Photovoltaic Power Forecasting Based on Artificial Neural Network and Meteorological Data

合集下载

基于LSTM网络模型的光伏发电功率短期预测系统

基于LSTM网络模型的光伏发电功率短期预测系统

基于LSTM 网络模型的光伏发电功率短期预测系统DOI :10.19557/ki.1001-9944.2024.04.006常振成,游国栋,肖梓跃,李兴韫(天津科技大学电子信息与自动化学院,天津300222)摘要:光伏发电受天气因素影响,具有明显的间歇性和波动性特征。

该文提出了一种基于LSTM 网络模型的光伏发电功率短期预测方法,该方法以STM32单片机为控制核心,实时采集光照辐度、温度、相对湿度、风速等数据。

利用相关系数法筛选相关度较高的因素,作为LSTM 网络模型的输入变量,对未来光伏发电功率进行短期预测。

MATLAB 仿真实验结果表明,该文所提方法与其他预测模型相比具有较高的预测精度,在晴天与多云天气下预测的MAPE 值分别为4.943%和4.997%,有利于我国电力系统的稳定运行和电网工作人员的调度。

关键词:STM32单片机;短时预测;LSTM 网络模型;实时采集;光伏发电功率中图分类号:TM615;TP18文献标识码:A文章编号:1001鄄9944(2024)04鄄0026鄄05Short 鄄term Power Prediction System for Photovoltaic Power Generation Based on LSTM ModelCHANG Zhencheng ,YOU Guodong ,XIAO Ziyue ,LI Xingyun(School of Electronic Information and Automation ,Tianjin University of Science &Technology ,Tianjin 300222,China )Abstract :Photovoltaic power generation is af fected by weather factors and has obvious intermittent and fluctuating characteristics.In this paper ,a short 鄄term prediction method of photovoltaic power generation based on LSTM network model is proposed ,which uses STM32microcontroller as the control core to collect data such as radiance ,tempera 鄄ture ,relative humidity ,and wind speed in real time.The correlation coefficient method is used to screen the factors with high correlation and use them as input variables of the LSTM network model to make short 鄄term predictions of future photovoltaic power generation.The results of MATLAB simulation experiments show that the proposed method has high prediction accuracy compared with other prediction models ,and the MAPE values predicted in sunny and cloudy weather are 4.943%and 4.997%respectively ,which is conducive to the stable operation of China ’s power system and the dispatch of power grid staff.Key words :STM32MCU ;short 鄄term forecasting ;LSTM network model ;real 鄄time collection ;photovoltaic power generation收稿日期:2023-11-14;修订日期:2024-03-06基金项目:天津市应用基础与前沿技术研究计划项目(13JCZDJC29100);天津市重点研发计划项目(17YFZCNC00230);大学生创新创业计划项目(202310057101)作者简介:常振成(2002—),男,本科,研究方向为新能源并网发电;游国栋(通信作者)(1973—),男,硕士,教授,研究方向为新能源并网发电。

光伏电站AGC-AVC子站技术标准规范V1.0

光伏电站AGC-AVC子站技术标准规范V1.0

青海电网光伏电站自动有功/电压无功控制(AGC/AVC )子站技术规范2013年6月目录1. 范围 (1)2. 规范性引用文件 (1)3. 术语和定义 (1)4. 总则 (3)5. 硬件配置 (3)6. 控制对象和通信接口 (4)6.1. 逆变器 (4)62 SVC/SVG装置 (5)6.3. 升压站监控系统 (6)64 调度主站 (7)7. 软件功能 (8)8. AGC控制策略 (8)9. AVC控制策略 (9)10. 安全闭锁 (10)10.1. 设备闭锁 (10)10.2. 全站闭锁 (10)11. 性能指标 (11)12. 附录 (12)12.1. 主站下发有功控制指令编码 (12)12.2. 主站下发电压控制命令编码 (12)1. 范围1.1本技术规范为接入青海电网的光伏电站实施自动有功/电压无功控制子站的相关技术规范,内容包括控制方式、设备配置、软件功能、接口方式等其它事项。

2. 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅所注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 19964-2012光伏发电站接入电力系统技术规定Q/GDW 617-2011光伏电站接入电网技术规定DL/T 634.5101 —2002远动设备及系统第5101部分:传输规约基本远动任务配套标准(IEC60870-5-101:2002 IDT )DL/T 634.5104 —2002远动设备及系统第5104部分:传输规约采用标准传输协议子集的IEC60870-5-101 网络访问(IEC 60870-5-104:2000 IDT)DL 451 —91循环式远动规约SD 325 —89电力系统电压和无功电力技术导则DL 755 —2001电力系统安全稳定导则3. 术语和定义下列术语和定义适用于本规范。

3.1光伏发电站升压站(简称:升压站)在光伏发电站内,将一批逆变器发出的电能汇集后升压送出的变电站。

光伏发电站接入电力系统技术规定-最新国标

光伏发电站接入电力系统技术规定-最新国标

光伏发电站接入电力系统技术规定1范围本文件规定了光伏发电站接入电力系统有功功率、无功电压、故障穿越、运行适应性、功率预测、电能质量、仿真模型和参数、二次系统以及接入系统测试和评价的技术要求。

本文件适用于通过10kV以上电压等级并网的新建、改建和扩建光伏发电站的接入、调试和运行。

配置储能的光伏发电站可参照执行。

2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T12325电能质量供电电压偏差GB/T12326电能质量电压波动和闪变GB/T14285继电保护和安全自动装置技术规程GB/T14549电能质量公用电网谐波GB/T15543电能质量三相电压不平衡GB/T19862电能质量监测设备通用要求GB/T22239信息安全技术网络安全等级保护基本要求GB/T24337电能质量公用电网间谐波GB/T29321光伏发电站无功补偿技术规范GB/T31464电网运行准则GB/T36572电力监控系统网络安全防护导则GB38755电力系统安全稳定导则GB/T40594电力系统网源协调技术导则GB/T40595并网电源一次调频技术规定及试验导则GB/T40604新能源场站调度运行信息交换技术要求GB/T50063电力装置电测量仪表装置设计规范GB/T50866光伏发电站接入电力系统设计规范DL/T448电能计量装置技术管理规程DL/T5003电力系统调度自动化设计技术规程下列术语和定义适用于本文件。

