高三年级最后一次冲刺试卷(数学)
安徽省合肥市中学2024届高三最后一卷数学试题含答案

合肥2024届高三最后一卷数学试题(答案在最后)(考试时间:150分钟满分:120分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答题时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知向量()()2,3,1,3a b ==-,则2a b -=()A.2 B.3C.4D.5【答案】D 【解析】【分析】根据向量坐标进行线性运算,再由模长公式即可求解.【详解】()()()22,32,64,3,25a b a b -=--=--== ,故选:D.2.已知复数z 满足()1i 2i z ⋅+=-,则z =()A.13i 22+B.13i 22-C.13i22-- D.13i22-+【答案】A 【解析】【分析】根据题设求出z ,从而求出z 的值.【详解】由题知,()()()()2i 1i 2i 13i 13i 1i 1i 1i 222z ----====-++-,所以13i 22z =+.故选:A.3.已知焦点在x 轴上的椭圆的离心率为23,焦距为,则该椭圆的方程为()A.2213x y += B.2219x y +=C.22197x y += D.2213628x y +=【答案】C 【解析】【分析】根据离心率和焦距可得3a c =⎧⎪⎨=⎪⎩,进而可得2b ,即可得方程.【详解】由题意可知:232c a c ⎧=⎪⎨⎪=⎩,可得3a c =⎧⎪⎨=⎪⎩,则2927b =-=,所以该椭圆的方程为22197x y +=.故选:C.4.已知等比数列{}n a 的前n 项和为n S ,且3314,2S a ==,则4a =()A.1B.23或-1 C.23-D.23-或1【答案】D 【解析】【分析】根据等比数列基本量的计算即可求解公比,进而可求解.【详解】依题意,10a ≠,因为314,S =2312a a q ==,12112(1),a a a q ∴+==+故2610q q --=,故12q =或1,3q =-当12q =时,431a a q ==;当1,3q =-4323a a q ==-;423a ∴=-或1.故选:D5.已知α为三角形的内角,且15cos 4α-=,则sin 2α=()A.14-+ B.14 C.38- D.354-【答案】B 【解析】【分析】利用降幂公式得到答案.【详解】因为α为三角形的内角,1cos 4α=,所以sin 2α==14+===.故选:B6.甲乙丙丁戊5名同学坐成一排参加高考调研,若甲不在两端且甲乙不相邻的不同排列方式的个数为()A.36种B.48种C.54种D.64种【答案】A 【解析】【分析】利用间接法,先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,结合排列数运算求解.【详解】先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,所以总数为3211334233A A A A A 36-=种,故选:A.7.已知四棱锥P ABCD -的各顶点在同一球面上,若2224AD AB BC CD ====,PAB 为正三角形,且面PAB ⊥面ABCD ,则该球的表面积为()A.13π3B.16πC.52π3D.20π【答案】C 【解析】【分析】作辅助线,找到球心的位置,证明O 到四棱锥所有顶点距离相等;根据勾股定理,求出球的半径,进而求出球的表面积.【详解】如图,取AD 的中点E ,取AB 的中点G ,连接EG 、PG ,在线段PG 上取一点F ,使13FG PG =,过点E 作平面ABCD 的垂线OE ,使OE FG =,连接OF ,易知四边形ABCD 是等腰梯形,ABE 、BCE 、CDE 均为等边三角形,所以2AE BE CE DE ====,因为OE ⊥平面ABCD ,所以90OEA OEB OEC OED ∠=∠=∠=∠=︒,所以OA OB OC OD ===,因为PAB 为正三角形,G 为AB 的中点,所以PG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PG ⊂平面PAB ,所以PG ⊥平面ABCD ,因为OE ⊥平面ABCD ,所以//PG OE ,即//FG OE又因为OE FG =,所以四边形OEGF 为平行四边形,所以//OF EG ,因为ABE 为正三角形,G 为AB 的中点,所以EG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,EG ⊂平面ABCD ,所以EG ⊥平面PAB ,所以OF ⊥平面PAB ,又因为F 是ABP 的外心,所以FA FB FP ==,所以OA OB OP ==,所以O 即为四棱锥外接球的球心,因为133OE FG PG ===,2AE =,所以3R OA ====所以2239524π4π)π33S R ==⋅=,故选:C.8.过()0,M p 且倾斜角为π,π2αα⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭的直线l 与曲线2:2C x py =交于,A B 两点,分别过,A B 作曲线C 的两条切线12,l l ,若12,l l 交于N ,若直线MN 的倾斜角为β.则()tan αβ-的最小值为()A.2B.C. D.【答案】C 【解析】【分析】首先画出平面图形,求出tan tan 2k k αβ'⋅=⋅=-的结论,再利用两角和与差的正切公式以及前面的结论将()tan αβ-化简为()2k k ⎛⎫-+-⎪⎝⎭的形式,由基本不等式即可求得最值.【详解】如图,设()00,N x y ,1122(,),(,)A x y B x y ,由于曲线2:2x C y p=,则x y p '=,所以在A 点的切线方程为111()x y y x x p-=-,同理在B 点的切线方程为222()x y y x x p-=-,由于N 点是两切线的交点,所以1010120202()()x y y x x px y y x x p⎧-=-⎪⎪⎨⎪-=-⎪⎩,则AB l 为()000000()2xx xy y x x y y y x x p y y p p-=-⇒-=-⇒=+,且过()0,M p ,0y p ∴=-且0tan x k p α==,设2tan ,2p k k k x β''==-∴⋅=-,()tan tan tan 1tan tan αβαβαβ-∴-=+()21k k k k k k -⎛⎫==-+-≥ ⎪+⋅⎝⎭''当且仅当k =时“=”成立,故选:C.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.下表是某人上班的年收入(单位:万元)与上班年份的一组数据:年份x 1234567收入y2.93.33.64.44.85.25.9则下列命题正确的有()A.年收入的均值为4.3B.年收入的方差为1.2C.年收入的上四分位数为5D.若y 与x 可用回归直线方程0.5ˆˆyx a =+来模拟,则ˆ 2.3a =【答案】AD 【解析】【分析】对于A :根据平均数定义运算求解;对于B :根据方差公式分析求解;对于C :根据百分位数的定义分析求解;对于D :根据线性回归方程必过样本中心点分析求解.【详解】对于选项A :由题意可得:年收入的均值 2.9 3.3 3.6 4.4 4.8 5.2 5.94.37y ++++++==,故A正确;对于选项B :由题意可得:年份x 1234567收入y2.93.3 3.64.4 4.85.2 5.9()2y y - 1.9610.490.010.250.812.56所以年收入的方差21.9610.490.010.250.812.567.081.277s ++++++==≠,故В错误;对于选项C :因为70.75 5.25⨯=,所以年收入的上四分位数为第6个数据,是5.2,故C 错误;对于选项D :因为年份的平均数123456747++++++==x ,即样本中心点为()4,4.3,所以0.5 4.30.523ˆ4.ay x =-=-⨯=,故D 正确;故选:AD.10.已知函数()2cos sin f x x x x ωωω=-(0)>ω,则下列命题正确的有()A.当2ω=时,5π24x =是()y f x =的一条对称轴B.若()()122f x f x -=,且12minπx x -=,则12ω=C.存在()0,1ω∈,使得()f x 的图象向左平移π6个单位得到的函数为偶函数D.