面积对中性轴的面积矩,因此S*z是________量,截面上的最大剪应力发生在________。
工程力学(第二版)课后答案

1-1五个力作用于一点O,如图示。
图中方格的边长为10mm 。
试求此力系的合力。
解题思路:(1)由式(1-13)求合力在直角坐标轴上的投影;(2)由式(1-14)求合力的大小;(3)由式(1-15)求合力的方向。
答案:F R =669.5N , ∠(F R,i )=34.901-2如图示平面上的三个力F1=100N,F2=50N,F3=50N,三力作用线均过A点,尺寸如图。
试求此力系的合力。
解题思路:(1)由式(1-13)求合力在直角坐标轴上的投影;(2)由式(1-14)求合力的大小;(3)由式(1-15)求合力的方向。
答案:F R =161.2N , ∠(F R,F i)=29.701-3试计算下列各图中的力F对点O之矩。
解题思路:各小题均由式(1-16)求力矩。
答案:略1-4如图所示的挡土墙重G 1=75 kN ,铅直土压力G 2=120 kN ,水平土压力F p =90 kN 。
试求三力对前趾A 点之矩的和,并判断挡土墙是否会倾倒。
解题思路:(1)由式(1-16)求三力对前趾A 点之矩的代数和; (2)若其值为负(顺时针转),则挡土墙不会翻倒。
答案:∑M A =-180kN.m ,不会倾倒。
1-5如图所示,边长为a 的正六面体上沿对角线AH 作用一力F 。
试求力F 在三个坐标轴上的投影,力F 对三个坐标轴之矩以及对点O 之矩矢。
解题思路:(1)由式(1-13)、(1-14)、(1-15)求合力的大小和方向; (2)由式(1-25)求力对三个坐标轴之矩; (3)由式(1-26)求力对坐标原点之矩。
答案:M x =0,Fa M y 33=,Fa M 33z =-, k Fa j Fa M O 3333-=1-7试画出下列各图中物体A ,构件AB 的受力图。
未画重力的物体重量不计,所有接触面均为光滑接触。
解题思路:(1)画出研究对象的轮廓形状; (2)画出已知的主动力;(3)在解除约束处按约束的性质画出约束力。
(整理)工程力学习题答案

工程力学复习题课程 工程力学 专业班级一、单项选择题(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.三个刚片用三个铰两两相联,所得的体系( )A.一定为几何不变体系B.一定为几何瞬变体系C.一定为几何常变体系D.不能确定2.图示体系是( )A.无多余联系的几何不变体系B.有多余联系的几何不变体系C.瞬变体系D.常变体系3.图示三铰拱,已知三个铰的位置,左半跨受均布荷载,其合理拱轴的形状为( )A.全跨圆弧B.全跨抛物线C.AC 段为园弧,CB 段为直线D.AC 段为抛物线,CB 段为直线4.图示结构A 端作用力偶m ,则B 端转角 B 的值为( )A .ml EI 6 B.ml EI 3 C.ml EI 2 D.ml EI5.图示桁架C 点水平位移的值为( ) A .Pa EAB .12Pa EAC .14Pa EA D .06.图示刚架的超静定次数为A.1B.2C.3D.47.图示超静定则架,用力法计算时,不能选为基本体系的是图( )8.下列弯矩图中正确的是图( )9.图示结构中,BA杆B端的力矩分配系数等于( )10.图示结构截面K剪力影响线是图( )二、填空题(每小题2分,共16分)11.在具有一个自由度的体系上加上一个二元体(二杆结点)时,所得新体系的自由度为_____。
12.位移互等定理的表达式是________。
13.图示对称结构,截面K弯矩的绝对值为________。
14.图示结构,作用荷载P,不计轴向变形时,支座A的反力矩M A等于________。
15.已知图示连续梁(a)的弯矩图(b),则A端剪力等于________kN。
16.用力矩分配法计算图示连续梁时,算至放松结点C分配传递后,当前结点B的结点不平衡力矩(约束力矩)等于________kN.m17.力P在梁ABC上移动过程中,截面K中产生的变矩(绝对值)的最大值为________kN·m18.图中给出了截面K弯矩M K影响线的形状,该影响线在截面K下面的纵标等于________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 梁的变形测试练习1. 判断改错题5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( ) 5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
( ) 5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。
( ) 5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。