3.3术语和定义1光伏发电站photovoltaic(PV)power station利用光伏电池的光生伏特效应,将太阳辐射能直接转换为电能的发电系统,一般包含变压器、逆变器和光伏方阵,以及相关辅助设施等。

3.2逆变器inverter将直流电变换成交流电的设备。

3.3并网点point of interconnection对于有升压站的光伏发电站,指升压站高压侧母线或节点,对于无升压站的光伏发电站,指光伏发电站的输出汇总点。

基于Stacking模型融合的光伏发电功率预测

基于Stacking模型融合的光伏发电功率预测

基于Stacking 模型融合的光伏发电功率预测①杨荣新, 孙朝云, 徐 磊(长安大学 信息工程学院, 西安 710064)通讯作者: 杨荣新, E-mail: 158****************摘 要: 为了提高光伏发电输出功率的预测精度和可靠性, 本文提出一种基于Stacking 模型融合的光伏发电功率预测方法. 选取某光伏电站温度、湿度、辐照度等历史实测数据为研究对象, 在将光伏发电功率数据进行特征交叉以及基于模型的递归特征消除法进行预处理和特征选择的基础上, 以XGBoost 、LightGBM 、RandomForest 3种机器学习算法作为Stacking 集成学习的第一层基学习器, 以LinearRegression 作为第二层元学习器, 构建了多个机器学习算法嵌入的Stacking 模型融合的光伏发电功率预测模型. 预测结果表明, 该方法的R 2、MSE 分别达到了0.9874和0.1056, 相较于单一的机器学习模型, 预测精度显著提升.关键词: 光伏发电; Stacking; 模型融合; 基学习器; 元学习器引用格式: 杨荣新,孙朝云,徐磊.基于Stacking 模型融合的光伏发电功率预测.计算机系统应用,2020,29(5):36–45. /1003-3254/7395.htmlPhotovoltaic Power Prediction Based on Stacking Model FusionYANG Rong-Xin, SUN Zhao-Yun, XU Lei(School of Information Engineering, Chang’an University, Xi’an 710064, China)Abstract : In order to improve the prediction accuracy and reliability of photo voltaic power prediction output, this study proposes a photo voltaic power prediction method based on Stacking model fusion. The historical measured data such as temperature, humidity, and irradiance of a PV power plant are selected as the research object. Based on the feature intersection of the photo voltaic power data and the pre-processing and feature selection based on the model-based recursive feature elimination method, XGBoost and LightGBM are used. The three machine learning algorithms of Random Forest are the first layer of base learning for Stacking integrated learning. Linear Regression is used as the second layer of element learner to construct a photo voltaic power prediction model with multiple stacking models embedded in machine learning algorithms. The prediction results show that the R 2 and MSE of the method reach 0.9891and 0.1358, respectively, and the prediction accuracy is significantly improved compared with the single machine learning model.Key words : PV; Stacking; modelfusion; baselearner; metalearner近年来, 光伏发电产业凭借着自身清洁、环保和无污染的诸多优势, 以及在国家相关政策的大力支持下, 实现了跨越式发展[1]. 但太阳光的光照强度、环境温度等多种因素都会对太阳能发电的输出功率产生影响, 这使得光伏发电出力表现出强烈的间接性和时间波动性. 所以, 研究如何有效提高光伏发电输出功率的计算机系统应用 ISSN 1003-3254, CODEN CSAOBNE-mail: ************.cn Computer Systems & Applications,2020,29(5):36−45 [doi: 10.15888/ki.csa.007395] ©中国科学院软件研究所版权所有.Tel: +86-10-62661041① 基金项目: 陕西省交通运输厅交通科研项目(18-22R)Foundation item: Transportation Research Project of Shaanxi Provincial Transportation Department (18-22R)收稿时间: 2019-09-18; 修改时间: 2019-10-15, 2019-11-05; 采用时间: 2019-11-18; csa 在线出版时间: 2020-05-07预测精度对光伏发电力网系统的组件调度和电力管理有着非常重要的意义[2].国内外针对光伏发电功率预测的方法主要分为物理预测法和统计预测法. 基于物理的预测法把光伏电站的地理位置、气象条件等结合太阳能辐射传递方程和光伏组件方程来加以实现[3]. 统计预测方法将太阳辐射强度、风速、温湿度、气压等因素作为输入变量, 通过线性回归、BP 神经网络(Back Propagation Neural Network, BPNN)、支持向量机(Support Vector Machines, SVM)等技术挖掘输入变量与光伏发电功率间的隐含关系,并结合天气预报数据进行预测[4–6]. 针对神经网络初始参数的随机性缺点, 文献[7]提出了一种结合启发式算法优化BP神经网络权重和阈值的光伏发电功率预测方案; 文献[8]在对数据集的预处理上采用了聚类算法,将聚类后不同类别的光伏电场数据分别建立SVM预测模型; 文献[9]则提出了一种选择相似日的方法, 把输出功率相似的时间段进行捆绑, 建立了最小二乘向量机的光伏阵列输出功率预测模型.上述研究方案都是利用单一的算法模型对光伏发电的输出功率进行预测, 其预测精度不会很高, 表现出较大的局限性, 为此很多研究学者提出了组合预测的方法[10]. 组合预测方法因其可以结合各单一模型的优点于一身, 因此在很多领域也得到了广泛应用. 文献[11]提出了将相似日的光伏发电时间序列数据进行模态分解后, 对固有模态和趋势分量分别建立基于人工蜂群算法优化的支持向量机预测模型; 文献[12]为了减轻不确定性对电网的负面影响, 提出了一种灰色神经网络(灰色−神经网络)混合模型来预测光伏发电的短期输出功率; 文献[13,14]充分发挥各单一预测模型的优势,并按权重将其进行优化整合以提高预测精度; 文献[15–17]将原始光伏发电数据按照信号分解的方式进行解耦, 使得特征分解为互异的模态向量, 并对这些分量构建预测模型. 