若()f x 在[]0,π上恰有5个零点,则ω的范围为72,3⎡⎫⎪⎢⎣⎭【答案】BD 【解析】【分析】首先对函数表达式进行化简,A 选项,将2ω=,5π24x =代入发现此处有对称中心,没有对称轴;B 选项,由题设知,π为半个周期;C 选项,对函数进行平移变换,再判断奇偶性;D 选项,求出π26x ω+的范围,再确定区间右端点π2π6ω+的范围,从而求出ω的范围.【详解】()1cos 211π1sin2=cos 2=sin 22222262x f x x x x x ωωωωω-⎛⎫=-+-+-⎪⎝⎭对于A ,当2ω=时,()π1sin 462f x x ⎛⎫=+- ⎪⎝⎭,所以55ππ11πsin 246622f ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,所以5π24x =不是()y f x =的一条对称轴,故A 错误;对于B ,由题意知,2πT =,所以22π2πω=,又因为0ω>,所以12ω=,故B 正确;对于C ,()f x 向左平移π6个单位后,得到()ππ1ππ1sin 2sin 2662362g x x x ωωω⎡⎤⎛⎫⎛⎫=++-=++- ⎪ ⎢⎝⎭⎝⎭⎣⎦,假设()g x 为偶函数,则ππππ362k ω+=+,Z k ∈,解得13k ω=+,Zk ∈而(0,1)ω∈,所以假设不成立,故C 错误;对于D ,[]0,πx ∈时,πππ2,2π666x ωω⎡⎤+∈+⎢⎥⎣⎦,令()π1=sin 2062f x x ω⎛⎫+-= ⎪⎝⎭,则π1sin 262x ω⎛⎫+= ⎪⎝⎭,因为()f x 在[]0,π上恰有5个零点,所以π25π29π2π,666ω⎡⎫+∈⎪⎢⎣⎭,解得72,3ω⎡⎫∈⎪⎢⎣⎭,故D 正确.故选:BD.11.已知函数()()e ,ln xf xg x x ==-,则下列命题正确的有()A.若()g x ax ≥恒成立,则1a e≤-B.若()y f x =与1y ax =-相切,则2ea =C.存在实数a 使得()y f x ax =-和()y g x ax =+有相同的最小值D.存在实数a 使得方程()f x x a -=与()x g x a +=有相同的根且所有的根构成等差数列【答案】ACD 【解析】【分析】对于A :原题意等价于ln xa x ≤-在()0,∞+内恒成立,令()ln ,0x h x x x=->,利用导数求其最值,结合恒成立问题分析求解;对于B :对()y f x =求得,结合导数的几何意义列式分析可得()1ln 1a a -=-,代入2e a =检验即可;对于C :取1a =,利用导数求最值,进而分析判断;对于D :结合选项C 可知:()(),h x x ϕ的图象,设交点为()(),M m h m ,结合图象分析可知从左到右的三个交点的横坐标依次为ln ,,e m m m ,进而可得结果.【详解】对于选项A ,若()g x ax ≥,则ln x ax -≥,且0x >,可得ln xa x≤-,可知原题意等价于ln xa x≤-在()0,∞+内恒成立,令()ln ,0x h x x x =->,则()2ln 1x h x x ='-,令()0h x '>,解得0e x <<;令()0h x '<,解得e x >;可知()y h x =在()0,e 内单调递减,在()e,∞+内单调递增,则()()1e eh x h ≤=-,所以1a e≤-,故A 正确;对于选项B :因为()e xf x =,则()e xf x '=,设切点为()00,ex P x ,则切线斜率()0=ex k f x '=,可得切线方程为()000ee x x y x x -=-,即()000e e 1x x y x x =+-,由题意可得()000e e 11xx a x ⎧=⎪⎨-=-⎪⎩,整理得()1ln 1a a -=-,显然2e a =不满足上式,故B 错误;对于选项C :例如1a =,构建()()e xh x f x x x =-=-,则()e 1xh x '=-,令()0h x '>,解得0x >;令()0h x '<,解得0x <;可知()y h x =在(),0∞-内单调递减,在()0,∞+内单调递增,可知()y h x =的最小值为()01h =;构建()()ln ,0x g x x x x x ϕ=+=-+>,则()111x x x xϕ-=-+=',令()0x ϕ'>,解得1x >;令()0x ϕ'<,解得01x <<;可知()y x ϕ=在()0,1内单调递减,在()1,∞+内单调递增,可知()y x ϕ=的最小值为()11G =,可知()y f x ax =-和()y g x ax =+有相同的最小值1,故C 正确;对于选项D :结合选项C 可知:()(),h x x ϕ的图象大致如下:设交点为()(),M m h m ,易知01m <<,由图象可知:当直线y a =与曲线()y h x =和曲线()y x ϕ=共有三个不同的交点时,直线y a =必经过点()(),M m h m ,即()a h m =.因为()()h m m ϕ=,所以e ln m m m m -=-,即e 2ln 0m m m -+=.令()()()h x x a h m ϕ===,得e ln e x m x x x m -=-=-,解得x m =或e m x =,由01m <<得1e m m <<.所以当直线y a =与曲线()y h x =和()y x ϕ=共有三个不同的交点时,从左到右的三个交点的横坐标依次为ln ,,e m m m .因为e 2ln 0m m m -+=,即e ln 2m m m +=,所以ln ,,e m m m 成等差数列,故D 正确;故选:ACD.【点睛】关键点点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}220A x x x =∈--≤N∣,集合(){}22210B x x a x a a =-+++=∣,若B A ⊆,则=a __________.【答案】0或1【解析】【分析】根据题意先求集合,A B ,结合包含关系分析求解.【详解】由题意可知:{}{}{}220120,1,2A x x x x x =∈--≤=∈-≤≤=NN ∣∣,(){}{}22210,1B x x a x a a a a =-+++==+∣,因为B A ⊆,可知{}0,1B =或{}1,2B =,可得0a =或1a =.故答案为:0或1.13.过()1,2P 的直线l 被曲线2240x x y -+=所截得的线段长度为l 的方程为__________.【答案】1x =或34110x y +-=【解析】【分析】根据曲线的方程确定曲线为圆,再根据直线与圆的位置,分2种情况讨论:①当直线的斜率不存在,②当直线的斜率存在时,每种情况下先设出直线的方程,利用直线被圆所截得的线段长度,求解直线的方程可得出答案.【详解】由曲线2240x x y -+=知,该曲线为圆()2224x y -+=且圆心为()2,0,半径为2r =.当直线斜率不存在时,直线方程为1x =,此时圆心到直线的距离为1d =.根据垂径定理,直线截圆所得线段长为:l ==,满足题意.当直线的斜率存在时,设直线方程为:()12y k x =-+,即20kx y k --+=圆心到直线的距离为d =,当直线截圆所得线段长度l =根据垂径定理2222l d r ⎛⎫+= ⎪⎝⎭可得,22222⎛⎫+= ⎪ ⎪⎝⎭,解得34k =-此时直线方程为34110x y +-=.故答案为:1x =或34110x y +-=.14.在ABC 中,设,,A B C 所对的边分别为,,a b c ,且,tan sin sin b c A B C ≠=+,则以下结论正确的有__________.①20,11a b c ⎛⎫ ⎪∈ ⎪ ⎪+⎝⎭;②211a b c ⎛⎫∈ +⎝⎭;③2b c a +⎫∈⎪⎭;④2b c a ⎛+∈ ⎝;⑤a ∞⎫∈+⎪⎪⎭.【答案】⑤【解析】【分析】依题意可得sin sin sin cos A B C A =+,利用正弦定理将角化边得到cos ab c A=+,将上式两边平方,再由余弦定理得到2220cos a b c A+-=,最后由余弦定理及基本不等式计算可得.【详解】因为tan sin sin A B C =+,即sin sin sin cos AB C A=+,由正弦定理可得cos ab c A=+,所以22222cos a b c bc A=++,又2222cos bc A b c a +-=,所以()()22222222cos 2cos cos cos a b c A bc A b c A b c a A=++=+++-,所以()2221cos 0cos a b c A A ⎛⎫+-+= ⎪⎝⎭,因为()0,πA ∈,所以()cos 1,1A ∈-,则1cos 0A +≠,所以2220cos a b c A+-=,()222cos a b c A =+,又b c ≠,所以222b c bc +>,所以()222222cos 2cos a b cA bc A bc a =+>=+-,所以2222b c a +>,则a >a ∞⎫∈+⎪⎪⎭.