( )5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。
( ) 5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。
( ) 5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。
( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。
( )5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。
( ) 5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。
( )题5-1-3图题5-1-4图题5-1-8图题5-1-7图题5-1-9图2.填空题5-2-1 挠曲线近似微分方程EIx M x y )()("-= 的近似性表现在 和 。
5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则=21P P 。
5-2-3 应用叠加原理求梁的变形时应满足的条件是: 。
5-2-4 在梁的变形中挠度和转角之间的关系是 。
5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是 ,连续条件是 。
5-2-6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是 ,连续条件是 。
5-2-7 图示结构为 次超静定梁。
5-2-8 纯弯曲梁段变形后的曲率与外力偶矩M 的关系为 ,其变形曲线为 曲线。
5-2-9 两根E I 值相同、跨度之比为1:2的简支梁,当承受相同的均布荷载q 作用时,它们的挠度之比为 。
5-2-10 当梁上作用有均布荷载时,其挠曲线方程是x 的 次方程。
梁上作用有集中力时,挠曲线方程是x 的 次方程。
梁上作用有力偶矩时,挠曲线方程是x 的 次方程。
5-2-11 图示外伸梁,若A B 段作用有均布荷载,B C 段上无荷载,则A B 段挠曲线方程是x 的 次方程;B C 段挠曲线方程是x 的 次方程。
5-2-12 减小梁变形的主要途径有: , , 。
题5-2-2图题5-2-7图题5-2-6图xC 题5-2-11图5-2-13 已知梁的挠度曲线方程为)3(6)(2x l EIPx x y -=,则该梁的弯矩方程为 。
5-2-14 梁的变形中,挠度和截面弯矩M 的关系是 ,挠度和截面剪力Q 的关系是 。
5-2-15 为使图示A B 段的挠曲线为一直线,则x = 。
5-2-16 要使图示简支梁的挠曲线的拐点位于距A 端l /3处,则M 1:M 2= 。
5-2-17 图示静定梁,其B D 上无荷载作用,若已知B 截面的挠度y B ,则C 截面的挠度y C = ,D 截面的转角θD = 。
3.选择题5-3-1 简支梁长为l ,跨度中点作用有集中力P ,则梁的最大挠度f =( ) (E I =常量)A .EI Pl 483B .EI Pl 484C .EI Pl 38455D .EIPl 335-3-2 悬臂梁长为l ,梁上作用有均布荷载q ,则自由端截面的挠度为。
( )A .EI ql 64B .EI ql 63C .EI ql 84D .EIql 835-3-3 两梁尺寸及材料均相同,而受力如图示,则两梁的A . 弯矩相同,挠曲线形状不相同B . 弯矩相同,挠曲线形状相同C . 弯矩不相同,挠曲线形状不相同D . 弯矩不相同,挠曲线形状相同5-3-4 图示(a )、(b )两梁,长度、截面尺寸及约束均相同,图(a )梁的外力偶矩作用在C 截面,图(b )梁的外力偶矩作用在B 支座的右作侧,则两梁A B 段的内力和弯曲变形的比较是 ( )。
A 。
内力相同,变形不相同B .内力及变形均相同C .内力及变形均不相同D .内力不相同,变形相同题5-2-17图2 题5-2-16图题5-2-15图题5-3-4图C 0 (a )(b )题5-3-3图5-3-5 当用积分法求图示梁的挠度曲线方程时,在确定积分常量的四个条件中,除x =0, θA =0;x =0,y A =0外,另两个条件是 ( ) 。
A .(y c )左= (y c )右,(θC )左=(θC )右B .(y c )左= (y c )右,y B =0C .y C =0,y B =0D .y B =0,θC =05-3-6 图示简支梁在分布荷载q (x )=f (x )作用下,梁的挠度曲线方程为⎰⎰++-=,)()(D Cx dxdx x M x EIy ,其中,积分常量 ( )。
A .0,0==D CB .0,0≠=D CC .0,0≠≠D C D .0,0=≠D C5-3-7 挠曲线方程中的积分常梁主要反映了 A . 对近似微分方程误差的修正 B . 剪力对变形的影响 C . 约束条件对变形的影响D . 梁的轴向位移对变形的影响 5-3-8 图示悬臂梁在B 、C 两截面上各承受一个力偶矩作用,两力偶矩大小相等,转向相反,使梁产生弯曲变形。