采用这些组合预测模型虽然可在一定程度上提高光伏功率的输出功率预测精度, 但模型融合大多采用简单的线性加权整合, 鲁棒性无法得到保证.基于以上研究, 本文在分析了光伏发电功率预测与人工智能技术发展背景的基础上, 利用Stacking集成学习框架对XGBoost、LightGBM、Random Forest、型的优势, 进一步提高了光伏发电输出功率的预测精度.1 算法理论介绍1.1 XGBoost算法机理XGBoost是经过优化的集成树模型, 从梯度提升树模型改进和扩展而来. 树的集成模型由式(1)表示:其损失函数为:Ω(f)=γT+12λ||w||2其中, , T代表叶子的个数, w代表叶子的权重. 并且有:那么损失函数可以表示为:对损失函数进行泰勒展开有:其中,移除常数项有:I j={i|q(x i)=j}将第j个叶子节点定义为, 即有:然后将上式求导并令求导结果等于0, 可得:把w j的最优解w j*带入目标函数, 得到:2020 年 第 29 卷 第 5 期计算机系统应用XGBoost 在进行节点分裂时, 采用一种贪心算法,每次在已有的叶子节点中加入分裂. 假设I L 和I R 分别是分裂后的左和右叶子节点的集合. 信息增益如下:γ从式(11)中可知, 这个信息增益与ID 3、C 4.5和分类与回归树是类似的, 都是利用分裂后的某种熵值减去分裂前的固有熵值. 同时, 为了限制树的深度, 加入了阈值, 这种策略以正则化的方式有效地避免了过拟合.1.2 LightGBM 算法机理针对传统的 Boosting 框架下的算法存在效率和可扩展性方面的不足, LightGBM 进行了两个方面的改进, 即采用梯度单边采样和互斥特征捆绑[18]. 梯度单边采样是指LightGBM 在对模型的参数进行训练的时候,没有使用训练集的全部样本, 而是根据梯度的大小进行了采样, 只选取那些具有高梯度的样本数据来计算信息增益. 互斥特征捆绑是指在稀疏特征空间中, 大部分特征不会同时取非0值, 通过将这些互斥的特征合并为单一特征, 以此达到降低特征维度的目的.根据梯度单边采样丢弃掉某些小梯度样本数据的主要思想原则为出发点, LightGBM 在对数据集进行采样时保留梯度大的样本, 对梯度较小的样本则按照一定比例进行下采样. 为了抵消对数据分布的影响, 梯度单边采样小梯度的样本数据在计算信息增益时引入系数(1–a )/b , a 表示大梯度数据的采样率, b 表示小梯度数据的采样率, 梯度单边采样的具体步骤如下:(1)按照数据集的梯度绝对值进行排序, 并选取最大的a×100%数据集保留, 作为大梯度样本点子集.(2)从剩余数据集中随机选取b×100%数据生成小梯度样本点集合.(3)将小梯度样本点集合乘以常数(1–a )/b 放大样本数据.(4)合并样本集, 得到一个采样集, 通过该采样集的训练, 产生一个弱学习器.(5)不断重复上述4个过程, 直至训练的模型达到提前设置的迭代次数或者出现收敛的状态.为了提高模型训练的并行能力, LightGBM 不仅对训练样本的数据进行了按梯度采样的策略, 同时也对高维稀疏性的互斥特征进行了融合绑定, 例如, 进行独热编码后的数据, 这些数据在进行独热编码后不仅维度升高, 而且呈现出稀疏的特性. 为了减少数据的特征维度, LightGBM 采用基于直方图(histogram)的方式将这些高维稀疏且互斥的特征捆绑在一起, 以提高节点的分裂效率. 如图1所示, 这种算法首先将输入连续特征的数据离散化为k 个整数值, 形成k 个捆绑的结果, 每个结果内各个特征都是互斥的, 然后构建宽度为k 的直方图, 在对训练数据进行遍历时, 只需要统计每个离散值在直方图上的累积量即可. 由于在计算分裂增益时, 是通过遍历排序直方图的离散值而得, 因此只需要计算k 次, 且在特征分裂时,只需要保存特征离散化后的值, 相较于XGBoost 而言, 减小了计算和存储的成本, 提高了分裂点寻找的效率, 降低了模型的计算复杂度.图1 Histogram 算法基本过程示意图1.3 基于Stacking 的集成学习方式如图2所示, 在基于Stacking 的集成学习方式下,整个模型的构建分为两个阶段, 通过以学习器级联的方式进行预测结果的传递, 提高预测精度[19]. 在第一阶段, 首先将原始数据集进行切分, 按照一定比例划分为训练集和测试集, 然后选取合适的基学习器以交叉验证的方式对训练集进行训练, 将训练完成后的各个基学习器对验证集和测试集进行预测, 第一阶段应该选取预测性能优秀的机器学习模型, 同时保证模型间的多元化; 在第二阶段, 将基学习器的预测结果分别作为元学习器训练和预测的特征数据, 元学习器结合上个阶段得到的特征和原始训练集的标签为样本数据进行模型构建, 并输出最终的Stacking 模型预测结果, 该阶计算机系统应用2020 年 第 29 卷 第 5 期段的元学习器一般选取稳定性较好的简单模型, 起到整体提升模型性能的作用.图2 基于Stacking的集成学习方式可以从两方面来看待Stacking方法, 第一, 它是许多集成方法的推广, 第二, 它是通过学习得到的集成方法. 在Stacking的训练阶段, 从第一层学习器中得到新的数据集, 如果用同一份完全相同的数据训练第一层学习器, 并用该份数据在第一层学习器上的输出作为第二层学习器的训练数据, 这会有过拟合风险. 因此, 训练第一层学习器的数据, 不能作为构造第二层学习器的数据, 所以在构造第二层学习器的训练数据时本文采用了交叉验证的方法来选取第二层学习器的训练数据.本文选取基于五折模型的Stacking算法建立光伏发电功率预测模型, 其流程框图如图3和图4所示. 具体步骤如下:(1)将原始数据集按照一定比例切分为训练集和测试集.图3 第一层单个基学习器5折交叉验证示意图图4 第二层元学习器模型构建示意图(2)将训练集平均分为5份, 即对于每一个基学习器进行5折交叉验证, 在每次交叉验证时以4份作为模型的训练集, 剩余的一份作为验证集, 并且在每次交叉验证完成时, 用训练的基学习器模型对验证集和测试集进行预测.(3)单个基学习器在完成5折交叉验证后, 会得到各个验证集的预测集, 也即训练集每条样本的预测值,同时得到测试集的5列预测值, 然后将各个验证集的预测集整合为1列, 记为A1, 将测试集的5列预测值按行取平均, 得到B1.(4)当第一层的m个基学习器完成训练后, 会得到第二层元学习器模型的输入特征矩阵(A1, A2, ···, Am),将原始训练集的标签值作为模型的输出矩阵, 进行模型的训练. 同时会得到最终的测试集输入特征矩阵(B1, B2, ···, Bm).(5)当元学习器训练完成后, 将(B1, B2, ···, Bm)作为特征矩阵, 利用模型输出模型融合后的最终预测结果.2 基于Stacking模型融合的光伏发电功率预测模型分析Stacking集成学习是一种建立在统计学习理论基础之上的多算法融合的机器学习方法, 一般情况下, 对于单一的预测模型而言, 其预测准确率是呈现边际效用递减的趋势, Stacking集成学习方式是组合来自多个预测模型的信息以生成新模型的模型集成技术. 将不同的机器学习算法通过不同的方式结合在一起, 以此获得比单一算法更优越的性能. 在Stacking集成学习2020 年 第 29 卷 第 5 期计算机系统应用模型中, 要充分分析每个基学习器的单独预测能力, 使得Stacking集成学习模型获得最佳的预测效果.基于Stacking的集成模型算法能够提高建模的精度, 但是, 由于集成模型具有融合多个模型进行建模的特性, 势必在整体建模上会牺牲一定的建模速度. 因此,为了兼顾Stacking算法的预测性能和整体建模速度, 本文选取了预测精度较高的随机森林、XGBoost 以及预测性能优异且算法时间复杂度较低的LightGBM 作为Stacking模型融合的第一层, 其中, 随机森林和XGBoost、LightGBM分别采用Bagging和Boosting 的集成学习方式, 有着出色的学习能力和严谨数学理论支撑, 在各个领域得到了广泛的应用. 第二层模型采用了稳健性和泛化能力较强的LinearRegression, 模型架构如图5所示.