电力系统自动化技术
电力系统自动化技术实践篇

电力系统自动化技术实践篇简介电力系统自动化技术是指利用先进的信息技术手段,对电力系统进行智能化、自动化的管理和控制,以提高电力系统的可靠性、经济性和安全性。
本文将介绍电力系统自动化技术的一些实践应用。
实时监测与数据采集电力系统自动化技术的一个重要应用是实时监测与数据采集。
通过安装传感器和监测设备,可以对电力系统的各个环节进行实时监测,如发电、输电、配电等。
同时,通过数据采集系统,可以将监测到的数据实时传输到中心监控系统,为运维人员提供准确的数据支持。
远程控制与调度电力系统自动化技术还可以实现远程控制与调度。
通过远程监控系统,运维人员可以对电力系统进行远程控制和调度,如遥控开关、调整负荷、优化运行参数等。
这样可以减少人工操作的不确定性,提高电力系统的运行效率和安全性。
故障检测与智能诊断电力系统自动化技术也可以应用于故障检测与智能诊断。
通过故障检测系统,可以实时监测电力系统中的故障,并通过智能诊断算法进行故障定位和诊断。
这样可以快速发现和解决故障,减少停电时间,提高电力系统的可靠性。
功率调节与优化电力系统自动化技术还可以实现功率调节与优化。
通过自动化控制系统,可以根据电力系统的负荷变化,自动调节发电机的输出功率,保持电力系统的频率和电压稳定。
同时,通过优化算法,可以对电力系统进行优化调度,实现最佳的功率分配,提高电力系统的经济性。
安全防护与应急响应电力系统自动化技术还可以用于安全防护与应急响应。
通过安全监控系统和应急响应系统,可以对电力系统进行实时监测和分析,及时发现和应对安全风险和突发事件。
这样可以保障电力系统的安全运行,减少事故发生的可能性。
结论电力系统自动化技术的实践应用可以提高电力系统的可靠性、经济性和安全性。
通过实时监测与数据采集、远程控制与调度、故障检测与智能诊断、功率调节与优化以及安全防护与应急响应等技术手段的应用,可以实现电力系统的智能化运行,为电力行业的发展带来更多的机遇和挑战。
电力系统自动化

电力系统自动化引言概述:电力系统自动化是指通过采用先进的电力设备、自动化控制技术和信息通信技术,实现对电力系统的监测、控制和管理的一种技术手段。
本文将从四个方面详细阐述电力系统自动化的内容。
一、电力系统自动化的概念与意义1.1 电力系统自动化的定义:电力系统自动化是指利用先进的技术手段对电力系统进行监测、控制和管理,实现电力生产、传输和分配的自动化过程。
1.2 电力系统自动化的意义:提高电力系统的可靠性和稳定性,降低运行成本,提高电能利用效率,满足日益增长的电力需求,推动电力行业的可持续发展。
二、电力系统自动化的基本组成2.1 电力设备:包括发电机、变压器、开关设备等,这些设备通过传感器和执行器与自动化系统进行信息交互和控制操作。
2.2 自动化控制技术:包括自动化控制算法、控制器、调度系统等,通过对电力设备的监测和控制,实现对电力系统的自动化管理。
2.3 信息通信技术:包括通信网络、数据采集与传输技术等,通过实时获取和传输电力系统的信息,为自动化控制提供数据支持。
三、电力系统自动化的关键技术3.1 远动技术:通过远程监测和控制设备,实现对电力系统的远程操作和管理。
3.2 自动化调度技术:通过自动化调度系统,实现对电力系统的经济调度和优化运行。
3.3 智能感知技术:通过传感器和智能装置,实现对电力设备和电力系统状态的实时感知和监测。
四、电力系统自动化的应用领域4.1 发电厂自动化:通过自动化控制技术,实现对发电设备和发电过程的自动化管理,提高发电效率和可靠性。
4.2 输电线路自动化:通过自动化控制技术,实现对输电线路的远程监测和控制,提高输电效率和稳定性。
4.3 配电网自动化:通过自动化控制技术,实现对配电设备和配电过程的自动化管理,提高配电效率和可靠性。
总结:电力系统自动化是电力行业发展的重要趋势,它能够提高电力系统的可靠性、稳定性和经济性,实现对电力系统的智能化管理。
