电阻炉温度控制系统设计
基于单片机的电阻炉温度控制系统设计

基于单片机的电阻炉温度控制系统设计一、引言电阻炉是一种广泛应用于工业生产中的加热设备,其温度控制的准确性对于工艺过程的稳定和产品质量的保证至关重要。
本文将基于单片机设计一个电阻炉温度控制系统,通过采集温度传感器的信号,用单片机控制加热器的工作状态,实现对电阻炉温度的精确控制。
二、系统结构设计本系统由四个模块组成:温度采集模块、温度控制模块、显示模块和控制模块。
1.温度采集模块:使用一个高精度的温度传感器,如PT100,将电阻炉内部的温度转化为电压信号。
该信号经过模拟转数字转换器(ADC)转换为数字信号,传输给单片机。
2.温度控制模块:根据温度采集模块传输的信号,单片机通过PID算法计算出控制值,并输出PWM信号控制加热器的工作状态。
PID算法可根据实际情况进行参数调整,以达到系统稳定的控制效果。
3.显示模块:采用数码管或液晶显示器显示当前电阻炉的温度值,方便操作员实时监测电阻炉的运行状态。
4.控制模块:可以通过按钮或者触摸屏等方式进行设定和调整控制参数,例如设定温度范围、PID参数调节等。
三、系统工作原理1.系统初始化:单片机启动后,进行相应的外设初始化和参数设定,包括温度采集模块的配置、PID参数的设定、显示模块的显示等。
2.温度采集与转换:通过温度传感器采集电阻炉内部的温度信号,将其转化为模拟电压信号。
利用ADC将模拟信号转换为数字信号,并传输给单片机进行处理。
3.PID算法计算:单片机根据采集到的温度值,通过PID算法计算出控制值。
PID控制算法通常包括比例系数(P)、积分系数(I)和微分系数(D)三个参数的调整,根据实际情况进行调节以达到控制精度和稳定性要求。
4.PWM输出控制:根据PID算法计算得到的控制值,单片机输出对应的PWM信号。
该信号通过驱动电路控制加热器的工作状态,调整和维持电阻炉的温度。
5.温度显示:单片机将当前的温度值通过显示模块进行显示,使操作员能够实时监测到电阻炉的温度。
计算机控制技术课程设计-电阻炉温度控制系统设计

合肥工业大学《计算机控制技术》课程设计——电阻炉温度控制系统设计学院专业姓名学号_______ ________ _完成时间摘要:电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。
间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件,电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。
直接加热式电阻炉,是将电源直接接在所需加热的材料上,让强大的电流直接流过所需加热的材料,使材料本身发热从而达到加热的效果。
工业电阻炉,大部分采用间接加热式,只有一小部分采用直接加热式。
由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布均匀、环保等优点,应用十分广泛.关键词:炉温控制;高效率;加热一、总体方案设计本次课程设计主要就是使用计算机以及相应的部件组成电阻炉炉温的自动控制系统,从而使系统达到工艺要求的性能指标。
1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。
在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。
2、工艺要求及要求实现的基本功能本系统中所选用的加热炉为间接加热式电阻炉,控制要求为采用一台主机控制8个同样规格的电阻炉温度;电炉额定功率为20 kW;)恒温正常工作温度为1000℃,控温精度为±1%;电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性;具有温度、曲线自动显示和打印功能,显示精度为±1℃;具有报警、参数设定、温度曲线修改设置等功能。
3、控制系统整体设计电阻炉温度计算机控制系统主要由主机、温度检测装置、A/D转换器、执行机构及辅助电路组成.系统中主机可以选用工业控制计算机、单片微型计算机或可编程序控制器中的一种作为控制器,再根据系统控制要求,选择一种合理的控制算法对电阻炉温度进行控制。
温度控制系统设计-课程设计

