一次函数图象的应用(一)教学设计1
5.3一次函数图像(1)翟赛花

§5.3一次函数的图象(1)【指导思想与理论依据】本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。
基于这一原则,我对本节课教学设计的指导思想如下:(1)以实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。
(2)以现代教育理论为依据:注重学生的心理活动过程,强调教学过程的有序性。
(3)以基本的教学原则作指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。
(4)以现代信息技术为手段:适当地辅以电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学有机结合,以实现教学最优化,从而提高教与学的质量。
【教材分析】一、教材分析(一)教学内容:本课是苏科版八年级上册第五章第3节本节内容知识结构如下:该课时主要内容是:一次函数的图象主要包括的知识点:一次函数图象的画法(二)本节内容在教材中的所处的地位和作用从数学之深的发展角度看,变量和函数的引入,标志着数学从初等数学向变量数学的迈进,而一次函数是初中阶段研究的第一个函数关系,他的研究方法具有一般性和代表性。
本课时内容安排在一次函数的概念之后。
通过这一节课的学习使学生会用两点法画一次函数图象。
它既是正比例函数的图象和性质的拓展,也为后面反比例函数、二次函数的研究奠定基础,并在今后学习高中代数、解析几何及其他数学分支打好伏笔。
同时,在整个初中阶段:一次函数的图象和性质的学习还是一元一次方程、二元一次方程组、一元一次不等式及不等式组的解法提供新的途径。
本节内容起着承上启下的作用。
更是学生进一步学习“数形结合”这一数学思想方法的很好素材。
浙教版数学八年级上册5.4《一次函数的图象》教案(1)

浙教版数学八年级上册5.4《一次函数的图象》教案(1)一. 教材分析《一次函数的图象》是浙教版数学八年级上册第五章第四节的内容。
本节课主要让学生了解一次函数的图象特征,掌握一次函数图象的斜率和截距的概念,能够通过图象分析一次函数的性质。
通过本节课的学习,为学生后续学习一次函数的应用打下基础。
二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系的认识较为熟悉。
同时,学生在之前的学习过程中已经接触过一次函数的概念和性质,对本节课的内容有一定的了解。
但是,对于一次函数图象的斜率和截距的概念以及如何通过图象分析一次函数的性质还需进一步学习。
三. 教学目标1.让学生了解一次函数的图象特征,掌握一次函数图象的斜率和截距的概念。
2.培养学生通过图象分析一次函数性质的能力。
3.培养学生的观察能力、动手操作能力和团队协作能力。
四. 教学重难点1.一次函数图象的斜率和截距的概念。
2.如何通过图象分析一次函数的性质。
五. 教学方法采用问题驱动法、案例分析法、小组讨论法和互动式教学法。
通过设置问题,引导学生观察、分析、讨论,从而培养学生解决问题的能力。
六. 教学准备1.教学课件。
2.坐标纸。
3.直尺、圆规。
4.教学素材。
七. 教学过程1. 导入(5分钟)教师通过提问方式引导学生回顾平面直角坐标系的知识,为新课的学习做好铺垫。
例如:“坐标系中有哪些基本概念?它们之间有什么关系?”2. 呈现(10分钟)教师通过课件展示一次函数的图象,让学生观察并分析一次函数图象的特征。
同时,教师引导学生认识斜率和截距的概念,解释斜率和截距的含义。
3. 操练(10分钟)教师分发坐标纸和工具,让学生分组进行动手操作。
学生需要画出给定的一次函数图象,并标注出斜率和截距。
在操作过程中,教师巡回指导,解答学生的疑问。
4. 巩固(10分钟)教师通过提问方式检查学生对一次函数图象特征、斜率和截距概念的掌握情况。
同时,教师挑选几组学生画出的图象,让学生分析其斜率和截距,加深学生对知识的理解。
沪教版数学八年级下册20.2《一次函数的图象与性质》教学设计1

沪教版数学八年级下册20.2《一次函数的图象与性质》教学设计1一. 教材分析沪教版数学八年级下册20.2《一次函数的图象与性质》是学生在学习了函数概念、一次函数表达式的基础上,进一步研究一次函数的图象与性质。
本节内容主要包括一次函数的图象、一次函数的性质、一次函数的应用等。
通过本节的学习,使学生进一步理解函数与方程的关系,提高解决实际问题的能力。
二. 学情分析学生在之前的学习中已经掌握了函数概念、一次函数表达式,对于一次函数的图象与性质有一定的了解。
但部分学生对于一次函数的性质理解不够深入,对于一次函数在实际问题中的应用还不够熟练。
因此,在教学过程中,要注意引导学生通过观察、操作、思考、交流等活动,深入理解一次函数的性质,提高解决实际问题的能力。
三. 教学目标1.理解一次函数的图象与性质;2.学会如何运用一次函数解决实际问题;3.提高学生的数学思维能力、合作交流能力和动手操作能力。
四. 教学重难点1.一次函数的图象与性质;2.一次函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过观察、操作、思考、交流等活动,深入理解一次函数的图象与性质,提高解决实际问题的能力。
六. 教学准备1.准备相关的一次函数图象与性质的PPT;2.准备一些实际问题,用于引导学生运用一次函数解决;3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾一次函数表达式,为新课的学习做好铺垫。
2.呈现(15分钟)利用PPT展示一次函数的图象与性质,引导学生观察、思考,理解一次函数的图象与性质。
3.操练(15分钟)让学生通过动手操作,绘制一次函数的图象,进一步理解一次函数的性质。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的一次函数的图象与性质知识。
5.拓展(10分钟)引导学生运用一次函数解决实际问题,提高学生的应用能力。
6.小结(5分钟)对本节课的主要内容进行小结,加深学生对一次函数图象与性质的理解。
苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。
本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。
教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。
但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。