随着科技的不断进步,电力系统自动化将在未来发挥更加重要的作用,推动电力行业的可持续发展。
电力系统自动化技术专业介绍

电力系统自动化技术专业介绍电力系统自动化技术专业介绍电力系统自动化技术是一门集电力系统、控制理论、计算机技术等多学科知识于一体的综合性学科。
该专业主要研究电力系统自动化控制及其应用,以及相关领域的基础理论、方法和技术。
电力系统自动化技术专业培养具备电力系统自动化控制和应用,并具备计算机应用基础和软件开发能力的高级工程技术人才。
电力系统自动化技术专业的课程设置涵盖了电力系统、自动控制理论、信息处理、通信等学科领域的基本知识。
其中,在电力系统学科领域,学生将学习电力系统运行控制、电力系统保护、电力系统调度、电力系统安全等内容;在自动控制理论方面,学生将学习控制系统建模与仿真、控制系统设计、制造和调试等内容;在信息处理领域,学生将学习数字信号处理、数据通信、人工智能等内容;在通信领域,学生将学习电力系统通信、电力系统自动化通信、无线通信和卫星通信等内容。
此外,学生还将学习英语、大学物理、高等数学、概率论和统计学等基础学科知识。
通过系统的课程学习,培养学生对电力系统工程的运行、监测及控制、保护等方面的理解能力和技能。
在教学方面,电力系统自动化技术专业强调理论与实践相结合,课程设置注重实用性和针对性。
学生通过实验、综合实习、毕业设计等形式,实践所学知识,提高技能水平。
同时,电力系统自动化技术专业还鼓励学生积极参与科研活动,了解最新的技术发展动态,并培养自主学习和科研能力。
电力系统自动化技术专业的毕业生可以在电力系统自动化控制与应用领域、计算机软件开发领域、通信领域等相关领域从事设计、开发、应用、管理、教学等工作。
毕业生的岗位包括电力企业的电力系统自动化系统工程师、控制工程师、调度员,电力企业科研机构的研究员、工程师,计算机软件公司的软件开发工程师,通信公司的通信工程师等。
该专业毕业生的就业前景非常广阔。
综上所述,电力系统自动化技术专业是一门以电力系统控制与应用为研究方向,涉及电力系统、自动控制、信息处理、通信等学科领域的综合性学科。
电力系统自动化技术的应用现状及发展趋势

电力系统自动化技术的应用现状及发展趋势电力系统自动化技术是指通过利用各种传感器、控制器、通信设备等现代技术手段,将电力系统各种运行状态信息实时采集、处理、传递和控制,以保障电力系统的安全、稳定、经济、高效运行的一种现代化技术。
随着我国电力工业的快速发展,电力系统自动化技术在电力系统中的应用日益广泛,发展逐渐趋于成熟,下面将从应用现状和发展趋势两方面进行分析。
应用现状1. 系统监控与管理电力系统自动化技术可以实现系统运行状态的实时监控及信息管理,包括对电力设备、电力负荷、电力线路等信息的采集、传输和处理,系统管理员可以获得全部信息,有效指导决策,及时制订应对措施,确保电力系统的稳定运行。
2. 智能电网建设智能电网是指通过集成能源的生产、传输、分配、储存和消费,基于信息化、自动化、智能化技术手段实现电力系统物质流、信息流和能量流高效协同、灵活调度的先进形态。
智能电网建设需要借助电力系统自动化技术,对电网进行智能化改造,实现智能负荷管理、智能电表、分布式能源管理等。
3. 电力质量检测与监测电力质量对电力系统运行稳定和电力设备安全性起着至关重要的作用,在电力系统自动化技术的帮助下,可以对电网电压、电流、谐波等质量指标进行检测和监测,及时发现异常情况,并进行处理。
4. 突发事件应急处置在电力系统运行过程中,有些突发事件如台风、地震等可能会造成电力系统的瘫痪,甚至会导致部分区域的停电。
电力系统自动化技术可以实现数字化、网络化、智能化的终端设备上下挂接,从而实现对各类设备的控制和监测,在突发事故时对电力系统进行应急处置。
发展趋势1. 多能联供随着环保意识的提升,多能联供逐渐成为未来电力系统发展趋势。
电力系统自动化技术将会有更加广泛的应用,包括光伏、风力、水力等多种清洁能源的连接、信息传输以及系统优化管理。