故答案为:⑤【点睛】关键点点睛:本题关键是余弦定理的灵活应用,第一次得到2220cos a b c A+-=,再由基本不等式得到()222222cos 2cos a b cA bc A bc a =+>=+-.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.正方体1111ABCD A B C D -的棱长为2,P 是线段1AB 上的动点.(1)求证:平面11BDD B ⊥平面11A BC ;(2)1PB 与平面11A BC 所成的角的正弦值为3,求PB 的长.【答案】(1)证明见解析(2)PB =【解析】【分析】(1)根据题意可得111A C DD ⊥,1111AC B D ⊥,进而可证11A C ⊥平面11BDD B ,即可得结果;(2)设1B 在平面11A BC 上的射影点为E ,连接1,EP EB ,利用等体积法可得13EB =,结合线面夹角可得13EB =,进而可得结果.【小问1详解】因为1DD ⊥平面1111D C B A ,且11AC ⊂平面1111D C B A ,可得111AC DD ⊥,四边形1111D C B A 为正方形,则1111AC B D ⊥,且111111,B D DD D B D ⋂=,1DD ⊂平面11BDD B ,可得11A C ⊥平面11BDD B ,且11AC ⊂平面11A BC ,所以平面11BDD B ⊥平面11A BC .【小问2详解】设1B 在平面11A BC 上的射影点为E ,连接1,EP EB,可知11A BC V是以边长为1134A BC S =⨯=V ,因为111111B A BC B A B C V V --=,即1111222332EB ⨯=⨯⨯⨯⨯,解得1233EB =,设1PB 与平面11A BC 所成的角的大小为θ,则1113sin 3EB PB PB θ===,可得1PB =,在1BPB △中,由余弦定理得,222111π2cos4PB BB PB BB PB =+-⨯⨯,即224PB =+-,解得PB =.16.甲和乙进行中国象棋比赛,每局甲赢的概率为0.8,甲输的概率为0.2,且每局比赛相互独立.(1)若比赛采取三局两胜制,且乙已经赢得比赛,则比赛需要的局数X 的数学期望()E X 为多少?(保留小数点后一位)(2)由于甲、乙实力悬殊,乙提出“甲赢5局之前乙赢2局,则乙胜”,求乙胜的概率.【答案】(1)2.6(2)0.34464【解析】【分析】(1)分析可知X 的可能取值为2,3,结合条件概率求()()2,3P X P X ==,进而可得期望;(2)根据题意分析乙胜的情况,结合独立事件概率乘法公式分析求解.【小问1详解】记“乙已经赢得比赛”为事件A ,则()120.20.2C 0.20.80.20.104P A =⨯+⨯⨯⨯=,由题意可知:X 的可能取值为2,3,则有:()()12C 0.20.20.80.20.2582,30.104130.10413P X P X ⨯⨯⨯⨯======,所以X 的数学期望()583423 2.6131313E X =⨯+⨯=≈.【小问2详解】由题意可知:每局乙赢的概率00.2p =,则()()()()2321110200030004000C 1C 1C 1P A p p p p p p p p p p ⎡⎤⎡⎤⎡⎤=+-+-+-⎣⎦⎣⎦⎣⎦()415000C 1p p p ⎡⎤+-⎣⎦()()()()234200000121314151p p p p p ⎡⎤=+-+-+-+-⎣⎦()()()()()22340.21210.2310.2410.2510.2⎡⎤=+-+-+-+-⎣⎦0.048.6160.34464=⨯=,所以乙胜的概率0.34464.17.()()ex af x a -=∈R .(1)若()f x 的图象在点()()00,A x f x 处的切线经过原点,求0x ;(2)对任意的[)0,x ∈+∞,有()sin f x x ≥,求a 的取值范围.【答案】(1)1(2)πln2,42∞⎛⎤-+ ⎥⎝⎦【解析】【分析】(1)求得()ex af x -'=,得到()00ex af x -='且()00ex af x -=,根据题意,列出方程,即可求解;(2)根据题意,转化为e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()e sin x ag x x -=-,当0a ≤时,符合题意;若0a >,求得()ecos x ag x x --'=,令()()h x g x '=,利用导数求得()g x '的单调性,结合()π00,02g g ⎛⎫<> '⎪⎝⎭',得到存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,得出()g x 的单调性和极小值,进而求得a 的取值范围.【小问1详解】由函数()e x af x -=,可得()e x af x -'=,所以()00ex af x -='且()00ex af x -=,即切线的斜率为0e x a -,切点为()00e,x aA x -因为()f x 的图象在点()()00,A x f x 处的切线经过原点,可得000e 0ex a x ax ---=-,解得01x =.【小问2详解】任意的[)0,x ∈+∞,有()sin f x x ≥,即e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()[)esi ,0,n x ag x x x -=∈-+∞,若0a ≤,则0x a -≥,可得e 1x a -≥,所以()e sin 1sin 0x ag x x x -=-≥-≥,符合题意;若0a >,可得()ecos x ag x x --'=,令()()h x g x '=,则()e sin x a h x x -+'=,当0πx ≤≤时,()0h x '>,()g x '在[]0,π递增,而()π2π0e 10,e02a ag g --⎛⎫=-<=> ⎪⎝⎭'',所以,存在唯一的[]0π0,0,π2x ⎛⎫∈⊆ ⎪⎝⎭,使得()000e cos 0x ag x x --'==,所以,当00x x <<时,()0g x '<,()g x 在()00,x 递减,当0πx x <<时,()0g x '>,()g x 在区间()0,πx 递增,故当0x x =,函数()g x 取得极小值()00000e sin cos sin 0x ag x x x x -=-=-≥,所以0π04x <≤,此时,00lncos x a x -=,可得00πlncos ln 42a x x =-≤-,即πln2042a <≤+;当πx >时,()πln 2142e sin e1e1e 10x x ax ag x x ---=-≥-≥-≥->,因而πln2042a <≤+,符合题意,综上所述,实数a 的取值范围是求πln2,42∞⎛⎤-+ ⎥⎝⎦.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、合理转化,根据题意转化为两个函数的最值之间的比较,列出不等式关系式求解;2、构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;3、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.18.已知双曲线2222:1(0,0)y x C a b a b-=>>的上焦点为(,下顶点为A,渐近线方程是y =,过20,3B ⎛⎫ ⎪⎝⎭点的直线交双曲线上支于,P Q 两点,,AP AQ 分别交直线23y =于,M N 两点,O 为坐标原点.(1)求C 的方程;(2)求证:,,,M N O A 四点共圆;(3)求(2)中的圆的半径r 的取值范围.【答案】(1)22142-=y x (2)证明见解析(3)5.3⎛ ⎝【解析】【分析】(1)根据题意得到关于,,a b c 的方程组,解出即可;(2)方法一:设直线2:3PQ y kx =+,联立双曲线方程得到韦达定理式,求出11836M x x y =+,22836N x x y =+,最后计算并证明出BO BA BM BN =即可;方法二:转化为证明出1OM AN k k =,同法一设线联立得到韦达定理式,再整体代入计算出1OM AN k k =即可;(3)设圆心为T ,计算出(),1T k -,根据r =k 的范围即可.