大学物理 电磁学

合集下载

大学物理电磁学

大学物理电磁学

大学物理电磁学引言电磁学是物理学的一个重要分支,研究电荷之间相互作用的原理和电磁波的特性。

在大学物理学中,电磁学是必学的一门课程,它涵盖了电荷、电场、电势、电流、电磁感应、电磁波等基本概念和原理。

本文将介绍大学物理电磁学的基本原理和相关内容。

一、电荷和电场电荷是电磁学的基本物理量之一,分为正电荷和负电荷。

正电荷和负电荷相互吸引,相同电荷相互排斥。

电场是电荷在周围产生的一种力场,用于描述电荷对其他电荷的作用力。

电场强度是衡量电场强弱的物理量,它的定义是单位正电荷所受的力。

二、电场的产生和性质电荷在空间中形成的电场是由电荷成对产生的。

当有多个电荷时,它们各自产生的电场可以叠加。

电场的性质包括电场的线性性质、电场的无旋性和电场的势能。

三、电势和电势能电势是描述电场对单位正电荷做的功的物理量。

电势是标量,它对应于电场的能量分布。

电势能是电荷在电场中具有的能量,它是由电势引起的。

四、电容和电容器电容是描述电场在电荷分布上的储存能力的物理量。

电容器是用来储存电荷和能量的装置,由两个导体之间的介质隔开,形成电场。

常见的电容器包括电容器、平行板电容器和球形电容器。

五、电流和电阻电流是电荷随时间变化的物理量,是单位时间内流过某个横截面的电荷量。

电阻是导体对电流流动的阻碍,它符合欧姆定律。

电流在电路中的运动受到欧姆定律和基尔霍夫定律的约束。

六、磁场和磁感应磁场是由带电粒子的运动产生的物理现象,描述了磁力的作用。

磁感应是描述磁场强度的物理量。

电流在导线中产生磁场,被称为安培环路定律。

七、电磁感应和法拉第定律电磁感应是通过磁场的变化产生电场的现象。

法拉第定律描述了导体中感应电动势与磁通量变化的关系。

法拉第定律是电磁感应定律的基础,它是电磁感应现象的定量描述。

八、电磁波和光学电磁波是由电场和磁场相互作用而产生的一种波动现象。

电磁波具有电磁场的传播性质,包括光学、无线电波等各种波动现象。

结论大学物理电磁学是电磁学的基本课程,涵盖了电荷、电场、电势、电流、电磁感应、电磁波等内容。

大学物理 电磁学

大学物理 电磁学

大学物理电磁学《大学物理》是一门综合学科,其中电磁学是其中重要的一部分。

从宏观上讲,电磁学研究了电磁场和电磁力,以及它们作用于电荷的现象。

从微观上来看,电磁学通过研究电磁场和电磁力的构成,以及电磁场和电磁力交互作用的机理,以及它们对电荷的作用,来对它们进行研究。

电磁学的历史电磁学是一门极具挑战性的科学,自古以来,人们一直在探索这门科学的奥秘,从中研究探索有关电磁现象的机理。

19世纪末,美国物理学家迈克尔福特(Michael Faraday)发现了电磁感应,标志着电磁学研究迈出了重大的一步,自此,伽利略、穆勒、萨维尔等物理学家为电磁学的研究作出了重要的贡献。

定义和概念电磁学是物理学的一门分支,它用来研究电磁场、电磁力和电磁场的构成以及交互作用,以及它们对电荷的作用。

电磁场是一种独立于物体的抽象物理量,在空间中以向量的形式表示;电磁力是由电磁场产生的作用在电荷上的力;电荷是保存电磁力的物理现象。

定律电磁学研究中最重要的定律是磁电现象定律,有三种形式,分别是:(1)伽利略定律;(2)穆勒-安培定律;(3)萨维尔定律。

伽利略定律伽利略定律(Gauss Law)(也称有关电荷分布的伽利略定律)又称为“电荷守恒定律”,即“物体的外壳表面上的电荷总量不变”,这是自然界中电荷守恒的定律。