因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。
三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。
2.能够运用一次函数解决实际问题,提高学生的数学应用能力。
3.培养学生的数学思维能力和团队合作精神。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点。
3.运用一次函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。
2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。
3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。
4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。
2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。
3.教学工具:准备黑板、粉笔、直尺等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。
通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。
初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
4.4一次函数的应用-利用两个一次函数的图象解决问题(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关实际问题,如两个商店的价格竞争问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过调整一次函数的斜率和截距来观察图象变化。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数图象解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.
4.通过实例,让学生感受数学与实际生活的联系,提高他们解决问题的能力。
本节课将结合具体实例,引导学生掌握一次函数在实际问题中的应用,培养他们运用数学知识解决实际问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,使其能够从实际问题中抽象出一次函数模型,理解并运用函数图象解决问题;
在学生小组讨论时,我尽量让自己成为一个引导者和协助者,而不是直接给出答案。我希望通过这种方式,学生能够学会独立思考和合作解决问题。但从反思的角度来看,我可能需要提供更多开放性的问题,以及更具体的反馈,来帮助他们深入理解和应用一次函数的知识。
最后,我觉得课后收集学生的反馈也很重要,这样我可以及时了解他们的学习情况,进一步调整教学策略,让每个学生都能在数学课堂上有所收获。
人教版数学八年级下册19.1.2一次函数的图象和性质教学设计

2.对于一次函数中斜率k和截距b的理解,学生可能会存在困难。教师应结合实际情境,让学生在实际问题中感知k、b的意义,提高学生的理解程度。
3.在学习过程中,学生可能会对一次函数的性质产生混淆,如斜率的正负与函数图象的关系等。教师应通过对比、总结等方法,帮助学生梳理清楚这些关系。
2.引导学生思考:让学生尝试用数学语言描述上述问题中的关系,从而引出一次函数的定义。在此过程中,教师要注意引导学生从实际问题中抽象出数学模型,培养学生的建模意识。
(二)讲授新知
1.一次函数的标准形式:y=kx+b。详细讲解k、b分别代表的含义,以及在实际问题中的应用。
2.一次函数的图象:通过绘制一次函数的图象,让学生直观地认识一次函数的走势。同时,引导学生观察图象上任意两点的坐标,发现它们连线的斜率是定值k。
3.拓展作业:选择课本练习题19.1中的一道或两道拓展题进行思考,鼓励同学们挑战更高难度的题目,培养解决问题的创新思维。
-拓展题:结合一次函数的性质,探讨如何解决一些实际问题,例如最优化问题、行程问题等。
4.小组合作作业:布置一道需要小组合作的作业,要求同学们在课后分组讨论,共同完成。
-设计一道综合性的问题,涉及一次函数的多个知识点,要求小组合作,共同分析问题、建立模型、解决问题,并在下次课堂上进行展示和分享。
3.培养学生能够通过一次函数的图象,分析其性质,如单调性、截距等,并能够运用这些性质解决相关问题。
4.让学生学会运用数形结合的思想,将一次函数的图象和性质相互印证,提高解决问题的能力。
(二)过程与方法
1.通过直观的图象展示,引导学生观察、分析、总结一次函数的性质,培养学生的观察能力和逻辑思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.5 一次函数图象的应用(一)泗县中学王健学生起点分析学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.教学任务分析《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第六章《一次函数》的第五节.本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.教学目标分析知识与技能目标:1.能通过函数图象获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法目标:1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;2.通过具体问题的解决,培养学生的数学应用能力;3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.情感与态度目标:1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.●教学重点一次函数图象的应用.●教学难点正确地根据图象获取信息,并解决现实生活中的有关问题.教学过程一、复习引入在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?=+中在一次函数y kx bk>时,y随x的增大而增大,当0b>时,直线交y轴于正半轴,必过一、二、三象限;当0· 200 100020 t (天)S (户) 0 当0b <时,直线交y 轴于负半轴,必过一、三、四象限.当0<k 时,y 随x 的增大而减小,当0b >时,直线交y 轴于正半轴,必过一、二、四象限;当0b <时,直线交y 轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫. 