【小问1详解】由题,222ac a b c b==+=,解得224,2a b ==,所以C 的方程为22142-=y x .【小问2详解】(方法一)设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩,解得21629k <<,且()()1212222243243239,223292k k x x x x k k kk -+====----,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,()()1212121288643636922x x x x BM BN y y y y =⨯=++++()()()121221212126464864922939x x x x y y k x x k x x ==+++++()()()22223292641632846499399232k k k k k k -==⋅+⋅+--,22162339BO BA ⎛⎫=⨯+= ⎪⎝⎭,则BO BA BM BN =,所以,,,M N O A 四点共圆.(方法二)设,OM AN 的倾斜角分别为,αβ.由对称性,不妨设PQ 的斜率0k >,此时,αβ均为锐角,所以,,,M N O A 四点共圆πAOM ANM ∠∠⇔+=,ππ2αβ⎛⎫⇔++= ⎪⎝⎭ππ,,0,22αβαβ⎛⎫⇔+=∈ ⎪⎝⎭tan tan 1αβ⇔=1OM AN k k ⇔=设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420,990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩解得21629k <<,()()121222324,9232kx x x x k k =-+=---,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,121222,4OM AN AQ y y k k k x x ++===()21212121212121288864223339444OM ANkx kx k x x k x x y y k k x x x x x x ⎛⎫⎛⎫+++++ ⎪⎪++⎝⎭⎝⎭=⋅==()()()2222328464399232132492kk k k k k ⎡⎤⎡⎤⎢⎥⎢⎥-+-+--⎢⎥⎢⎥⎣⎦⎣⎦=⎡⎤⎢⎥--⎢⎥⎣⎦所以,,,M N O A 四点共圆.【小问3详解】设圆心为T ,则1T y =-,121212124448823636333M N T x x x x x x x y y kx kx ⎛⎫⎪+==+=+ ⎪++ ⎪++⎝⎭()()()()()()221212221212223284822392324438643284643339399232kk kx x x x k k k k k x x k x x k k k k⋅+⋅++--==⋅=+++⋅+⋅+--,(),1T k ∴-,因为21629k <<,则5.3r ⎛= ⎝【点睛】关键点点睛:本题第二问的关键是采用设线法得到韦达定理式,然后利用四点共圆的充要条件代入计算证明即可,第三问的关键是得到圆心坐标,从而得到r =19.给定自然数n 且2n ≥,设12,,,n x x x 均为正数,1ni i x T ==∑(T 为常数),11n i ni i nx x T x T x -==--∑.如果函数()f x 在区间I 上恒有()0f x ''>,则称函数()f x 为凸函数.凸函数()f x 具有性质:()1111n n i i i i f x f x n n ==⎛⎫≥ ⎪⎝⎭∑∑.(1)判断()1xf x x=-,()0,1x ∈是否为凸函数,并证明;(2)设()1,2,,ii x y i n T == ,证明:111111n ny y n -≤---;(3)求nnx T x -的最小值.【答案】(1)()f x 在()0,1上为凸函数,证明见解析(2)证明见解析(3)()5128221nn --.【解析】【分析】(1)对()f x 求导之后,再求二阶导数,证明()0f x ''>即可得出结论;(2)根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑;将11n i n i i nx x T x T x -==--∑中的分子、分母同时除以T ,得到()111n ni i n y f y y -==-∑;加上1111n ni i n n i i y y y y -===-=-∑∑,利用以上条件得到一个关于n y 与n 的不等式,变形后即可得出结论.(3)设i i x y T=,将n n x T x -转化为1n n y y -,判断其单调性,将问题转化为求n y 的最小值;利用(2)的结论,求出n y 的最小值,代入1n ny y -即可得出答案.【小问1详解】()f x 在()0,1上为凸函数.证明:由题知,()22(1(1)())(11)x f x x x x ==-'----,所以()43(1)(11)2()2f x x x x =-'=--',因为()0,1x ∈,所以10x ->,()0f x ''>,所以()f x 在()0,1上为凸函数.【小问2详解】证明:因为i i x y T =()1,2,,i n = ,所以11111n n n i i i i i i x T y x TT T =======∑∑∑,由题知11n i n i i n x x T x T x -==--∑,分子分母同时除以T ,得1111i n n i n i x x TT x x T T -==--∑,所以1111n i n i i n y y y y -==--∑,即()111n n i i n y f y y -==-∑,根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑,所以111111111111n i n i n n i i y y n n y y n -=-=-⋅≥----∑∑,又因为1111n n i i n n i i y y yy -===-=-∑∑,所以1(11111))111(11(11)n n n n n n y y y n n y n y y n ⋅---⋅≥=------⋅--,两边同时乘以n 1-,得(1)(111()1)n n n n y n y y n y --≥----,因为()1,2,,i x n T i <= ,所以(0,1)i i x y T =∈,又因为2n ≥,所以(1)(1011(1))n n n n y n y y n y --≥>----,两边同时取倒数,得11(11(1))1)(111n n n n n y n y y n y y n ----≤=-----,所以111111n n y y n -≤---,即111111n n y y n -≤---.【小问3详解】设i i x y T =()1,2,,i n = ,则n n x y T =,且()0,1n y ∈,所以11111n n n n n n n x x y T x T x y y T ===-----,随n y 增大而增大,由(2)知,111111n n y y n -≤---,所以()2111n n n n y y y n n y -⋅--≤--,所以()2(34)210n n y n n y n --+-≤-,当2n =时,120n y -+≤,12n y ≥,所以1111n n n x T x y =-≥--,当且仅当1212y y ==时,等号成立,当3n ≥时,()()34342222n n n y n n ---+≤≤--,所以1n n n n x y T x y =≥--22(5128)(34)(24)4128n n n n nn n--++-+-=-+()22288(22412821n n n nn n n-+-+--==-+-,当且仅当()()12111221nny ny y yn n n--=====---时,等号成立,当2n=时,最小值为1,满足上式,所以nnxT x-的最小值是()5128221nn--.【点睛】关键点点睛:第2问的关键是将条件中x转化为y,紧紧围绕凸函数的性质来做文章;第3问关键是将nnxT x-转化为1nnyy-,利用第2问的结论,求出ny的最小值.。
2025届云南省昆明市第一中学高三(最后冲刺)数学试卷含解析