伽利略定律用来计算外壳上的电荷总量,也可以用来计算电位场、流动电流和电容量。

穆勒-安培定律穆勒-安培定律是德国物理学家穆勒(Heinrich Hertz)和英国物理学家安培(James Clerk Maxwell)在研究电磁学的基础上推出的一种定律。

该定律于1873年提出,主要描述了电磁场中电荷运动和磁场产生之间的相互关系。

具体而言,它认为电磁场是由交叉的电流和磁场相互作用而产生的,也就是说,电荷的运动会产生磁场,磁场的变化也会产生电场。

萨维尔定律萨维尔定律(Maxwell Equations)是英国物理学家詹姆斯克拉克麦克斯韦所提出的电磁场的最基本方程式。

大学物理电磁学

大学物理电磁学

大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。

电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。

本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。

一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。

电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。

2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。

电场的强度用电场强度E表示,单位是牛/库仑。

3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。

磁场的强度用磁感应强度B表示,单位是特斯拉。

4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。

电磁波在真空传播速度与光速一样,速度为30万千米/秒。

二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。

2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。

磁场方向垂直于电流方向和通过点的平面。

3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。

感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。

4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。

三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。

当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势

大学物理电磁学知识点

大学物理电磁学知识点

大学物理电磁学知识点电磁学是物理学中一个重要的分支,涵盖了电荷、电场、磁场、电磁波等内容。

在大学物理学课程中,电磁学知识点是必不可少的。

本文将探讨一些关键的电磁学知识点,帮助读者更好地了解这一领域。

首先,我们来谈谈电荷和电场。

电荷是电磁学的基本概念,分为正电荷和负电荷。

在物体中,正负电荷相互吸引,相同电荷相互排斥。

电场是由电荷产生的力场,它描述了电荷对周围空间的影响。

对于一个点电荷Q来说,其周围的电场强度E与距离r成反比,符合库仑定律E=kQ/r^2,其中k是一个常数。

接下来,我们将探讨电场的另一个重要概念-电势。

电势是描述电场状态的一种物理量,它反映了单位正电荷在电场中所具有的能量。

在电势的概念中,我们引入了电势能和电势差。

电势能是指电荷在电场中所具有的能量,而电势差是指在单位正电荷移动时所做的功。

而物体的导体性质也与电磁学紧密相关。

导体是一种能够传导电流的材料,其内部的自由电子可以自由移动。

导体中的电荷分布是非常均匀的,所以电场在导体内外表面垂直分布。

此外,导体内的电场强度为零,这是由于导体内部的电荷分布所决定的。

当我们讨论电磁学时,不得不提磁场。

磁场是由磁荷和电流产生的。

磁荷是一种假想的磁性单极子,而电流则是电荷的流动。

磁场可以通过磁感应强度B来描述,它是反映物体对磁场的响应的一个物理量。

磁感应强度的单位是特斯拉(T),在磁场中的物体将受到一个磁力的作用。

当电荷和磁场相互作用时,将产生电磁感应现象。

法拉第电磁感应定律描述了电磁感应的规律。

当一个闭合线圈中的磁感应强度发生变化时,线圈中将会产生感应电动势。

这一定律也是电磁感应中电磁场与电荷之间相互转化的基础。

最后,我们来谈一谈电磁波。

电磁波是一种电场和磁场相互关联扩展传播的现象。

电磁波有许多不同的频率和波长,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线。

这些电磁波在现代通信、医疗、无线电和电视等领域中都有着广泛的应用。

以上是一些大学物理电磁学的基本知识点。

大学物理电磁学公式

大学物理电磁学公式

大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。

在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。

以下是一些常见的大学物理电磁学公式的详细介绍。

1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。

它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。

2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。

对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。

3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。

对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。

4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。

对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。

5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。

电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。

6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。

大学物理电磁学公式总结(精选2024)

大学物理电磁学公式总结(精选2024)