二 、初步探究内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,回答下列问题:(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?(根据图象回答问题,有困难的可以互相交流.)答案:(1)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V 的值.当10t =时,V 约为1000万米3.同理可知当t 为23天时,V 约为750万米3.(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V 等于400万米3时,求所对应的t 的值.当V 等于400万米3时,所对应的t 的值约为40天.(3)水库干涸也就是V 为0,所以求函数图象与横轴交点的横坐标即为所求.当V 为0时,所对应的t 的值约为60天.意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力. 效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育. 三、 反馈练习内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,到最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示. 根据图象回答下列问题: (1)活动开始当天,全校有多少户家庭参加了该活动?(2)全校师生共有多少户?该活动持续了几天?(3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式答案:(1)200户;(2)全校师生共有1000户,该活动持续了20天;(3)平均每天增加了40户;(4)第15天时,参加该活动的家庭数达到800户;(5)40200S t =+ .意图:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.四、 深入探究内容:1.看图填空(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.答案:(1)观察图象可知当0y =时,2x =-;(2)直线过(-2,0)和(0,1)设表达式为y kx b =+,得20k b -+=① 1b = ②把②代入①得 0.5k =∴直线对应的函数表达式是0.51y x =+2.议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)答案: 一元一次方程0.510x +=的解为2x =-,一次函数0.51y x =+包括许多点.因此0.510x +=是0.51y x =+的特殊情况.当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解.函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.意图:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解;从“形”的角度看,函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.五、 反馈练习内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2. 解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200176)212-÷=,故到第12年底,该地区的沙漠面积能减少到176万千米2.意图:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.六、 探究升级 内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水?(7)写出活动开展的第t 天节约的水量Y 与天数t 的函数关系.答案:(6)第20天可节约100吨水;(7)420Y t =+. 意图:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.七、 课堂小结内容:本节课主要应掌握以下内容:1.能通过函数图象获取信息.2.能利用函数图象解决简单的实际问题.3.初步体会方程与函数的关系.意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用. 说明:教师视其情况,可以选择展示一些前面小节中用过的实际问题与一次函数图象的实例的图片,让学生体会到数学与生活的联系,激发学生的学习热情.八、布置作业内容:1. 课外探究在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.2.课外作业 习题5.6教学反思(1)设计理念一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教育中渗透德育教育.(2)评价方式在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.(3)分层教学1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示.根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x 轴交点的横坐标即为摩托车行驶的最长路程.(2)x 从0增加到100时,y 从10开始减少,减少的数量即为消耗的数量.(3)当y 小于1时,摩托车将自动报警.答案:(1)观察图象,得当0y =时,500x =因此一箱汽油可供摩托车行驶500千米.(2)x 从0增加到100时,y 从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.(3)当1y =时,450x =因此行驶了450千米后,摩托车将自动报警.2.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程.盒内钱数y (元)与存钱月数x 之间的函数关系如图所示.观察图象回答下列问题:(1)盒内原来有多少元?2个月后盒内有多少元?(2)该同学经过几个月能存够200元?(3)该同学至少存几个月存款才能超过140元?解:(1)40,80.(2)当200y =时,8x =,所以该同学经过8个月能存够200元.(3)观察图象可知,该同学经过5个月能超过140元.。