2. 大数据应用电力系统自动化技术采集的数据量越来越大,如何有效地利用这些数据成为了一个重要的课题。
大数据技术应用于电力系统自动化,可以对电力系统运行状况进行更加精准的预测和评估,并制定出科学合理的控制策略。
电力系统自动化

电力系统自动化电力系统自动化是指利用先进的信息技术和自动控制技术对电力系统进行监测、控制和管理的一种技术手段。
通过自动化系统的应用,可以实现电力系统的远程监控、智能化运行和可靠性提升,提高电力系统的安全性、稳定性和经济性。
一、电力系统自动化的意义和目标:1. 提高电力系统的安全性:通过实时监测电力系统的运行状态,及时发现故障和异常情况,并采取相应的措施进行处理,保证电力系统的安全运行。
2. 提高电力系统的稳定性:通过自动化调度和控制,实现电力系统的稳定运行,防止电力系统的失稳和崩溃,保障电力供应的连续性和稳定性。
3. 提高电力系统的经济性:通过自动化系统的优化调度和能量管理,合理分配电力资源,降低电力系统的运行成本,提高电力系统的经济效益。
4. 提高电力系统的可靠性:通过自动化系统的故障检测和智能化预警,及时发现和排除电力系统的故障隐患,提高电力系统的可靠性和可用性。
二、电力系统自动化的主要技术和应用:1. 远程监控与数据采集:通过远程监控终端和传感器,实时采集电力系统的运行数据,包括电压、电流、功率等参数,实现对电力系统的远程监控和数据采集。
2. 自动化调度与控制:通过自动化调度系统,实现对电力系统的自动化调度和控制,包括负荷调度、电力市场交易、发电机组的启停等操作。
3. 故障检测与智能预警:通过故障检测系统和智能预警算法,实时监测电力系统的故障隐患,及时发出预警信号,提前采取措施避免故障的发生。
4. 能量管理与优化调度:通过能量管理系统和优化调度算法,实现对电力系统的能源分配和调度,合理利用电力资源,降低电力系统的运行成本。
5. 智能终端与设备控制:通过智能终端设备和远程控制技术,实现对电力设备的远程控制和调试,提高电力设备的运行效率和可靠性。
三、电力系统自动化的发展趋势:1. 大数据与人工智能的应用:利用大数据分析和人工智能技术,对电力系统的运行数据进行深度挖掘和分析,提高电力系统的运行效率和可靠性。
电力系统自动化技术概述

电力系统自动化技术概述随着信息技术的快速发展和电力系统的不断完善,电力系统自动化技术也逐渐成为电力行业的重要组成部分。
电力系统自动化技术是指利用先进的计算机技术和通信技术,对电力系统的监测、控制、保护和优化进行自动化处理的一种技术手段。
电力系统自动化技术的应用范围非常广泛,涵盖了电网调度、电力市场运营、电力负荷管理、电力设备监测与维护等多个方面。
通过自动化技术,可以实现对电力系统的全面监测,及时掌握线路的负荷变化、电压波动、设备故障等信息,从而提前预警、防止事故的发生。
同时,自动化技术还可以对电力系统进行精细调度,优化电力资源的分配,提高电网的可靠性和运行效率。
在电力系统自动化技术中,先进的通信技术起到了关键作用。
通过建立起遍布整个电力系统的通信网络,可以实现远程监控和控制,实时传输电力系统运行状态和设备参数,以及进行故障诊断和故障恢复。
与传统的人工巡检相比,自动化技术可以大大提高工作效率,降低运维成本,同时增强了运维人员的安全性。
此外,电力系统自动化技术还包括智能计量、远程抄表、电网安全监测等方面。
通过智能计量,可以实现对用户电量的精确测量和实时监测,为电力公司提供准确的用电数据,从而更好地进行电力负荷管理和优化调度。
远程抄表则能降低用户的用电成本,提高抄表效率,减少不必要的人力和时间开销。
而电网安全监测则能够实时掌握电力系统的安全情况,快速处理故障,并保障电力系统的稳定运行。
面对新时代电力系统的挑战,电力系统自动化技术不断创新,不断完善。
随着人工智能、大数据、云计算等新兴技术的加入,电力系统自动化技术正在向更高的智能化和自适应性方向发展。