05
交流电路中的电磁学公式应用
正弦交流电三要素及有效值概念
要点一
正弦交流电的三要素
要点二
有效值概念
最大值(峰值)、角频率(或频率、周期)和初相位。
正弦交流电的有效值等于其最大值的√2/2倍,用于描述交 流电做功能力的大小。
复数表示法及相量图解法在交流电路中应用
复数表示法
用复数表示正弦交流电,实部表示有效值,虚部表示 电导线在磁场中所受的力,公式为F = BIL,其中B为磁感应强度,I为电 流,L为导线长度。
麦克斯韦方程组
高斯定理
表示电场中电通量与电荷量的关系,公式 为∮E·dS = Q/ε0,其中E为电场强度,dS 为面积元,Q为电荷量,ε0为真空介电常
数。
法拉第电磁感应定律
表示磁场变化时产生的感应电动势,公式 为ε = -dΦ/dt,其中ε为感应电动势,Φ为
电磁辐射的相对论效应
高速运动电荷产生的电磁辐射在频率、方向等方面会发生变化。
统一场论思想及其发展
01
爱因斯坦的统一场论思想
试图将引力场和电磁场统一在一个理论框架内,尽管未能实现,但为后
世研究提供了重要启示。
02
弦理论与M理论
现代物理理论试图通过更高维度的空间和时间来实现场论的统一,弦理
论和M理论是其中的代表。
库仑定律
描述两个点电荷之间的相互作用力,公式为$F = kfrac{q_1q_2}{r^2}$,其中$k$为库仑常数,$q_1$和 $q_2$为两个点电荷的电荷量,$r$为它们之间的距离。
电场强度
描述电场中某点的电场力作用效果,公式为$E = frac{F}{q}$,其中$F$为试探电荷所受的电场力,$q$为试 探电荷的电荷量。

大学物理电磁学总结(精华)ppt课件(2024)

大学物理电磁学总结(精华)ppt课件(2024)

34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流

电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材: 《新概念物理学》电磁学
赵凯华、陈熙谋
主要参考书
《电磁学》上下册,赵凯华 陈熙谋,高等教育出版社, 1985年6月第二版 《电磁学》第二版 贾起民 郑永令 陈暨耀编 高等教育出 版社 2001年 《电磁学》 梁灿彬 秦光戒 梁竹健编 人民教育出版社 1981年
《电磁学及其应用》第5版,Kraus Fleisch 清华大学出版 社,2001年
(五)物理定律建立的一般过程




观察现象; 提出问题; 猜测答案; 设计实验测量; 归纳寻找关系、发现规律; 形成定理、定律(常常需要引进新的物理量或模 型,找出新的内容,正确表述); 考察成立条件、适用范围、精度、理论地位及现 代含义等 。
带电的过程是电子转移的过程:摩擦起电、静电感应 测量电量:验电器 静电计
二、电荷守恒定律(Charge conservation):
电荷既不能被创造,也不能被消灭,它们只能从一个 物体转移到另一个物体,或者从物体的一部分转移到 另一部分,也就是说,在任何物理过程中,电荷的代 数和是守恒的。 说明:
,它的大小与两电荷间的距离服从平方反比律。
3、补充电力叠加原理,利用库仑定律原则上可解决
静电学中所有问题。
4、理论地位和现代含义

库仑定律是静电学的基础,说明了 带电体的相互作用问题
原子结构,分子结构,固体、液体的结构 化学作用的微观本质,都与电磁力有关,其中 主要部分是库仑力
5、电量单位 -MKSA制
《Electricity and Magnetism》Third Edition B.l. Bleaney and B.Bleaney Oxford Univesity Press 1975
课程介绍
电磁学是普通物理系列中最重要的基础课之一,是电 工学、电子学、等离子体物理、磁流体力学、光的电 磁理论等的基础,是经典物理的重要组成部分,也是 近代物理和许多技术学科不可缺少的基础。 电磁学课程包括静电场、恒磁场、电磁感应、电磁介 质、电路、麦克斯韦电磁场理论、电磁波等内容。