2025届云南省昆明市第一中学高三(最后冲刺)数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()y f x =,x ∈R ,则“()y xf x =的图象关于y 轴对称”是“()y f x =是奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.若1(1)z a i =+-(a R ∈),||z =a =( )A .0或2B .0C .1或2D .13.设不等式组2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩,表示的平面区域为Ω,在区域Ω内任取一点(),P x y ,则P 点的坐标满足不等式222x y +≤的概率为 A .π8B .π4C .12π+ D4.设直线l 的方程为20()x y m m -+=∈R ,圆的方程为22(1)(1)25x y -+-=,若直线l被圆所截得的弦长为实数m 的取值为 A .9-或11B .7-或11C .7-D .9-5.记M 的最大值和最小值分别为max M 和min M .若平面向量a 、b 、c ,满足()22a b a b c a b c ==⋅=⋅+-=,则( ) A .max3a c-=B .max3a c+=C .min32a c-= D .min32a c+=6.20201i i=-( )A .22B . 2C .1D .147.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( )A .2?B .103C .10?D .228.已知正三角形ABC 的边长为2,D 为边BC 的中点,E 、F 分别为边AB 、AC 上的动点,并满足2AE CF =,则DE DF ⋅的取值范围是( ) A .11[,]216- B .1(,]16-∞ C .1[,0]2-D .(,0]-∞9.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .14010.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是( )A .37B .47C .57D .67112,体积为23,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A .12B .1C .104D .5212.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .113 B .4 C .133D .5二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市2024高三冲刺(高考数学)人教版质量检测(冲刺卷)完整试卷

河北省石家庄市2024高三冲刺(高考数学)人教版质量检测(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知圆:,直线:,则“”是“圆上恰存在三个点到直线的距离等于”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要第(2)题下列关于复数的四个命题中,错误的是( )A .B.C .z 的共轭复数为-1+iD .z 的虚部为-1第(3)题如图为一个三棱锥的三视图,则该三棱锥的体积为( )A.B .C .D .第(4)题设随机变量服从正态分布,若,则 a 的值为( )A.B .1C .2D .第(5)题已知双曲线,在双曲线上任意一点处作双曲线的切线,交在第一、四象限的渐近线分别于两点.当时,该双曲线的离心率为( )A .B.8C .D .第(6)题已知向量,则“”是“与的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件第(7)题若,,则的最大值为( )A.3B .5C .D .第(8)题甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,两圆锥的表面积分别为和,内切球半径分别为和.若,则的值是( )A.B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设,且,则下列关系式可能成立的是( )A .B .C .D .第(2)题设是各项为正的无穷数列,若对于,(d :为非零常数),则称数列为等方差数列.那么( )A.若是等方差数列,则是等差数列B.数列为等方差数列C.若是等方差数列,则数列中存在小于1的项D.若是等方差数列,则存在正整数n,使得第(3)题某班班主任为了了解该班学生寒假期间做家务劳动的情况,随机抽取该班15名学生,调查得到这15名学生寒假期间做家务劳动的天数分别是8,18,15,20,16,20,19,18,19,10,6,20,20,23,25,则下列结论正确的是()A.这组数据的中位数是18B.这组数据的众数是20C.若在记录数据时,漏掉了一个数据,则新数据的众数是20D.若在记录数据时,漏掉了一个数据,则新数据的中位数是19三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题如图,边长为的正方形所在平面与正方形所在平面互相垂直,动点、分别在正方形对角线和上移动,且.则下列结论:①长度的最小值为;②当时,与相交;③始终与平面平行;④当时,为直二面角.正确的序号是__________.第(2)题某地建立了农业科技图书馆,供农民免费借阅,收集了近5年的借阅数据如下表:年份20192020202120222023年份代码12345年借阅量万册 4.9 5.1 5.5 5.7 5.8根据上表,可得关于的线性回归方程为.则______.第(3)题某工厂为了对新研发的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价(元)89销量(件)908483807568由表中数据求得线性回归直线方程为,当销售量为50件时,单价约为__________元.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)若不等式恒成立,求实数的取值范围.(2)若,设函数在上的最大值为,求的最小值.第(2)题如图,已知平面四边形中,.(1)若四点共圆,求;(2)求四边形面积的最大值.第(3)题定义:在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“和扩充”,例如:数列经过第一次“和扩充”后得到数列;第二次“和扩充”后得到数列.设数列经过次“和扩充”后得到的数列的项数为,所有项的和为.(1)若,求;(2)求不等式的解集;(3)是否存在数列,使得数列为等比数列?请说明理由.第(4)题如图所示,在平面四边形中,角为钝角,且.(1)求钝角的大小;(2)若,求的大小.第(5)题已知椭圆的离心率为,且点在椭圆上.(1)求椭圆的标准方程;(2)如图,若一条斜率不为0的直线过点与椭圆交于两点,椭圆的左、右顶点分别为,直线的斜率为,直线的斜率为,求证:为定值.。
安徽省部分高中2025届高考冲刺押题(最后一卷)数学试卷含解析

安徽省部分高中2025届高考冲刺押题(最后一卷)数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2|3100M x x x =--<,{}29N x y x ==-,且M 、N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A .{}35x x <≤ B .{3x x <-或}5x >C .{}32x x -≤≤-D .{}35x x -≤≤2.如图,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )A .22B .32C .212+ D .312+ 3.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 的面积是( )A 3B .2C 3D 34.己知函数()()1,0,ln ,0,kx x f x x x ->⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围是( )A .(),0-∞B .()0,1C .()0,∞+D .10,2⎛⎫ ⎪⎝⎭5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .456.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx x f x e +=-,设2(ln 2),(2),(ln )2a fb fc f ===,则( ) A .b a c >>B .b a c >=C .a c b =>D .c a b >>7.