图5 Stacking模型融合架构图Stacking框架下基于多模型融合的光伏发电功率预测方法训练流程大致如下:(1)在数据预处理的基础上使用随机森林、XGBoost 以及LightGBM算法结合递归特征消除法对输入特征进行特征选择, 删除冗余特征.(2)划分原始数据集, 使用交叉验证方式, 优选各个模型的最优超参数.(3)使用划分后的数据集对Stacking中的第一层预测算法分别训练, 并输出预测结果, 生成新的数据集.(4)使用新生成的数据集, 对Stacking中第二层算法进行训练, 基于多模型融合的Stacking集成学习算法训练完毕.3 光伏电场数据算例分析3.1 光伏电场数据预处理本文采用的数据集为国能日新企业下某光伏电站提供的2016年4月1日至2018年4月30日之间的连续气象历史数据和光伏电站的输出功率数据. 监测的数据每天从0:00–23:45, 每15分钟进行一次数据采集, 将其中一些奇异数据剔除, 减少奇异数据在训练模型时对训练结果的影响, 共得到66 860条样本数据. 数据前5行信息如图6所示, 初始数据特征主要包含时间、辐照度、风速、风向、温度、湿度、压强、实际辐照度信息, 实际功率为标签值. 在模型建立过程中, 将66 860条样本数据随机切分出70%,即46 802条数据作为训练集, 进行模型构建, 其计算机系统应用2020 年 第 29 卷 第 5 期余30%的20 058条数据作为测试集, 用于对模型的检验.光伏发电主要是依靠太阳能, 因此时间特征应该作为一个重要的特征进行挖掘. 由于初始数据的时间格式无法直接作为模型的输入, 因此将时间属性进行特征提取, 切分出月份、天、小时、分钟这些有用的特征属性. 数据采集是以15分钟为单位进行的, 提取出的minute属性是4个离散值, 对其进行独热编码, 并剔除原来的时间以及minute特征, 得到的初步预处理数据集及统计信息如表1所示.图6 光伏电场初始数据部分图示表1 初步预处理后数据集的描述性统计变量平均数标准差方差最小值最大值辐照度–0.576 6090.559 3810.312 907–11风速–0.664 3250.267 5070.071 559–11风向163.364 89395.693 0669157.1620359温度–0.006 2760.380 0290.144 422–11压强0.110 2060.284 2160.080 778–11湿度–0.088 5330.442 7320.196 011–10.978 947实际辐照度236.341 804342.082 201117 020.2–0.021303.11 hour11.487 93 6.921 73747.910 44023month 6.121 87 3.379 42911.420 54112day15.598 0598.711 71275.893 92131 minute_00.249 9780.433 0030.187 49101 minute_150.249 9780.433 0030.187 49101 minute_300.250 0220.433 0290.187 51401 minute_450.250 0220.433 0290.187 51401实际功率 2.105 609 2.989 0938.934 676–0.073 6610.48533.2 光伏电场数据特征分析为了充分挖掘气象数据对实际功率的影响, 本文采用了特征交叉的方式来扩充特征, 特征交叉是指通过将输入数据集的两个或多个特征进行相乘从而构造非线性特征的一种方式, 非线性特征针对于非线性预测模型, 其会有更好的增益贡献. 通过特征组合的方式增加特征的维度, 以求得更好的训练效果. 因此本文对风速、风向、温度、压强、湿度这几个特征进行了特征交叉, 构建了温度*温度、湿度*湿度、压强*压强、温度*湿度、湿度*压强、温度*压强、温度*湿度*压强、风向*风速这些新的特征, 同时对所有的特征进行了相关性分析, 绘制了如图7所示的特征相关性热度图, 该图以颜色的深浅表征特征与特征以及特征与标签之间的相关性. 可以看出, 实际功率与辐照度、实际功率与实际辐照度之间存在较高的相关性, 分别为0.83和0.84. 同时辐照度和实际辐照度之间也有0.89的相关性, 由于实际辐照度对实际功率影响更大一些,故删除辐照度特征, 选用实际辐照度作为特征输入. 对于特征交叉构造的新特征, 该图也表明其对实际功率预测也有很重要的作用.通过数据预处理以及特征分析后, 利用基于模型的递归特征消除法进行特征选择, 本文分别利用随机森林、XGBoost以及LightGBM 3种实现模型融合的基学习器通过交叉验证结合枚举的方式执行递归特征消除, 以此来选择最佳数量的特征, 并且在Stacking模型融合的过程中各自以最优特征数进行第一层预测模2020 年 第 29 卷 第 5 期计算机系统应用型训练. 该方式具体思想为: 对于一个数量为d 的特征属性集合, 其所有的子集的个数是2d –1. 指定一个学习算法, 首先通过该算法计算所有特征的重要性排名,然后依据特征重要性得分依次构造出特征数目为1至d 的所有特征子集, 并计算数据在所有特征子集上的交叉验证误差, 最后选择平均误差最小的那个子集作为所挑选的特征数量. 图8中(a)、(b)、(c)分别为基于随机森林、XGBoost 以及LightGBM 在特征选择过程中各个特征子集的交叉验证均方误差的曲线变化图.辐照度风速风向温度压强湿度实际辐照度实际功率H o u rM i n u t eM o n t hD a y温度*温度湿度*湿度压强*压强温度*湿度湿度*压强温度*压强温度*湿度*压强风向*风速实际功率辐照度风速风向温度压强湿度实际辐照度实际功率Hour Minute Month Day 温度*温度湿度*湿度压强*压强温度*湿度湿度*压强温度*压强温度*湿度*压强风向*风速实际功率−0.6−0.30.30.60.9图7 特征相关性热度图通过图8可以看出, 不同的机器学习模型在建模过程中对最优特征的选择是不同的. 基于Bagging 集成思想的随机森林选出的最佳特征个数是10个, 5折交叉验证的均方误差MSE 的平均值为0.2785, 而基于Boosting 集成思想的XGBoost 和LightGBM 选择的最佳特征个数分别为19和15个, 5折交叉验证的MSE 均值分别为0.2071和0.1783. 对于本文的光伏电场数据, XGBoost 和LightGBM 模型相较于随机森林模型有更好的预测效果, 并且LightGBM 在高精度的预测前提下, 模型构建时间也显著缩短.3.3 各单模型的超参数选择与预测性能分析为了使Stacking 模型融合的性能达到最优, 本节在结合3.2节特征选择结果的基础上, 对随机森林、XGBoost 和LightGBM 3个基学习器模型的学习能力进行分析. 针对各个基学习器采用网格搜索加交叉验证的方式进行超参数择优, 首先将数据集划分为训练集和测试集, 然后将划分后的训练数据进一步分为训练集与验证集, 通过交叉验证的方式, 分别观测使用不同超参数集训练后模型在验证集的预测效果, 从而选择各个模型的最优超参数集. 将构建好的各个单模型在测试集上进行预测分析, 并以决定系数R 2和均方误差MSE 作为模型性能的评价标准. 各模型超参数集以及单模型预测性能如表2所示.通过上表可以看出, 超参数优化后的随机森林模型R 2为0.9465, 均方误差MSE 为0.2785, 而XGBoost 与LightGBM 在参数优化后的R 2分别为0.9587和0.9632, MSE 分别为0.2071和0.1783. 基于Bagging 集成思想的随机森林和基于Boosting 集成思想下的XGBoost 与LightGBM 作为Stacking 模型融合的第一层基学习器, 其性能较好, 且Boosting 算法模型的优越性高于Bagging 算法模型.3.4 Stacking 模型融合预测性能及改进机制分析为了验证Stacking 集成学习模型的预测性能, 首先对46 802条训练集平均分为5份, 分别用第一层计算机系统应用2020 年 第 29 卷 第 5 期的3种基学习器执行5折交叉验证过程, 在每一次交叉验证中, 使用4份训练集对基学习模型进行构建,并对剩余的一份验证集进行预测, 同时对20 058条测试集进行预测, 那么在5折交叉验证完成后, 每个基学习器模型会产生和训练集样本数量相同的一列数据, 3个基学习器则会最终产生3列对训练数据预测后的数据集A . 