电阻炉温度控制系统1系统的描述与分析1.1系统的介绍该系统的被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。
可控硅控制器输入为0~5伏时对应电炉温度0~500℃,温度传感器测量值对应也为0~5伏,对象的特性为带有纯滞后环节的一阶惯性系统,这里惯性时间常数取T1=30秒,滞后时间常数取τ=10秒。
该系统利用单片机可以方便地实现对PID参数的选择与设定,实现工业过程中PID控制。
它采用温度传感器热电偶将检测到的实际炉温进行A/D转换,再送入计算机中,与设定值进行比较,得出偏差。
对此偏差按PID规律进行调整,得出对应的控制量来控制驱动电路,调节电炉的加热功率,从而实现对炉温的控制。
利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID控制和键盘终端处理(各参数数值的修正)及显示。
在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长,否则会使干扰无法及时消除,使调节品质下降。
1.2技术指标设计一个基于闭环直接数字控制算法的电阻炉温度控制系统具体化技术指标如下:1.电阻炉温度控制在0~500℃;2. 加热过程中恒温控制,误差为±2℃;3. LED实时显示系统温度,用键盘输入温度,精度为1℃;4. 采用直接数字控制算法,要求误差小,平稳性好;5. 温度超出预置温度±5℃时发出报警。
2方案的比较和确定方案一系统采用8031作为系统的微处理器。
温度信号由热电偶检测后转换为电信号经过预处理(放大)送到A/D转换器,转换后的数字信号再送到8031内部进行判断或计算。
从而输出的控制信号来控制锅炉是否加热。
但对于8031来说,其内部只有128个字节的RAM,没有程序存储器,并且系统的程序很多,要完成键盘、显示等功能就必须对8031进行存储器扩展和I/O口扩展,并且需要容量较大的程序存储器,外扩时占用的I/O口较多,使系统的设计复杂化。
电阻炉温度控制系统的设计

电阻炉温度控制系统的设计在许多工业生产过程中,电阻炉被广泛应用于各种材料的加热和熔炼。
为了确保产品质量和工艺稳定性,电阻炉温度控制系统应满足以下需求:控制精度高:温度波动范围应在±1℃以内,以确保工艺稳定性和产品的一致性。
响应时间快:系统应能迅速跟踪设定温度,减小加热过程的时间误差,提高生产效率。
安全可靠:系统应具备过载保护、短路保护、过热保护等安全措施,确保设备和人身安全。
可扩展性:系统应便于扩展和升级,以适应不同工艺需求和技术发展。
电阻炉温度控制系统的电路设计是整个系统的核心部分。
加热器功率控制、温度传感器选择和电路保护等关键环节直接关系到系统的性能和稳定性。
以下是电路设计的重点:加热器功率控制:一般采用PID控制器来实现加热器功率的调节。
PID 控制器可以根据温度误差来自动调节加热器的功率,减小温度波动。
温度传感器选择:常用的温度传感器有热电偶和红外测温仪。
选择合适的传感器对提高系统的测量精度至关重要。
电路保护:为防止系统故障对设备和人身造成伤害,电路应设计多种保护措施。
例如,加热器应配备熔断器、过载保护器和短路保护器等。
电阻炉温度控制系统的软件设计是实现整个系统智能化的关键。
软件应包括输入输出端口设置、算法实现等关键模块。
以下是软件设计的要点:输入输出端口设置:软件应设置必要的输入输出端口,以便于用户对系统进行控制和监视。
例如,软件应支持通过界面设置加热器的启动/停止、温度设定值等。
算法实现:系统软件应实现高效的温度控制算法,如PID控制算法,以实现精确的温度控制。
算法应具有自适应性,能够根据环境条件和材料属性等变化进行自我调整,提高控制效果。
在完成电阻炉温度控制系统的设计和调试后,需要对系统进行严格的测试与结果验证,以确保系统的性能和稳定性达到预期要求。
测试应包括以下步骤:测试环境搭建:搭建测试平台,选择合适的电阻炉、温度传感器、控制系统等设备进行联调测试。
空载测试:在无负载的情况下,测试系统的加热速度、稳定性和精度等指标。
电阻炉温度控制系统