已知三棱锥D ABC -的体积为2,ABC 是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 中点,则球O 的表面积为( ) A .523πB .403πC .253πD .24π8.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .409.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .1510.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .822+D .842+11.函数()()sin f x A x =+ωϕ(其中0A >,0>ω,2πϕ<)的图象如图,则此函数表达式为( )A .()3sin 24f x x π⎛⎫=+⎪⎝⎭B .()13sin 24f x x π⎛⎫=+⎪⎝⎭C .()3sin 24f x x π⎛⎫=-⎪⎝⎭D .()13sin 24πf x x ⎛⎫=- ⎪⎝⎭12.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A .33263cm B .36463cm C .33223cm D .36423cm 二、填空题:本题共4小题,每小题5分,共20分。
【数学】PDF原版-安徽省2023届高三最后一卷-数学试题

2023届高三最后一卷数学试题(考试时间:120分钟满分:150分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位。
2.答题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案标号。
3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰。
作 图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必 须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将答题卡和答题卷一并上交。
一 、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={xeR|x-1|≤1},B={y|p=-x²,-√2≤x≤1},则Ca(A∩B)=()A.⊗B.{0} c.{x ∈R|x≠0} D.R2.若复数z 满足z(cos60°+isin60°)=-1+√3i,则z 的共轭复数的虚部是()A.-√3B.-√3iC.√3D.√3i3.2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年 取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面 实现.全面推进乡村振兴是继脱贫攻坚取得全面胜利后三农工作重心历史性转移重要时刻.某地为实 年份 2014 2015 2016 2017 2018 2019 2020 2021 2022 年份代码x 123456789盈利y(百万)6.0 6.1 6.2 6.0 6.9 6.87.1 7.0已知由9组数据利用最小二乘法求得的V 与x 的经验回归方程为y=0.15x+5.75,现由于工作失误, 第五组数据被污损,则被污损的数据为() B.6.4 则下面结论正确的是( );A.把 C 上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移 个单位长 度,得到曲线C ₂A.6.3 4.已知曲线D.6.6C.6.5B.把C 上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C ₂C.把 C 上各点的横坐标缩短到原来的 得到曲线C ₂D.把 C 上各点的横坐标缩短到原来的 事纵坐标不变,再把得到的曲线向左平移纵坐标不变,再把得到的曲线向右平移个单位长度,个单位长度,得到曲线C ₂5.设O 为坐标原点,F 为抛物线C:x²=2py(p>0) 的焦点,直线y=1 与抛物线C 交于A,B 两点,若∠AFB=120°,则抛物线C 的准线方程为( )B.y=-3或y=-3或y=-66.已知A,B,C 是三个随机事件,“A,B,C 两两独立”是“P(ABC)=P(A)p(B)p(c)” 的 ( )条件 .A.充分不必要B.必要不充分C. 充要D.既不充分也不必要 7.过原点的直线l 与曲线交于A,B 两点,现以x 轴为折痕将上下两个半平面折成60°的二面角,则 A |B 的最小值为( )A.2B.2√3C.4D.128.已知函数f(x) 与g(x) 的定义域均为R,f(x+1) 为偶函数,且f(3-x)+g(x)=1,f(x)-g(1-x)=1, 则下面判断错误的是( )A.f(x) 的图象关于点(2,1)中心对称B.f(x) 与g(x) 均为周期为4的周期函数二 、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,已知正六边形ABCDEF 的边长为1,记BC=e, 则 ( ) A.AD=2(AF+DE)B.AB.(EA+2FA)=|AB² c.BC(CD·FE)=(BC.CD)FED.AE 在 CB 方向上的投影向量为10.已知半径为R 的球与圆台的上下底面和侧面都相切.若圆台上下底面半径分别为r 和 r ₂, 母线长为1,球的表面积与体积分别为S ₁和V ₁, 圆台的表面积与体积分别为S ₂ 和V ₂.则下列说法正确的是 ( )A.I=r+r ₂B.R=√rr ₂口的最大值为。
北京市2025届高三最后一卷数学试卷含解析

北京市2025届高三最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若i 为虚数单位,则复数112iz i+=+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积S =根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )AB .CD .3.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要4.若复数z 满足1zi i =-(i 为虚数单位),则其共轭复数z 的虚部为( ) A .i -B .iC .1-D .15.记等差数列{}n a 的公差为d ,前n 项和为n S .若1040S =,65a =,则( ) A .3d =B .1012a =C .20280S =D .14a =-6.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A .()()0.63(3)log 132f f f -<-<B .()()0.63(3)2log 13f f f -<<-C .()()0.632log 13(3)ff f <-<-D .()()0.632(3)log 13ff f <-<-7.已知函数()xf x e b =+的一条切线为(1)y a x =+,则ab 的最小值为( ) A .12e-B .14e-C .1e- D .2e-8.执行如图所示的程序框图,输出的结果为( )A .193B .4C .254D .1329.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-10.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.要得到函数312y x π⎛⎫=-⎪⎝⎭的图象,只需将函数323y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度12.在区间[]1,1-上随机取一个实数k ,使直线()3y k x =+与圆221x y +=相交的概率为( )A .12B .14C 2D 2 二、填空题:本题共4小题,每小题5分,共20分。
浙江省杭州市余杭中学2025届高三(最后冲刺)数学试卷含解析