然后将每个基学习器模型在5次交叉验证后对测试集预测出的5列数据按行求均值, 即3个基学习模型最后会产生3列对测试集预测后的数据集B . 最后则利用第二层的Linear Regression 模型对数据集A 和最初训练集的标签(原始实际功率)构成的数据集进行模型构建, 利用构建好的融合模型对数据集B 进行预测, 得到最终的Stacking 模型融合后的结果.Optimal number of features: 19123456789101112131415161718191234567891011121314151617181912345678910111213141516171819Number of features selected (Random forest)Number of features selected (XGBoost)Number of features selected (LightGBM)图8 特征子集寻优过程中交叉验证的均方误差曲线图图9(a)比较了部分测试集在Stacking 融合模型上的预测曲线变化情况, 图9(b)给出了4种模型在R 2和MSE 上的性能评价值. 可以看出, Stacking 模型融合后的实际功率预测值无论是在拟合优度还是均方误差方面都有了较大的改善, R 2达到了0.9874, MSE 达到了0.1056, 这表明本文提出的对随机森林、XGBoost 和LightGBM 以Stacking 集成学习方式进行模型融合,在对光伏电场输出功率的预测方面, 具有一定的实际意义, 可为电网调度提供有益的参考.表2 各模型超参数集以及单模型预测性能模型名称超参数预测性能R 2MSE随机森林n_estimators=175, max_depth =5,min_samples_split =2,min_samples_leaf=10.94650.2785XGBoost max_depth=6, learning_rate=0.02,n_estimators=160,min_child_weight=1, gamma=0.1,subsample=0.70.95870.2071LightGBMnum_leaves=50, learning_rate=0.02,bagging_fraction=0.7,bagging_frequency=50.96320.1783255075100125150175200真实值Stacking 模型融合预测值, R 2=0.9874(a) Stacking 融合模型在部分测试集上的预测曲线变化4种模型性能 (RF, XGBoost, LightGBM, Stacking)0.278512340.20710.17830.1056MSE R 20.98740.96320.95870.9465图9 Stacking 模型融合的性能曲线图从理论层面分析Stacking 集成模型优于单模型的2020 年 第 29 卷 第 5 期计算机系统应用原因, 是因为Stacking模型集成了多样化的预测算法,能够充分利用各个算法从不同的数据空间和结构来观测数据, 从而充分发挥各个算法自身优势, 摒弃了各个算法中预测效果较差的环节. 此外, 考虑到光伏发电功率预测模型训练过程中的假设空间往往很大, 可能有多个假设在训练集上达到同等性能, Stacking集成学习的方式可以有效减少单一模型泛化性能不佳的风险.另一方面, 从模型优化角度来看, 单一模型训练的优化过程中, 模型往往会有陷入局部最小点的风险, 有的局部极小点所对应的模型泛化性能可能较差, 而通过多个基学习器训练之后进行结合, 可有效减少陷入局部极小点的概率. 因此, 采用基于Stacking集成学习方式的多模型融合后预测精度有所提升.就Stacking模型融合的改进机制而言, 元学习器的训练集是由基学习器的输出产生的, 直接使用基学习器的训练集来产生次级训练集的话, 可能会产生严重的过拟合. 为了防止数据被双层学习器重复使用而造成过拟合效应的发生, 本文在模型融合的过程中, 每个基学习器都对训练集执行5折交叉验证过程, 使用一个数据块作为验证集, 对应的其余4个数据块作为测试集, 在每折交叉验证完成后, 利用基学习器对验证集进行预测, 即每个基学习器在5折交叉验证结束后,都会产生和原始训练集数量相同的新的数据集. 实现了所有数据从输入特征到输出特征的特征变换, 且元学习器的训练集完全来自各个基学习器的预测输出数据, 这使得元学习器能充分结合各个基学习器的模型优势来完成模型构建, 以提升模型融合的效果. 同时, XGBoost和LightGBM这两类基学习器能够充分挖掘输入信息的数据内部特征, 对连续型和离散型特征都有较好应用, 而随机森林模型可以在最大程度上关注影响较大的几种特征类型, 能够充分发挥重要特征的作用. 因此, Stacking模型融合的3个基学习器可以实现优势互补, 确保元学习器的输入是质量较高且无冗余特征的数据集, 这些数据集通过Linear Regression这一泛化能力较强的元学习器进行训练后, 可以从整体上提升Stacking模型的预测能力.4 结论为了获得更加理想的光伏发电功率预测结果, 本文建立了以历史光伏电场输出功率数据和环境气象为关键因素的基于Stacking模型融合的光伏发电功率预测模型. 该模型分为两层构建, 第一层基学习器分别选取预测性能较优的以Bagging算法为代表的随机森林和以Boosting算法为代表的XGBoost、LightGBM模型, 并在第一层进行了各个基学习器模型的超参数调优, 以充分发挥各个模型的优势, 第二层选取稳健性较好的Linear Regression模型进行最终的Stacking集成融合. 通过光伏电场数据集的试验表明, 本文建立的融合模型可以精确地预测光伏电场输出功率, 提高了光伏发电的预测精度, 对于工程上的光伏功率发电预测及建模有一定的实用意义.在今后的工作中, 将进一步针对以下问题开展深入探讨, Stacking的框架设计比较复杂, 对于基模型要训练多次, 即使在训练Stacking模型的时候对每个基学习器减少若干数据量, 计算时间仍然较长. 因此, 未来研究中有必要布置分布式计算的相关环境, 对不同的基模型分别建模, 采用分而治之的思想, 有效减小算法的时间复杂度.参考文献吕鑫, 刘天予, 董馨阳, 等. 2019年光伏及风电产业前景预测与展望. 北京理工大学学报(社会科学版), 2019, 21(2): 25–29.1瞿谊. 风光伏发电预测技术的发展. 数码世界, 2018, (4): 274. [doi: 10.3969/j.issn.1671-8313.2018.04.239]2张玉, 黄睿, 张振涛, 等. 基于克里格模型的光伏发电量预测. 热力发电, 2017, 46(4): 27–32. [doi: 10.3969/j.issn.1002-3364.2017.04.027]3Guo HP, Wu SH, Wang ZQ, et al. Linear regression for forecasting photovoltaic power generation. Applied Mechanics and Materials, 2014, 494–495: 1771–1774. [doi:10.4028//AMM.494-495.1771]4李芬, 宋启军, 蔡涛, 等. 基于PCA-BPNN的并网光伏电站发电量预测模型研究. 可再生能源, 2017, 35(5): 689–695.[doi: 10.3969/j.issn.1671-5292.2017.05.009]5张玉, 莫寒, 张烈平. 基于模糊支持向量机的光伏发电量预测. 热力发电, 2017, 46(1): 116–120. [doi: 10.3969/j.issn.1002-3364.2017.01.116]6肖俊明, 韦学辉, 李燕斌. 基于BP神经网络和遗传算法的光伏功率预测的研究. 计算机测量与控制, 2015, 23(2): 7计算机系统应用2020 年 第 29 卷 第 5 期。