未来,电力系统自动化技术将进一步提高对电力系统的监测、控制和优化能力,实现电力系统的可持续发展,并为能源的高效利用提供更好的支持。
电力系统自动化技术应用

电力系统自动化技术应用现在我们的生活已经离不开电了,不管是家庭生活还是工业生产,都需要电来提供动力。
那么,电是如何被生产、传输和使用的呢?这就需要电力系统来完成。
电力系统是一个非常复杂的系统,它包括发电、输电、变电、配电和用电等环节。
而电力系统自动化技术就是利用现代电子技术、计算机技术和通信技术,对电力系统进行自动化控制和管理,提高电力系统的安全、可靠和经济性。
电力系统自动化技术在发电环节中的应用。
发电环节是电力系统的起点,电力系统自动化技术在这里的应用主要是通过计算机控制系统来控制发电机的运行,包括发电机的启动、停止、调节电压和电流等。
同时,自动化技术还可以对发电机进行远程监控和故障诊断,及时发现和解决问题,保证发电机的正常运行。
电力系统自动化技术在输电环节中的应用。
输电环节是电力系统的中间环节,它的主要任务是将发电厂产生的电能输送到各个地方。
电力系统自动化技术在这里的应用主要是通过自动化控制系统来控制输电线路的运行,包括线路的启动、停止、调节电压和电流等。
同时,自动化技术还可以对输电线路进行远程监控和故障诊断,及时发现和解决问题,保证输电线路的正常运行。
再次,电力系统自动化技术在变电环节中的应用。
变电环节是电力系统的重要环节,它的主要任务是将输电线路送来的电能进行变压和分配,以满足不同地方和不同用户的需求。
电力系统自动化技术在这里的应用主要是通过自动化控制系统来控制变压器的运行,包括变压器的启动、停止、调节电压和电流等。
同时,自动化技术还可以对变压器进行远程监控和故障诊断,及时发现和解决问题,保证变压器的正常运行。
电力系统自动化技术在配电环节中的应用。
配电环节是电力系统的终端环节,它的主要任务是将变电环节送来的电能送到每个用户的手中。
电力系统自动化技术在这里的应用主要是通过自动化控制系统来控制配电线路的运行,包括线路的启动、停止、调节电压和电流等。
同时,自动化技术还可以对配电线路进行远程监控和故障诊断,及时发现和解决问题,保证配电线路的正常运行。
电力系统自动化技术的应用现状及发展趋势

电力系统自动化技术的应用现状及发展趋势电力系统自动化技术是指通过计算机、通信和控制技术实现电力系统运行的自动化和智能化,具有节能、安全、高效、可靠的优点。
本文从应用现状和发展趋势两个方面探讨电力系统自动化技术。
一、应用现状1、智能变电站智能变电站利用计算机、网络通信、控制技术等手段,实现对变电站的监测、控制和自动化管理,以及对变电站设备状态的实时监测,包括开关、变压器、电缆等。
同时,智能变电站还能根据网络负荷情况和能源调度指令进行自动控制和调度。
2、智能配网智能配网利用计算机、通信和控制技术实现基础设施的自动化智能化,能够实时监测设备状态和供电质量,呈现出配网的全过程,支持实时控制和经营管理决策。
3、智能电力安全监测智能电力安全监测是指利用计算机、通信和控制技术实现对电力系统的安全监测,包括电力网络在线监测、电力设备在线监测等。
4、数字化变电设备数字化变电设备是将变电设备实现信息化,通过数字化技术将实际信号传递到计算机,并对数据进行分析计算,并进行对策控制,从而对电力系统进行自动化控制。
二、发展趋势1、物联网技术应用随着物联网技术的发展,电力系统自动化技术的应用将进一步推广。
物联网技术可实现设备和系统的互联互通,其基本优势在于实现高效的智能化监控和数据分析。
2、人工智能技术应用人工智能技术可实现大量数据的学习和计算,从而实现对电力系统的系统分析和故障诊断,提高电力系统的效率和可靠性。
3、大数据技术应用大数据技术可以实现多个数据源的集成,通过数据挖掘、分析和决策,深挖数据价值,达到实时预警、健康管理、节能减排、成本控制等目的,进一步提高电力系统的水平。