浙江省杭州市余杭中学2025届高三(最后冲刺)数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行下面的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是( )A .5i ≤B .6i ≤C .7i ≤D .8i ≤2.复数z 的共轭复数记作z ,已知复数1z 对应复平面上的点()1,1--,复数2z :满足122z z ⋅=-.则2z 等于( ) A .2 B .2C .10D .103.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .24.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D 2 5.已知函数2,0()2,0x xx f x e x x x ⎧>⎪=⎨⎪--≤⎩若函数1()()()2g x f x k x =-+在R 上零点最多,则实数k 的取值范围是( )A .2(0,)3eB .2(,0)3e-C .(2eD .)2e6.设双曲线22221x y a b-=(a >0,b >0)的一个焦点为F (c ,0)(c >0)线被圆x 2+y 2﹣2cx =0截得的弦长为 )A .221205x y -=B .22125100x y -=C .221520x y -=D .221525x y -=7.已知复数41iz i=+,则z 对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限8.已知函数()f x 是R 上的偶函数,()g x 是R 的奇函数,且()()1g x f x =-,则()2019f 的值为( ) A .2B .0C .2-D .2±9.已知函数e 1()e 1x x f x -=+,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .c a b <<10.若复数()()2a i 1i (i ++为虚数单位)在复平面内所对应的点在虚轴上,则实数a 为( ) A .2-B .2C .12-D .1211.设2log 3a =,4log 6b =,0.15c -=,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>12.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( ) A .6里B .12里C .24里D .48里二、填空题:本题共4小题,每小题5分,共20分。
河北省各地2025届高三最后一卷数学试卷含解析

河北省各地2025届高三最后一卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( )A .()112n n +B .()1312n n -C .2n n 1-+D .222n n -+2.已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A .221255x y += B .2213616x y += C .2213010x y += D .2214525x y += 3.已知双曲线()2222:10,0x y C a b a b -=>>的一条渐近线经过圆22:240E x y x y ++-=的圆心,则双曲线C 的离心率为( )A B C D .24.设i 是虚数单位,则()()2332i i +-=( )A .125i +B .66i -C .5iD .13 5.已知函数()ln 1f x x =+,()122x g x e -=,若()()f m g n =成立,则m n -的最小值是( )A .1ln 22+B .2e -C .1ln 22-D 126.若复数z 满足)1z z i +=,复数z 的共轭复数是z ,则z z +=( )A .1B .0C .1-D .12-+ 7.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P 表示π的近似值),若输入10n =,则输出的结果是( )A .11114(1)35717P =-+-+⋅⋅⋅+B .11114(1)35719P =-+-+⋅⋅⋅- C .11114(1)35721P =-+-+⋅⋅⋅+ D .11114(1)35721P =-+-+⋅⋅⋅- 8.已知复数11i z i +=-,则z 的虚部是( ) A .i B .i - C .1- D .19.已知点P 是双曲线222222:1(0,0,)x y C a b c a b a b-=>>=+上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为( ) A .2 B .52 C .3 D .210.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( )A .3B .10C .23D .5 11.设集合{}2{|22,},|log 1A x x x Z B x x =-<∈=<,则AB =( ) A .(0,2)B .(2,2]-C .{1}D .{1,0,1,2}-12.为得到的图象,只需要将的图象( ) A .向左平移个单位 B .向左平移个单位C .向右平移个单位D .向右平移个单位二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮安市车桥中学2007届高三年级最后一次冲刺试卷数学试卷 2007-5-26$参考公式.如果事件A、B互斥,那么()()()P A B P A P B +=+.如果事件A、B相互独立,那么(.)().()P A B P A P B =一组数据的方差])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一.选择题:在每小题列出的四个选项中,只有一项是符合题目要求的。
本大题共10小题,每小题5分,共50分。
1. 抛物线214y x =的焦点坐标是( ) A 、1(0,)16 B 、1(,0)16C 、(1,0)D 、(0,1) ?2. 已知a,b 都是实数,则“a <b <0”是“2a >2b ”的( )条件A.充分非必要B.必要非充分C. 充要D.非充分非必要 3.函数1()x y e x R +=∈的反函数是.如果事件A在一次试验中发生的概率是P,那么n 次独立重复试验中恰好发生k 次的概率是 &()(1)k kn k n n P k C P P -=-( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+> 4.如图,△ABC 是Rt △AB 为斜边,三个顶点A 、B 、C 在平面α内的射影分别是A 1、B 1、C 1.如果△A 1B 1C 1是等边三角形,且AA 1=m ,BB 1=m +2,CC 1=m +1,并设平面ABC 与平面A 1B 1C 1所成的二面角的平面角为),20(πθθ<<则θcos 的值为 ( )(A )21 (B )22 (C )33 (D )36 5.从集合{1,2,3,…,11}中任选2个元素作为椭圆方程22221x y a b +=中的a 和b ,则能落在矩形区域{(,)11,9}D x y x y =<<内的椭圆个数为( )A . 43B 。
72C 。
86D 。
90 6. 已知函数()f x 在[0,)+∞上是增函数,()(||)g x f x =-,若(lg )(1)g x g >,则x 的取值范围是 ( ) ,A 、1(,10)10B 、(0,10)C 、(10,)+∞D 、1(0,)(10,)10+∞ 7.设变量x 、y 满足约束条件2,36y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩则目标函数2z x y =+的最小值为( ) (A )2 (B )3 (C )4 (D )98.如图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x =t (0≤t ≤2)截这个三角形可得位于此直线左方的图形(阴影部分)的面积为f (t ),则函数y =f(t )的图象(如下图所示)大致是( )αABCA 1C 1B 19.给出以下四个命题①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行; \④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直.其中真命题的个数是( ).3 C10.某宇宙飞船的运行轨道是以地球的中心F 为左焦点的椭圆,测得近地点A 距离地面m千米,远地点B 距离地面n 千米,地球的半径为k 千米.关于椭圆有以下四种说法:①焦距长为n -m ;②短轴长为))((k n k m ++;③离心率为kn m m n e 2++-=; ④以AB 方向为x 轴的正方向,F 为坐标原点,则左准线方程为mn k n k m x -++-=))((2以上正确的说法有( ) A .①③ B .②④ C .①③④D .①②④:二.填空题:本大题共6小题,每小题5分,共30分。
