大学物理竞赛辅导振动与波动
大学物理学振动与波动

波动的定义及特点
01
波动是物质运动的一种形式,它 表示振动的传播过程。波动具有 周期性、传播性和能量传递性。
02
波动的基本要素包括波源、介质 和波动形式。波源是产生波动的 源头,介质是波动传播的媒介, 波动形式可以是横波或纵波。
横波与纵波传播方式比较
横波
质点的振动方向与波的传播方向垂直的波。在横波中,凸起的最高点称为波峰, 凹下的最低点称为波谷。
• 结论:总结实验成果,提出改进意见或展望。
实验报告撰写要求
使用专业术语,避免口语 化表达。
文字通顺,逻辑清晰。
撰写要求
01
03 02
实验报告撰写要求
图表规范,数据准确。
引文规范,注明出处。
THANKS
其他科学技术领域应用
地震学
通过研究地震波在地壳中的传播 特性,了解地球内部结构和地震 活动规律。
机械工程
振动和波动现象在机械系统中广 泛存在,对系统性能有重要影响 ,需要进行振动分析和控制。
量子力学
描述微观粒子运动规律的量子力 学中,波动现象是基本特征之一 ,如电子衍射、物质波等。
06
实验设计与数据分析方法 介绍
纵波
质点的振动方向与波的传播方向在同一直线上的波。在纵波中,质点分布最密集 的地方称为密部,质点分布最稀疏的地方称为疏部。
波速、波长和频率关系
波速(v)
单位时间内波动传播的距离,单位是m/s。波速 与介质性质有关。
频率(f)
单位时间内质点振动的次数,单位是Hz。频率 与波源性质有关。
ABCD
波长(λ)
02
01
03
列出波动方程
根据波动现象的物理规律,列出波动 方程。
大学物理知识点总结(振动及波动)省公开课获奖课件市赛课比赛一等奖课件

相位、相位差和初相位旳求法: 解析法和旋转矢量法。
1、由已知旳初条件求初相位:
①已知初位置旳大小、正负以及初速度旳正负。
[例1]已知某质点振动旳初位置
y0
A 2
且v0
0
。
y A cos(t ) y Acos(t )
3
3
2
1
2
r2 r1
干涉加强: 2k (k 0,1,2,...)
若1 2 r2 r1 k
干涉减弱: (2k 1) (k 0,1,2,...)
若1 2
(2k 1)
2
3)驻波(干涉特例) 能量不传播
波节:振幅为零旳点 波腹:振幅最大旳点
多普勒效应: (以媒质为参照系)
所以y
2cos(πt 2
π3 );
(2)u
T
1,y
2cos[π(t 2
-
x)π3 ]
t(s)
[例2] 一平面简谐波在 t = 0 时刻旳波形图,设此简谐波旳频率
为250Hz,且此时质点P 旳运动方向向下 , 200m 。
求:1)该波旳波动方程;
2)在距O点为100m处质点旳振动方程与振动速度体现式。
动能势能相互转化
简谐振动旳描述
一、描述简谐振动旳物理量
① 振幅A:
A
x02
v02
2
② 角频率 : k
ห้องสมุดไป่ตู้
2
m
T
③ 相位( t + ) 和 初相 :
tg v0 x0
旳拟定!!