B 截面的变形为 ( )。
A .0,0≠=θy B . 0,0=≠θyC .0,0≠≠θyD 。
0,0==θy5-3-9 图示简支梁受集中力作用,其最大挠度f 发生在( )。
A .集中力作用处 B 。
跨中截面 C .转角为零处 D 。
转角最大处5-3-10 两简支梁E I 及l 均相同,作用荷载如图所示。
跨中截面C 分别产生挠度y C 和转角θC ,则两梁C 点的挠度及两梁C 点的转角有 ( )。
A .θC 相等,y C 不相等 B 。
θC 不相等,y C 相等 C .θC 和 都不相等 D 。
θC 和y C 都相等题5-3-5图Bq (x ) 题5-3-6图题5-3-8图题5-3-10图4.计算题5-4-1 试画出图示各梁挠曲线的大致形状。
5-4-2 一简支梁承受图示分布荷载q =K x 2(K 为已知),试求此梁的挠曲线方程(设E I =常量)。
5-4-3 已知图示梁的带积分常量的挠曲线方程为)2()2(2412163)210(12163)(2222423222221111312121l x lD x C l x q x ql x ql EIy x D x C x ql x ql x EIy ≤≤++-+-=≤≤++-=试求方程中的积分常量。
5-4-4 试用叠加法求图示梁B 点的挠度和转角。
(E I =常量)5-4-5 外伸梁受图示荷载作用,试求C 截面的挠度和A 截面的转角。
(E I =常量。
)5-4-6 矩形截面梁A B 的抗弯刚度为E I ,受力如图示。
试问B 端支座向上抬高Δ为多少时,梁的A 截面的弯矩和C 截面的弯矩绝对值相等。
(材料的抗拉与抗压性能相同)5-4-7 图示弯曲的钢板梁A B ,截面为矩形,宽度为b ,高度为h ,钢板放在刚硬地面上时原有曲率半径为ρ,在两端受力P 作用使其平直,则将有均布压力作用于刚硬地面C -C 上。
已知刚梁E (弹性模量),试求所需的P 力及其在压平时梁内的最大正应力。
(a )(c ) (f )(b ) (d ) (e ) 题5-4-1图 题5-4-4图 B 题5-4-3图 x 题5-4-6图 题5-4-5图 题5-4-7图C5-4-8 长度为l 、抗弯刚度为E I 的悬臂梁A B ,受均布荷载q 作用而弯曲时,与半径为r 的刚性圆柱面接触,如图所示。
试求当梁上某一段A C 与刚性圆柱面在C 点接触(假设C 点与梁左端A 的距离为x )时,B 点的挠度。
5-4-9 单位长度重量为q 、抗弯刚度为E I 的矩形截面钢条,放置在水平刚性面上,刚条的一端伸出水平面一小段C D ,如图所示。
若伸出长度为a ,试求刚条翘起而不与水平面接触的C D 段的长度b 。
5-4-10 超静定梁如图所示,A B 段内作用有均布荷载q ,当C 支座向下沉陷EIql 964=∆时,试求梁的反力。
5-4-11矩形截面悬臂梁如图所示,梁长为l ,在沿其截面高度h 承受非均匀加热,设梁顶部温度改变为t 1,底部温度改变为t 2,且t 2>t 1。
温度沿截面高度呈线形改变。
材料的线膨胀系数为a ,弹性模量为E ,由于不均匀受热而使梁发生弯曲变形,当梁的悬臂端施加偶矩M 0时,能使梁展直。
问应施加多大的外力偶矩?5-4-12 悬臂梁A B 和C D 的自由端处用拉杆B C 相连,受力如图所示,若AB 梁和CD 梁的抗弯刚度E I 相等,试求在下列两种情况下C 点的挠度. (1) 当B C 杆为刚性杆,即E A = 时; (2) 当B C 杆长为2l ,2lEIEI =时。
8题5-4-10图 题5-4-9图题5-4-11图2 题5-4-12图25-4-13 A B 与B C 两梁铰接于B ,如图所示。
已知两梁的抗弯度相等,P =40k N /m ,,试求B 点的约束力。
5-4-14 悬臂梁和简支梁材料和截面均相同。
已知E 及未受力前A B 梁B 点与C D 梁中点之间的间隙Δ(垂直距离),如图所示,当受P 力后A B 梁在B 点的挠度大于Δ,试求各梁的支座反力。
5-4-15 具有初始挠度的A B 梁如图所示,梁的E I 和l 均为已知。
当梁上作用有三角形分布荷载时(q 0已知),梁便呈直线形状。
试求梁的初始挠曲线方程。
5-4-16 试根据对称性求图示梁的挠曲线方程。
E I =常量5-4-17 两端固定的等截面梁,梁上作用一外力偶矩M 0 ,如图所示。
欲使在固定端A 的反力偶矩M A 为零,则力偶矩M 0应作用在梁上何位置?(即x =?)测试练习解答 1. 判断改错题 5-1-1 ×。
挠度和转角不仅与弯矩有关,而且与边界位移条件也有关,例如,当悬臂梁自由端作用有集中力P 时,自由端的M =0,但挠度和转角都是最大值。
5-1-2 ×。
凡弹性变形均与材料的弹性模量值有关。
5-1-3 √。