4、云计算平台应用云计算平台可实现设备和系统的在线监测和云化管理和控制等一系列业务服务,推动电力系统的智能化和自动化,减轻维护的负担,提高了效率和可靠性,并实现了经济效益的最大化。
综上所述,电力系统自动化技术已经广泛应用,未来还有很大的发展空间。
随着科技的快速发展,电力系统将不断提高能源效率、降低能源消耗,实现更加智慧、安全、可靠的运营。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习中心/函授站_
姓名学号
西安电子科技大学网络与继续教育学院
2017学年下学期
《电力系统自动化技术》期末考试试题
(综合大作业)
考试说明:
1、大作业于2017年10月19日下发,2017年11月4日交回;
2、考试必须独立完成,如发现抄袭、雷同均按零分计;
3、答案须手写完成,要求字迹工整、卷面干净。
一、选择题(每小题2分,共20分)
1.当导前时间脉冲后于导前相角脉冲到来时,可判定()。
A.频差过大B.频差满足条件
C.发电机频率高于系统频率D.发电机频率低于系统频率
2.线性整步电压的周期与发电机和系统之间的频率差()。
A.无关
B.有时无关
C.成正比关系
D.成反比关系
3.机端直接并列运行的发电机的外特性一定不是()。
A.负调差特性
B.正调差特性
C.无差特性
D.正调差特性和无差特性
4.可控硅励磁装置,当控制电压越大时,可控硅的控制角 ( ),输出励磁电流()。
A.越大越大
B.越大越小
C.越小越大
D.越小越小
5. 构成调差单元不需要的元器件是()。
A.测量变压器B.电流互感器
C.电阻器D.电容器
6.通常要求调差单元能灵敏反应()。
A.发电机电压B.励磁电流
C.有功电流D.无功电流
7.电力系统有功负荷的静态频率特性曲线是()。
A.单调上升的B.单调下降的
C.没有单调性的D.水平直线
8.自动低频减负荷装置的动作延时一般为()。
A.0.1~0.2秒B.0.2~0.3秒
C.0.5~1.0秒D.1.0~1.5秒
9.并联运行的机组,欲保持稳定运行状态,各机组的频率需要()。
A.相同B.各不相同
C.一部分相同,一部分不同D.稳定
10.造成系统频率下降的原因是()。
A.无功功率过剩B.无功功率不足
C.有功功率过剩D.有功功率不足
二、名词解释(每小题5分,共25分)
1.远方终端
2.低频减负荷装置
3.整步电压
4.准同期
5.AGC
三、填空题(每空1分,共15分)
1.低频减负荷装置的___________应由系统所允许的最低频率下限确定。
2. 在励磁调节器中,设置____________进行发电机外特性的调差系数的调整,实际中发电机一般采用____________。
3.滑差周期的大小反映发电机与系统之间的大小,滑差周期大表示。
4.线性整步电压与时间具有关系,自动准同步装置中采用的线性整步电压通常为。
5.微机应用于发电机自动准同步并列,可以通过直接比较鉴别频差方向。
6.与同步发电机励磁回路电压建立、及必要时是其电压的有关设备和电路总称为励磁系统。
7.直流励磁机共电的励磁方式可分为和两种励磁方式。
8.可能造成AFL误动作的原因有“系统短路故障时造成频率下降,突然切成机组或、供电电源中断时。
9.积差法实现电力系统有功功率调节时,由于,造成调频过程缓慢。
四、简答题(每小题5分,共15分)
1.断路器合闸脉冲的导前时间应怎么考虑?为什么是恒定导前时间?
2.电压时间型分段器有哪两种功能?
3. 自动按频率减负荷装置为什么要分级动作?
五、综合分析题(每小题10分,共10分)
用向量图分析发电机并列不满足理想准同步条件时冲击电流的性质和产生的后果?六、计算题(共15分)
某电厂有两台发电机在公共母线上并联运行,1#机组的额定功率为30MW,2#机组的额定功率为60MW。
两台机组的额定功率因数都是0.8,调差系数均为0.04。
若系统无功负荷波动,使得电厂的无功增量是总无功容量的20%,试问母线上的电压波动是多少?各机组承担的无功负荷增量是多少?。