④相位差 : (2t 2 ) (1t 1 )
⑤周期 T 和频率 ν : T 2
物理振动与波动教学

振动与波动在音乐中的应用:音乐通过振动与波动产生声音,使人们享受美妙的旋律。
振动与波动在通讯中的应用:无线电波的传输利用了振动与波动的原理,实现了远距离的信息 传递。
振动与波动在医疗领域的应用:超声波诊断技术利用振动与波动的原理,能够无创检测人体内 部结构。
振动与波动在建筑领域的应用:地震工程通过研究振动与波动对建筑的影响,提高建筑的抗震 性能。
波动能量的概念:波动能量是指波动过程中所传 递的能量,包括机械能、电磁能等。
波动能量的传播方式:波动能量的传播方式包括 机械波的传播和电磁波的传播。机械波的传播需 要介质,而电磁波的传播不需要介质。
波动能量的传播速度:波动能量的传播速 度与介质有关。对于机械波,其传播速度 取决于介质的性质;对于电磁波,其传播 速度为光速。
水波:水波是水面的振动现象,水波在传播过程中会遇到各种障碍物,发生反射、折射和干 涉等现象,可以用于水下探测和海洋科学研究。
理论教学:讲解 物理原理、公式 和概念,帮助学 生建立基础知识 体系。
实践教学:通过 实验、演示和互 动,让学生亲身 体验物理现象, 加深对理论知识 的理解。
结合方式:交替 进行理论教学和 实践教学,相互 补充,提高教学 效果。
波动能量的应用:波动能量的应用非常广泛,例 如声波可以用于通信、探测和成像等,电磁波可 以用于无线通信、卫星通信、雷达和遥感等。
波动方程的建立: 基于物理原理和数 学推导
求解方法:分离变 量法、积分变换法 等
实例分析:不同类 型波动方程的求解 过程
实际应用:波动方 程在物理、工程等 领域的应用
振动与波动在机 械工程中的应用: 用于检测机械设 备的振动和位移, 提高设备的稳定 性和可靠性。
振动是一种能量传 递方式
2024年度大学物理振动与波动

ONE KEEP VIEW 大学物理振动与波动目录CATALOGUE•振动基本概念与分类•波动基本概念与传播特性•振动与波动关系探讨•典型振动系统分析•典型波动现象解析•振动与波动在日常生活和工程应用中的实例PART01振动基本概念与分类振动的定义及特点振动的定义振动是指物体或系统在一定位置附近所做的往复运动。
振动的特点周期性、重复性、稳定性。
振动系统分类自由振动系统受到初始扰动后,不再受外界激励而发生的振动。
受迫振动系统在外界周期性激励作用下产生的振动。
自激振动系统通过自身的运动或变化产生的激励而维持的振动。
简谐振动与非简谐振动简谐振动物体在大小跟位移成正比,而方向恒相反的合外力作用下的运动,叫做简谐振动。
非简谐振动不满足简谐振动条件的振动,包括阻尼振动、非线性振动等。
PART02波动基本概念与传播特性1 2 3波动是物质运动的一种形式,表现为振动在介质中的传播。
波动具有周期性,即波动的振动状态会随时间作周期性变化。
波动具有传播性,即振动能量可以在介质中传播,形成波。
波动的定义及特点波动方程与波速公式对于一维简谐波,波动方程可以表示为y=Acos(ωt-kx+φ),其中A为振幅,ω为角频率,k为波数,φ为初相。
波速公式为v=fλ,其中v为波速,f为频率,λ为波长。
此公式表明波速与频率和波长有关。
波动传播过程中的能量传递波动传播过程中伴随着能量的传递,这种能量称为波动能。
对于机械波,波动能包括动能和势能两部分。
质点的振动动能和相邻质点间的相互作用势能随波动传播而传递。
在波动传播过程中,能量密度与振幅的平方成正比。
因此,振幅越大,波动传播的能量也越大。
PART03振动与波动关系探讨振动产生波动条件分析振源条件振源是产生波动的必要条件,振源需具备周期性或准周期性的振动特性。
介质条件波动需要介质来传播,介质可以是固体、液体或气体,不同的介质对波动的传播速度和特性有影响。
初始条件振动的初始条件决定了波动的初始状态,如振幅、频率和相位等。
物理讲座振动与波动PPT课件

超声波 > 20000Hz。狗能听到最高频率50000Hz的
DB X
AC O DB
x=Asinωt
km
第7页/共41页
V=0
X F
AC O DB
F
X
AC O DB V最大
AC X
O DB F
AC O DB
简谐运动的能量
势能最大
动能最大
势能最大
动能和势能也 作周期变化, 但比位移周