F电 r (二)库仑定律的表述

在真空中,两个静止的点电荷q1和q2之间的
相互作用力大小和q1 与q2的乘积成正比,和
它们之间的距离r平方成反比;作用力的方
向沿着他们的联线,同号电荷相斥,异号电
荷相吸。
讨论
f r
2
?
f k
g1 g 2 r
2

r
f r 2 — — 实验结果 g 1g 2 2 f k r f g 1 g 2 / r — — 类比于引力 2 r f || r — — 对称性的结果
k是引进单位制后引入的常数。
注意
上述公式并非都是大量 实验的结果,是在事实 基础上理性思维的结果。 如力的方向:分析点电 荷受力:只能沿联线, 否则空间旋转180°就 不对称了
(1) 电磁学研究对象:
电磁现象的基本概念和基本规律
电荷、电流产生电场、磁场的规律 电场和磁场的相互联系 电磁场对电荷、电流的作用 电磁场对物质的各种效应。
(2)发展简史
第一章 静电场
§1 静电的基本现象与基本规律
一、两种电荷(Electric charge)
带电体
物质的微观结构:自由电荷 束缚电荷 载流子

设计实验

1769年Robison首先用直接测量方法 确定电力定律,得到两个同号电荷的 斥力
6 0. 2 r f
两个异号电荷的引力比平方反比的方次要 小些。(研究结果直到1801年发表才为世人 所知)
Cavendish实验

1772年Cavendish遵循Priestel的思想设计了 实验验证电力平方反比律,如果实验测定带 电的空腔导体的内表面确实没有电荷,就可 以确定电力定律是遵从平方反比律的即
f r
2
越小,内表面电荷越少
他测出不大于
0.02(未发表,100年以 后 Maxwell整理他的大量手稿,才将此结果公诸 于世。
1785年Coulomb测出结果

精度与十三年前Cavendish的 实验精度相当
库仑是扭称专家; 电斥力——扭称实验,数据只 有几个,且不准确(由于漏 电)——不是大量精确的实验;
1库仑:当导线中通过1安培稳恒电流时, 一秒钟内通过导线某一给定截面的电量为 1C=1A· s 若F=1N, q1=q2=1C, r=1m 则 k=8.9880×109N· 2/C2 ≈9.00×109N· 2/C2 m m

k
1 4 0
0
1 4k
8.854187818 (71) 10 12 C 2 / Nm 2
1)是一切宏观过程和一切微观过程都必须遵循的基本规律。 2)适用于所有的惯性系。电荷是一个相对论性不变量。
三、导体、绝缘体和半导体
1、导体:电荷能从产生的地方迅速转移或传导到其 它部分的那种物体。
2、绝缘体:电荷几乎只能停留在产生的地方的那种物 体。 3、半导体:导电能力介于导体与绝缘体之间,且对 温度、光照、杂质、压力、电磁场等外加条件极为敏 感。

(三)成立条件、适用范围、精度
条件:静止 真空 点电荷
点电荷:
理想模型(已学过的)
质点
刚体
平衡态(热学)
点电荷:忽略了带 电体形状、大小以 及电荷分布情况的 电荷。
静止:点电荷相对静止,且相对于观察者也静止
真空条件
作用:为了除去其他电荷的影响,使两个 点电荷只受对方作用。 如果真空条件破坏会如何?——不仅只有 两个电荷;总作用力比真空时复杂些,但 由于力的独立作用原理,两个点电荷之间 的力仍遵循库仑定律 因此可以推广到介质、导体
四、物质的电结构 P4
五、库仑定律
(一)库仑定律的建立 Franklin 首先发现金属小杯内 的软木小球完全不受杯上电荷 的影响; 在Franklin的建议下,Priestel 做了实验 ——提出问题
猜测答案
现象与万有引力有相同规 律 由牛顿力学可知:球壳对 放置在壳外的物体有引力, 而放置在球壳内任何位置 的物体受力为零。 1 1 类比:电力与距离平方成 F引 2 ~ F电 2 r r 反比

适用范围和精度
原子核尺度——地球物理尺度 天体物理、空间物理

10

13
cm ~ 10 cm
9

精度:Coulomb时代 1971年
10
10
2
16
(四)说明:
1、库仑定律只讨论两个静止(相对观察者和实验室 参考系)的点电荷间的作用力。 2、库仑定律指出,两静止电荷间的作用力是有心力
相关文档
最新文档