光伏电站AGC-AVC子站技术规范V1.0

光伏电站AGC-AVC子站技术规范V1.0

青海电网光伏电站自动有功/电压无功控制(AGC/A VC)子站技术规范2013年6月目录1.范围 (1)2.规范性引用文件 (1)3.术语和定义 (1)4.总则 (3)5.硬件配置 (4)6.控制对象和通信接口 (4)6.1.逆变器 (4)6.2.SVC/SVG装置 (5)6.3.升压站监控系统 (6)6.4.调度主站 (8)7.软件功能 (9)8.AGC控制策略 (10)9.AVC控制策略 (10)10.安全闭锁 (11)10.1.设备闭锁 (11)10.2.全站闭锁 (12)11.性能指标 (12)12.附录 (14)12.1.主站下发有功控制指令编码 (14)12.2.主站下发电压控制命令编码 (14)v1.0 可编辑可修改1.范围本技术规范为接入青海电网的光伏电站实施自动有功/电压无功控制子站的相关技术规范,内容包括控制方式、设备配置、软件功能、接口方式等其它事项。

2.规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅所注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 19964-2012 光伏发电站接入电力系统技术规定Q/GDW 617-2011 光伏电站接入电网技术规定DL/T — 2002 远动设备及系统第 5101 部分:传输规约基本远动任务配套标准( IEC60870-5-101:2002 IDT )DL/T — 2002 远动设备及系统第 5104 部分:传输规约采用标准传输协议子集的 IEC60870-5-101 网络访问( IEC 60870-5-104:2000 IDT )DL 451 — 91 循环式远动规约SD 325 — 89 电力系统电压和无功电力技术导则DL 755 — 2001 电力系统安全稳定导则3.术语和定义下列术语和定义适用于本规范。