x 期快一倍。
A
o
A
简谐运动中动能和势能在发生相互转化,但机械能的总量保持不
位移(x):由平衡位置指向质点所在位置的有向 线段,矢量。
振幅(A):振动物体离开平衡位置的最大距离。
周期(T):完成一次全振动所经历的时间。
频率(f):一秒钟内完成全振动的次数。
单位:赫兹(Hz)。
周期频率和圆
圆频率(ω)与频率关系:ω=2πf 频率都是表
频率与周期关系: T 1
f
征振动快慢 的物理量。
声音,蝙幅能发出且能听到的声音频率高达 120000Hz,此外海豚等也能发出和感受到超声。超 声波的应用:分两类,一类是两种其波长小来探测; 二是利用它的能量。
第34页/共41页
练习1
1.物体做简谐运动的动力学特征:回复力及加速度表达式
为:F= ,a=
,方向总是与位移的方向相反,始终
指向
最新大学物理==振动和波动ppt课件

解(1)先求三个特征量:圆频率 、振幅A、 初相位0
k 0.72 6.0rad/s
m 0.02
A
x02
v
2 0
2
x0 0.05m
由旋转矢量图知0=0
oA
x
所以运动方程为: x 0 .0 5 c o s (6 t ) (S I )
(2)求物体从初位置运动到第一次经过A/2处时的速率; 解(2)x=A/2时,速度方向为x轴负方向
x0=A x
o
v0=0
x0<0 v0>0
x0=0 v0>0
x0>0 v0>0
例1 质量为m的质点和劲度系数为k的弹簧组成 的弹簧谐振子,t = 0时,质点过平衡位置且向正 方向运动。求物体运动到负二分之一振幅处所用 的最短时间。
解:设 t 时刻到达末态,由已知条件画出t = 0 时 刻和t时刻的旋转矢量图。
大学物理==振动和波动
振动形式的多样性
机械振动: 物体位移 x 随时间t 的往复变化。 (弹簧、钟摆、活塞、心脏、脉搏、耳膜、空气振动等)
电磁振动: 电场、磁场等电磁量随t 的往复变化。
(电场 、磁场E 、电流B、电压 I)
V
微观振动: 如晶格点阵上原子的振动。
振动:某一物理量在某一定值附近周期性变化的现象称振动。
t=0时刻
2
v0 0
x A 的旋矢图: 2
又 v0<0,故
0 2 / 3
t=1s时
xA
v= 0
t=0
2 3
-A/2
t=1s x
102
ω 2π 2π/3 4π/3 rad/s
于是 x 2 c o s (4 t / 3 2 / 3) c m
大学物理竞赛辅导振动和波

1000Hz的声波外,还能接收到频率为
Hz
的声波;B除了能收到频率为1000Hz的声波外,还能
接收到频率为
Hz的声波。
多普勒效应
8.飞机在空中以速度u=200m/s作水平飞行,它发出频
率为 n0 2000Hz 的声波,静止在地面上的观察者在飞机 飞越过其上空时,测定飞机发出声波的频率,他在4s
的时间内测出声波的频率由n0 2400Hz 降为n0 1600Hz , 已知声波在空气中的速度v=330m/s,由此可求出飞机
z (a)
z (b)
z (c)
解:两列行波叠加形成驻波时,它们在各波腹处 引起的分振动必同相,而在波节处的必反相,据 此可绘出另一列行波相应时刻的波形图。
z (a)
z (b)
z (c)
7. 两个实验者A和B各自携带频率同为1000Hz的声源,
声波在空气中的传播速度为340m/s。设A静止,B以
速率20m/s朝着A运动,则A除了能收到频率为
p C p
|v|T
T
由归一化条件:
A2 x2
C
C
A2 x2 2 A2 x2
A
C
dx 1 C 2
A 2 A2 x2
p(x) 1
A2 x2
10.一房屋坐落在一条东西向公路的南面距公路100m 的地方,屋内的电视机正接收远处电视台的讯号,讯 号频率为60MHz,方向如图所示。一汽车沿公路自东 向西匀速行驶,使屋内电视机讯号的强度发生起伏变 化。当汽车行经房屋正北面O点的瞬时,屋内电视讯 号的强度起伏为每秒两次,求:汽车的行驶速率。
v 1 d cos dt
d 2
dt
大学物理竞赛辅导振动与波动-精品

2 m
质点每秒通过原点为 1 2次k 。
m
2020/7/23
二、简谐振动的特征量 xA cos(t)
1、振幅 A :质点离开平衡位置的最大距离。
A
x
2 0
v
2 0
2
由振动系统的初始状态决定。
2、角频率(圆频率)ω : 2秒内质点的振动数。