把答案填在答题卡的相应位置 11.不等式112x <的解集是 12. {1,2,3,5},{1,2,3,5}a b ∈∈,则方程by x a=可以表示不同直线的条数为 13.用数字0、1、2、3、4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有____个(用数字作答)14. 接种某疫苗后,出现发热反应的概率为.现有5人接种该疫苗,至少有3人出现发热反应的概率为___________.(精确到).15.定义:若存在常数k ,使得对定义域D 内的任意两个()2121,x x x x ≠,均有()()2121x x k x f x f -≤- 成立,则称函数()x f 在定义域D 上满足利普希茨条件。
若函数()()1≥=x x x f 满足利普希茨条件,则k 的最小值为 。
16 若函数()cos |sin |([0,2])f x x x x π=+∈的图象与直线y k =有且仅有四个不同的交点,则k 的取值范围是______三.解答题:本大题共5小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
)17.(本小题满分12分)已知向量0).2(-,,1),(sin ,1,32cos ,παα∈=⎪⎪⎭⎫⎝⎛--= (Ⅰ)求sin α-cos α的值; (Ⅱ)求αααtan 12cos 2sin 1+++的值.<,18(本小题满分14分).设椭圆22221x ya b+=(0)a b>>的两焦点坐标分别为F1(4,0)-和F2(4,0),它与x轴的两交点分别为A、B,点P为椭圆上一点,若F1P⊥PF2,5 tan2APB∠=-,求椭圆方程.|^;19(本小题满分14分)如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱12EF BC∥.(I)证明FO∥平面;CDE(II)设,BC=证明EO⊥平面.CDF` @ 《D ABEOF>20.(本小题满分14分)学校餐厅每天供应1000名学生用餐,每星期一有A、B两样菜可供选择,调查资料表明,凡是在本周星期一选A菜的,下周星期一会有20%改选B菜,而选B菜的,下周星期一则有30%改选A菜,若A n、B n分别表示在第n个星期一选A、B菜的人数.(1)试以A n表示A n+1;(2)若A1=200,求{A n}的通项分式;…(3)问第几个星期一时,选A菜与选B菜的人数相等~).21.(本小题满分16分)在直角坐标平面中,ΔABC的两个顶点AB的坐标分别为A(―77a,0),B(77a,0)(a>0),两动点M,N满足++=0,||=7||=7||,向量与共线.,(1)求ΔABC的顶点C的轨迹方程;(2)若过点P(0,a)的直线与(1) 轨迹相交于E、F两点,求·的取值范围;(3)(理科作)若G(―a,0),H(2a,0),Q点为C点轨迹在第一象限内的任意一点,则是否存在常数λ(λ>0),使得∠QHG=λ∠QGH 恒成立若存在,求出 的值;若不存在,请说明理由.~|参考答案:一、选择题:1—5 DA B CB, 6---10 AD D BC二、填空题:(11).(-∞,0)∪(2,+ ∞) ; (12). 13; (13).24; (14). ; (15).21; (16). 1≤k <2 17.解;(Ⅰ)∵,cos 与⎪⎪⎭⎫⎝⎛--=132α=(sin α,1)共线 ∴sin α+cos α=32 … 2分 故sin2α=-97txj 从而(sin α-cos α)2=1-sin2α=169… 4分t ∵α∈(-02,π)∴sin α<0,cos α>0 ∴sin α-cos α= -34 … 6分(Ⅱ)∵()22cos cos sin 1sin 2cos 21tan sin cos αααααααα+++=++=2cos 2α=1+cos2α… 9分`又cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=9243432=⨯ ∴原式=1+9…12分18解:由于∠F 1PF 2=900,则222212121212()2F F PF PF PF PF PF PF =+=+-,∴22122322PF PF a b =-=,设点P (,)x y 在第一象限,则2121121122PF F S PF PF F F y ∆==⨯ ∴24b y =,由于tan AC a xAPC PC y +∠==tan CB a xCPB PC y-∠==,∴222222tan 2tan()1a x a xy y APC CPB a x x y a y α+--=∠+∠==-+--而22221x y a b +=,∴22222a y x a b=-22222222222225tan 822(1)ay a ab ab ab APB a x y a c y y b y b∠====-=-=-+--- ∴ 5a =,故所求的椭圆方程为221259x y +=. 19)本小题考查直线与平面平行、直线与平面垂直等基础知识,考查空间想象能力和推理论证能力。
满分14分。
> (I )证明:取CD 中点M ,连结OM 。
在矩形ABCD 中,1,2OM BC ∥又1,2EF BC ∥ 则.EF OM ∥连结EM ,于是四边形EFOM 为平行四边形。
FO ∴∥EM.又FO ⊂平面CDE ,且EM ⊂平面CDE ,FO ∴∥平面CDE 。
…6 分(II )证明:连结FM 。
由(I )和已知条件,在等边CDE ∆中,,CM DM =EM CD ⊥且1.22EM CD BC EF ===因此平行四边形EFOM 为菱形,从而EO FM ⊥。
,,,CD OM CD EM CD ⊥⊥∴⊥平面EOM ,从而.CD EO ⊥而,FM CD M =所以EO ⊥平面.CDF … 14分20.解:(1)依题意,得⎩⎨⎧=++=+.1000B ,n nn n 1n A 0.3B 0.8A A ① 将B n =1000-A n 代入①,得A n+1=+300. ② 4分(2)设A n+1+λ=(A n +λ),即A n+1=,得λ=300,∴λ=-600.∴{A n -600}是以A 1-600=200-600=-400为首项,公比为的等比数列.∴A n -600=-400×.∴A n =600-400×. 10分 *(3)∵A n =B n ,且A n +B n =1000,∴A n =500,得600-400×=500.∴=,n-1=2.∴n=3,即第三个星期一时,选A 菜与选B 菜的人数相等. 14分21. (1)设(x ,y ),∵++=0,∴M 点是ΔABC 的重心,∴M(x 3,y 3).又||=||且向量与共线,∴N 在边AB 的中垂线上,∴N(0,y 3).D C A BE OF M而|NC |=7|NA |,∴x 2+49y 2=717a 2+19y 2,即x 2―y 23 =a 2.(2)设E(x 1,y 1),F(x 2,y 2),过点P(0,a )的直线方程为y =kx +a ,代入x 2―y 23 =a 2得 (3―k 2)x 2―2akx ―4a 2=0 ∴Δ=4a 2k 2+16a 2(3―k 2)>0,即k 2<4. ∴k 2―3<1,∴4k 2―3>4或4k 2―3<0. 而x 1,x 2是方程的两根,∴x 1+x 2=2ak 3―k 2,x 1x 2=―4a 23―k 2. `∴PE ·PF =(x 1,y 1―a )·(x 2,y 2―a )= x 1x 2+kx 1·kx 2=(1+k 2) x 1x 2=―4a 2(1+k 2)3―k 2=4a 2(1+4k 2―3)∈(-∞, 4a 2)∪(20a 2,+∞).故·的取值范围为(-∞,4a 2)∪(20a 2,+∞).(3) 设Q(x 0,y 0) (x 0>0,x 0>0),则x 02―y 023=a 2,即y 02=3(x 02―a 02). 当QH ⊥x 轴时,x 0=2a ,y 0=3a ,∴∠QGH=π4,即∠QHG= 2∠QGH ,故猜想λ=2,使∠QHG=λ∠QGH 总成立.当QH 不垂直x 轴时,tan ∠QHG=―y 0x 0―2a ,tan ∠QGH= y 0x 0+a , ∴tan2∠QGH=2tan ∠QGH 1―tan 2∠QGH = 2y 0x 0+a 1―(y 0x 0+a ) 2= 2y 0(x 0+a )(x 0+a )2―y 0 2= 2y 0(x 0+a )(x 0+a )2―3(x 02―a 02)=―y 0x 0―2a = tan ∠QHG.又2∠QGH 与∠QHG 同在(0,π2)∪(π2,π)内,∴2∠QGH=∠QHG.故存在λ=2,使2∠QGH=∠QHG 恒成立.~。