光伏发电站升压站(简称:升压站)在光伏发电站内,将一批逆变器发出的电能汇集后升压送出的变电站。

基于功率修正算法的光伏发电系统最大功率点跟踪控制策略

基于功率修正算法的光伏发电系统最大功率点跟踪控制策略

赵乃正(1997—),男,研究方向为新能源发电。

高长伟(1980—),男,博士,副教授,研究方向为光伏发电控制技术、虚拟同步发电机技术。

夏显争(1997—),男,研究方向为新能源发电。

*基金项目:辽宁省自然科学基金项目(20180550138);辽宁省科协科技创新智库项目(面向能源互联网的辽宁电力行业低碳创新相关问题研究);辽宁科技学院大学生创新训练项目(光伏市电互补供电系统建模及运行特性研究)基于功率修正算法的光伏发电系统最大功率点跟踪控制策略*赵乃正1,高长伟1,2,夏显争1(1.辽宁科技学院电气与信息工程学院,辽宁本溪117004;2.辽宁省机器人驱动控制工程实验室,辽宁本溪117004)摘要:结合光伏电池给定参数、光照强度、温度以及实时输出电流,利用修正公式对其实时最大可用功率进行修正计算。

综合考虑光伏电池实时输出电流与其最大可用功率修正值,进一步求出光伏系统DC /DC 变换电路的占空比,以此来调节光伏系统的输出功率,最终使光伏电池稳定工作在最大功率点。

该方法无需电压传感器,方法简单易实现,相比于扰动观测法,可有效提高系统响应速度并减小稳态功率波动,降低系统功率损耗。

关键词:光伏发电;最大功率点跟踪;占空比;功率波动中图分类号:TM 615文献标志码:A文章编号:2095-8188(2019)05-0055-04DOI :10.16628/j.cnki.2095-8188.2019.05.010Maximum Power Point Tracking Control Strategy for Photovoltaic Power Generation System Based on Power Correction AlgorithmZHAO Naizheng 1,GAO Changwei 1,2,XIA Xianzheng 1(1.College of Electrical and Information Engineering ,Liaoning Institute ofScience and Technology ,Benxi 117004,China ;2.Robotic Drive and Control Engineering Laboratory of Liaoning Province ,Benxi 117004,China )Abstract :Combining the parameters of photovoltaic cell ,illumination ,temperature and real-time output current ,the modified formula was used to calculate the actual maximum available power.Considering the actual output current of the photovoltaic cell and its maximum available power calculation value ,the duty ratio of the DC /DC conversion circuit of the photovoltaic system is further determined ,and the output power of the photovoltaic system is adjusted accordingly ,so that the photovoltaic cell operates stably at the maximum power point.The method does not require a voltage sensor ,and the method is simple and easy to implement.Compared with the disturbance observation method ,the system response speed can be effectively improved ,the steady state power fluctuation can be suppressed ,and the system power loss can be reduced.Key words :photovoltaic generation ;maximum power point tracking (MPPT );duty cycle ;power fluctuation0引言作为典型的可再生能源,太阳能具有储量巨大、无污染、不受地域限制等诸多优势。

面向光伏发电预测的公开数据集综述

面向光伏发电预测的公开数据集综述

2023年8月Electric Power Information and Communication Technology Aug. 2023 中图分类号:TM615文献标志码:A文章编号:2095-641X(2023)08-016-06DOI:10.16543/j.2095-641x.electric.power.ict.2023.08.03著录格式:张沛,刘金城,张彬,等.面向光伏发电预测的公开数据集综述[J].电力信息与通信技术,2023,21(8):16-21.面向光伏发电预测的公开数据集综述张沛1,刘金城1,张彬1,翟苏巍2,李文云3(1.北京交通大学院电气工程学院,北京市海淀区100089;2.云南电网有限责任公司电力科学研究院,云南省昆明市650217;3.云南电力调度控制中心,云南省昆明市650011)A Review of Public Datasets for Photovoltaic Power Generation ForecastingZHANG Pei1, LIU Jincheng1, ZHANG Bin1, ZHAI Suwei2, LI Wenyun3(1. School of Electrical Engineering, Beijing Jiaotong University, Haidian District, Beijing 100089, China;2. Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, Yunnan Province, China;3. Yunnan Power Dispatching and Control Center, Kunming 650011, Yunnan Province, China)摘要:光伏发电具有间歇性和波动性,光伏发电的精准预测是合理安排运行方式和应对措施、提高电网安全性和可靠性的重要措施。

光储充建一体站微电网研究综述

光储充建一体站微电网研究综述

第 39 卷第 1 期电力科学与技术学报Vol. 39 No. 1 2024 年 1 月JOURNAL OF ELECTRIC POWER SCIENCE AND TECHNOLOGY Jan. 2024引用格式:颜勤,余国翔.光储充建一体站微电网研究综述[J].电力科学与技术学报,2024,39(1):1‑12.Citation:YAN Qin,YU Guoxiang.Research review on microgrid of integrated photovoltaic‑energy storage‑charging station[J].Journal of Electric Power Science and Technology,2024,39(1):1‑12.光储充建一体站微电网研究综述颜勤,余国翔(长沙理工大学电气与信息工程学院,湖南长沙 410114)摘要:为解决电动汽车及新能源大规模接入带来的电力系统运行稳定和新能源高效利用的问题,光储充一体化模式应运而生,其各单元间源荷储协同交互机理及优化调控策略也成为智能电网亟待解决的关键问题。

“光储充放+智能建筑”的光储充建一体站微电网模式因其源荷储一体化、供需互补、灵活调度等特征,成为中国节能减碳、能源转型的发展重点。

考虑到其微电网运行模式所要面对的分布式能源强不确定性、孤岛并网运行状态下交互机理不明等挑战,对光储充建一体站微电网各单元模块、关键技术、运行状态等方面进行综述,并对光储充建的研究现状进行总结,探讨其未来的发展趋势和需要面对的挑战。