2 2 由振动系统本身的性质决定。
T
对弹簧振子:
k, m
由牛二定律:m d d 2 tx 2 k dx td d x t, d d 2 tx 2 m d d x t m kx 0
为方便计,规定: (或 0 2 )
注:角频率ω就是相位的变化速率。
2020/7/23
4、两个同频率简谐振动的相位差:
x1A 1cos(t1)
x2A 2cos(t2)
它们的相差为:
(t2 ) (t1 )2 1
(也可写成 12) 若 2k(k为)整 ,两质点振动步调相同 (同相)
若 (2k1)(k为)整 ,两质点振动步调相反 (反相)
ω
1、矢量 (A模与振幅等值)以匀角速
度ω(与角频率等值)逆时针旋转。
ωt
A
M (t =0)
2、t
=0时,A 与x
轴正向夹角为
。O
x x0 x
3、t =t 时,A与x 轴正向夹角为(ωt + )。
这样,矢量逆时针匀角速度旋转过程中,其端 点M在x 轴上的投影点坐标为:
x = A cos (ωt + )
0.1%0.05%2 n2
解得: n100
同类型的题:(1989.二.1), (1991.二.12)
2020/7/23
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一质量m为10g的物体悬挂起来。每个弹簧上的拉
力均为5N,如果将物体垂直于图面向外稍微拉动
一下,然后释放,则该物体m振动的频率为___Hz
解:设物体相对图面的垂直位移为x, (1986.二.1)
弹簧相对面的倾角为θ,
物体受弹簧合力(指向图面)为F 则:x=lsinθ, F=6fsinθ≈6fθ
其中l为弹簧长度,f为一根弹簧拉力
若 2 1 0, 质点2 比质点1 相位超前△ 若 2 1 0, 质点2 比质点1 相位滞后△
注1:超前与滞后是相对的。
注2:通常将 限制在≤π。
三、 简谐振动的速度和加速度 都是简谐振动
1、位移: x Acos(t )
2、速度: v dx A sin( t )
dt A cos(t )
vmax
2
A为速度振幅;速度比位移的相位超前
3、
加速度: a
d2 x dt 2
2 Acos(t
)
2
2 Acos(t ) 2 x
a 2 x
amax 2 A 为加速度振幅;加速度与位移反相。
(1) x、v、a 周期均为T。
(2)v比 x 超前π/2, a与 x 反相。
x
(x-t 曲线叫振动曲线)
2
1
t ) cos( 2
2
1
t
当 2 1时, 2- 1 2+ 1
) )
合振动 不是简 谐振动。
x A0(t )cos(t )
A0 (t )
2 A cos( 2
2
1
t)
随t缓变;
cos(t ) cos(2 1 t ) 随t快变。
2
合振动可看作振幅缓变的“简谐振动”。
x1 t
x2 t
经平衡位置时速度最大为: V=ωA。
撤去策动力后,速度仍为V,做自由振动,其圆频
率ω`=2ν0,仍有关系V=ω`A`
∴ωA=ω`A`, A`=ω/ω`A=2A
3、共振
(1) 位移共振
B
[(02
2
f0 )2
4
2
2
]1/ 2
在一定条件下, 振幅出现 极大值,出现剧烈振动的现象。
dB
d
0
①共振频率 : r 02 2 2
静止施放,则质点每秒通过原点的次数为______
解:质点离开其平衡位置位移为x, (1987.二.2)
所受合力为-2kx.由牛顿定律,
其自由振动方程为:
k
k
m
d2 x dt 2
2kx,即
d2 dt
x
2
2k m
x
0
L
L
∴其振动频率为: 1 2k
2 m
质点每秒通过原点为 1 次2k 。
m
二、简谐振动的特征量 x Acos(t )
这样,矢量逆时针匀角速度旋转过程中,其端 点M在x 轴上的投影点坐标为:
x = A cos (ωt + )
恰为x 轴上简谐振动。
4、 旋转矢量法的应用
(1)画图
①利用旋转矢量制 ②已知振动曲线画旋转矢
作振动曲线:
x
x
量在任意时刻的位置:
t
(2)求振动初相
(3)求两个简谐振动的相位差 (4)两个简谐振动的合成问题
dt
d2 x dt 2
2
dx dt
02
x
f0 cos t
(0
k m
,
C 2m
,
f0
F0 ) m
稳态解: x=Bcos( t+)
特点: 稳态时的受迫振动按简谐振动的规律变化.
(1)频率: 等于策动力的频率
(2)振幅:
B
[(02
f0
2 )2
4
2 2 ]1/ 2
(3)初相:
tg
2 02 2
注:角频率ω就是相位的变化速率。
4、两个同频率简谐振动的相位差:
x1 cos(t 1 ) x2 A2 cos(t 2 )
它们的相差为:
(t 2 ) (t 1 ) 2 1
(也可写成 1 2 ) 若 2k (k为整), 两质点振动步调相同 (同相)
若 (2k 1) (k为整), 两质点振动步调相反 (反相)
l
mgl
动力学方程:d2 x
dt 2
2 x
d2
dt 2
2
运动方程:x Acos(t ) Acos(t )
k/m
g/l
注1:弹簧振子水平放置, 注2: 竖直放置或放在固定的光滑
1
1
k串 i ki
斜面上都可以做简谐振动。
k并 ki
i
例1. 如图,用六根拉伸的长度均为10cm的弹簧将
2
x
β>ω0
无往复性, 经较长时间单调返回平衡位置。
β=ω0
t
③β = ω0(临界阻尼状态如放在甘油中)
x (C1 C2t )e t 无往复性,能很快地返回平衡位置。
例4.一个弹簧振子的质量为1.0kg,自由振动的本
征频率为2Hz ,当存在某个大小与振子速率成正比
的阻尼力时,恰好处于临界阻尼振动状态,则弹簧
由m
d2 x dt 2
F,
得ml
d2
dt 2
6f
0
l
f 阻碍θ的增大,∴f < 0
x
振动频率:v 1
6 f
1
6 5 27.6Hz
2 2 ml 2 0.01 0.1
例2.质量为m的质点在水平光滑面上,两侧各接一
弹性系数为k的弹簧,如图,弹簧另一端被固定于壁
上,L为两弹簧自然长度,如使m向右有一小位移后,
例6.固有频率为ν0的弹簧振子,在阻尼很小的情况 下,受到频率为2ν0的余弦策动力作用,作受迫振
动并达到稳定状态,振幅为A。若在振子经平衡位
置时撤去策动力,则自由振动的振幅A`与A的关系
是____A_`_=_2_A__.
(1996.一.2)
解:稳定振动时振子频率即策动力频率,圆频率为
ω=2(2ν0),
x = x1+ x2 =A cos( t+ )
A A12 A22 2A1A2 cos
arctan A1 sin1 A2 sin2 A1 cos 1 A2 cos 2
两种特殊情况:
y
A
ω
A2
A2 sin 2
2
A1
o
1
A1 cos1
A1 sin 1
x A2 cos2
x
(1)2 1 2k k 0,1,2, A A1 A2 , 若A1=A2,A = 2A1,称为干涉相长。
= 3/4
=
= 5/4
= 3/2 = 7/4
x2 A12
y2 A22
x 2
A1
y A2
cos(2 1 ) sin2(2 1)
x2
Ax2
y2 Ay2
2 xy Ax Ay
cos
x y
sin2 x y
设振幅Ax=Ay,位相差
x
y
2k
1
2
,k
(2)阻尼振动的运动学特征
①β< ω0(欠阻尼状态,如放在水中)
x Ae t cos( 't ), ' 02 2 0 x
振幅按指数规律衰减的振动,不是周期
运动,是往复运动。
t
②β > ω0 (过阻尼状态,如放在沥青中)
x C e C e ( 2 02 )t 1
( 2 02 )t
的劲度系数K= ————N/m,阻尼力大小与速率
的比例系数 = ————kg/s。 (十七届.一.4)
解:已知m=1.0kg,ν0=2Hz,
临界阻尼振动条件 β ω0
ω02
K m
K mω02 m(2πv0 )2 1.0 (2π 2)2 158(N m)
γ
K
m 2β 2ω0 2 m
γ 2 Km 2 16π2 1.0 8π 25.1(kg s)
m
,
02
k ,有 m
&x& 2 x& 02 x
0
形成低阻尼振动的条件为: 2 02
( )2 k
2m m
2 mk
2、 受迫振动 :在外来策动力作用下的振动
系统受力: 弹性力 -kx 阻尼力 C dx
dt
周期性策动力 F=F0cost
振动方程: m d2 x kx C dx F
dt 2
xmax
A
t
v
vmax A
t
a
amax 2 A
t
四、 简谐振动的旋转矢量表示法
1、矢量 (A模x 与 振A幅co等s(值)t以匀角) 速
度ω(与角频率等值)逆时针旋转。
M(t) ω
A
ωt
A
M (t =0)
2、t
=0时,A与x
轴正向夹角为
。O
x x0 x
3、t =t 时,A与x 轴正向夹角为(ωt + )。
x2 A12
y2 A22
2
x A1
y A2
cos(2
1 ) sin2(2
1)
(1)合运动一般是在 2A1 ( x向 )、2A2 ( y向 ) 范围内的 一个椭圆;
(2)椭圆的性质(方位、长短
轴、左右旋 )在 A1 、A2确定之
后, 主要决定于 =2-1。
= 0
= /4
.P· Q
= /2
1、振幅 A :质点离开平衡位置的最大距离。
A
x02
v02
2