研究成果对挖掘经济激励下各类需求响应资源的调控潜力,保障电网供电可靠性,具有重要理论和实际参考意义。

关键词:微电网;需求侧响应;电动汽车;分布式储能;光伏功率预测DOI:10.19781/j.issn.1673‑9140.2024.01.001 中图分类号:TM73 文章编号:1673‑9140(2024)01‑0001‑12 Research review on microgrid of integrated photovoltaic‑energy storage‑charging stationYAN Qin, YU Guoxiang(School of Electrical & Information Engineering,Changsha University of Science & Technology,Changsha 410114,China)Abstract:To address the challenges posed by the large-scale integration of electric vehicles and new energy sources on the stability of power system operations and the efficient utilization of new energy,the integrated photovoltaic-energy storage-charging model emerges. The synergistic interaction mechanisms and optimized control strategies among its individual units have also become key issues urgently needing resolution in smart grid development. Due to the characteristics of integrated generation, load, and storage, mutual complementarity of supply and demand, and flexible dispatch,the photovoltaic-energy storage-charging (PV-ESS-EV)integrated station micro-grid (ISM)mode,incorporating "PV- PV-ESS-EV + intelligent building" features,has become a focal point for energy conservation,carbon reduction,and energy transition in China. In consideration of the challenges faced by the operational mode of microgrids, such as the strong uncertainty of distributed energy sources and the unclear interaction mechanisms during islanded and grid-connected operation,various aspects of the PV-ESS-EV ISM are reviewed,including its unit modules,key technologies,and operational states. Additionally,the current research status of PV-ESS-EV is summarized while future development trends are discussed, and the challenges that need to be addressed are examined.The research findings have important theoretical and practical implications for exploring the regulatory potential of various demand-response resources under economic incentives,ensuring the reliability of power grid supply,and serving as valuable references for both theory and practice.Key words:micro grid; demand response; electric vehicle; distributed energy storage; photovoltaic power forecasting收稿日期:2022‑06‑25;修回日期:2022‑08‑29基金项目:国家自然科学基金青年基金(52307080);湖南省教育厅优秀青年项目(22B0318);长沙市自然科学基金(kq2208230)通信作者:颜勤(1988—),女,博士,讲师,主要从事电动汽车及新能源接入电力系统运行优化等方面的研究;E‑mail:*****************.cn电力科学与技术学报2024年1月随着中国“碳达峰、碳中和”节能减排战略的逐步实施,高渗透率新能源并网将成为电力系统的基本特征及发展形态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Index Terms--Photovoltaic Power Forecasting; Artificial Neural Network Method; BP Network; Aerosol Index; Maximum Absolute Prediction Error.
I. INTRODUCTION
1
Photovoltaic Power Forecasting Based on Artificial Neural Network and Meteorological Data
Jiahao Koபைடு நூலகம், Jun Liu*, Qifan Li, Wanliang Fang
Dept. Electric Power Engineering School of Electrical Engineering, Xi'an Jiaotong University Xi'an, China *Corresponding author: eeliujun@
1
Zhenhuan Chen, Linlin Liu, and Tieying Guan
Dispatching and Communication Center Gansu Electric Power Corporation Lanzhou, China yangcx@ Various PV power output prediction methods have been proposed up to present. Multiple linear regression [3][4] is used to study the solar power output characteristics, combining with weather data and solar radiation data. However, this method requires large amount of data samples, and the fitting results are sensitive to pathological data. Another method based on Markov chain [5]-[7] also needs a large number of raw data, but it shows higher accuracy even if some weather data are omitted. Support Vector Machine (SVM) is also applied to predict PV power outputs [8][9]. However, classical SVM algorithms are more suitable for two-classification cases, while PV power forecasting is a typical multi-classification problem. The most promising method for PV forecasting is the artificial neural network method [10][11], especially Back Propagation(BP) neural network. BP neural network has the advantages of complex nonlinear systems simulation, good approximation performance, strong learning ability and fault data tolerance. However, it also has some inherent defects, such as slow convergence rate, easy to fall into local minimum value and cannot get the global optimal solution, some improvements have been made on BP network to enhance better convergence[12] -[15]. While predicting PV power outputs, few researches have taken aerosols into consideration, which can be induced by desert dust, biomass burning, volcano smoke, power plant emission, and so on. In fact, there is a strong correlation between total solar radiation and aerosol index [16]-[18]. Typically, the higher the aerosol optical depth is, the greater the attenuation of the solar power reaching the surface of the earth is. Therefore, aerosols influence the output of the PV system indirectly. In this paper, a novel PV forecasting model is proposed, based on multiple meteorological data including aerosol index values. Firstly BP neural network is trained by historical meteorological data and hourly average output power data, and then weather data of the objective day are used as the input variables of BP neural network to predict hourly power outputs of PV systems. The efficiency of the proposed method is validated by analyzing the mean absolute percentage error between predicted values and measured values. II. FORECASTING MODEL FOR PV OUTPUT POWER Since there are various factors affecting PV power outputs, it is difficult to figure out the power outputs with a fixed
T
O ensure reliable operation and economic dispatch of modern power systems, generation schedules are made for real-time, one-day-ahead, weekly, monthly and yearly power markets. Hence it is essential to predict power system load curves and power outputs of renewable power plants, such as wind farms and Photovoltaic (PV) power stations. As it is well-known that the outputs of solar power stations have high variations subject to different weather conditions, researches on PV power forecasting have been increasing considerably in recent years. There are two commonly used objectives for power forecasting at present: one is to predict the environmental parameters relevant to the PV system, such as solar radiation [1], then calculate the active power outputs with solar radiation, ambient temperature and other parameters using predefined mathematical models. The other is to predict the active power outputs of the PV systems directly [2]. Since solar radiation data are difficult to predict on an hourly basis, the active power outputs of the PV system are predicted directly in this paper, based on the historical power outputs data and weather forecast data of the objective day.
Abstract--Due to the intermittency and randomness of solar Photovoltaic (PV) power outputs, it is necessary to find a precise method for PV power forecasting. However, conventional methods, using only temperature, humidity and wind speed data, failed to obtain high accuracy when used to predict PV power outputs under extreme weather conditions. Aerosol index which indicates particulate matter in the atmosphere has a strong correlation with PV generated energy. This paper proposes a novel photovoltaic power forecasting model considering aerosol index data as an additional input. Based on weather classification and back propagation artificial neural network approaches, the estimated results of the forecasting model show good coincidence with the measurement data. And the proposed model is able to improve the prediction accuracy of conventional methods using artificial neural network.
相关文档
最新文档