电阻炉温度控制系统1. 确定总体方案在某煤气/焦碳生产企业中,为了把握工艺规律和控制参数,按比例制作了一台模拟炼焦炉,其中的煤炭采用电阻丝进行加热。
要求控制电阻炉中A点的温度按预定的规律变化,同时监测B点的温度,一旦B点温度超过允许值,就应该发出报警信息、并停止加热。
根据设计任务的要求,采用8031单片机系统组成的数字控制器代替常规模拟调节器。
整个系统在规定的采样时刻经过A/D转换采集由温度传感器反馈回来的温度反馈测量值,并和给定值进行比较,将经过控制运算后的控制量输出给执行元件控制电阻丝的加热过程。
此外,系统还应实现人机接口功能。
系统总体框图如图1所示。
图1 模拟炼焦炉温度控制系统总体框图2. 系统硬件设计按前面的总体设计方案,该系统硬件的设计包括以下几个部分。
⑴人机接口电路本系统允许用户根据需要随时改变系统的工作状态和控制参数,为此设置了4位LED显示和相应的操作键盘,并由专用控制芯片8279实现与CPU的接口。
采用8279后,可以节省CPU用于查询键盘输入和管理显示输出的时间,降低了对CPU处理速度的要求,同时也减少了软件工作量。
⑵温度测量电路热电偶用来检测炉温,将温度值转换为毫伏级的电压信号。
为便于信号远距离传送,采用温度变送器,把热电偶输出信号转换为4~20毫安的电流信号,在接收端再经I/V变换使之变成适于A/D转换的电压信号。
在系统中,采用多路复用方式对两路热电偶信号、冷端补偿信号和标准电压信号进行A/D转换。
系统运行过程中,定期对标准电压进行采样,以修正A/D转换器的灵敏度、保证测控精度。
为提高系统抗干扰能力,在多路转换开关的控制电路A/D转换电路的数字部分中还采用了光电隔离措施。
⑶温度控制电路电阻丝由过零触发型的双向可控硅整流电路驱动,通过调节加热阻丝上的平均电压来控制加热功率,最终达到控制炉温的目的,其原理见图2。
MOC3021是可控硅型光电隔离器件,它只能触发小功率可控硅。
因此,本系统中通过MOC3021控制双向可控硅BCR1,再由BCR1控制主电路的双向可控硅BCR2。
微机控制课程设计--电阻炉温度控制系统设计

微机控制课程设计——电阻炉温度控制系统设计班级:学号:姓名:完成日期:2013年5月目录一.课程设计目的 .......................................................................................... 二.课程设计任务 .......................................................................................... 三.课程设计要求 ..........................................................................................四. 系统总体设计 .........................................................................................五.硬件电路设计 ..........................................................................................六.系统软件设计 ..........................................................................................七. 设计总结…………………………………………………………………八. 参考文献…………………………………………………………………九. 附录………………………………………………………………………一.课程设计目的:大学本科学生动手能力的培养和提高是大学本科教育的一个重要内容。
如何让学生在学好基础知识的同时,迅速掌握应用技术,实验与课程设计环节起着非常重要的作用。
基于单片机的电阻炉温度控制系统

基于单片机的电阻炉温度控制系统基于单片机的电阻炉温度控制系统是一种应用于工业领域的温度控制系统,它能够实时监测电阻炉的温度,并根据设定的温度范围进行自动控制,以保持电阻炉的温度稳定在设定值附近。
本文将详细介绍该系统的设计原理、硬件设计和软件设计等方面。
1.设计原理电阻炉温度控制系统的基本原理是通过采集电阻炉的温度信号,然后与设定温度进行比较,最后通过控制电阻炉的加热元件来实现温度的控制。
系统的主要部件包括温度传感器、模拟信号处理电路、ADC转换模块、单片机、继电器等。
2.硬件设计硬件设计主要包括电路原理图设计和PCB设计,其中电路原理图设计包括电源部分、传感器接口部分、显示部分、通信接口部分和控制部分。
PCB设计是将电路原理图转化为PCB布局和制作过程。
3.软件设计软件设计是整个系统的核心部分,它主要包括单片机程序设计和人机界面设计。
单片机程序设计主要包括温度采集、温度比较、控制算法和输出控制等功能代码的编写。
人机界面设计是通过LCD显示屏、按键和喇叭等组件来与用户进行交互,包括温度设定、温度显示和报警等功能。
4.系统调试和优化系统调试是在硬件和软件设计完成后进行的一系列测试和优化工作,包括电路板的组装和连接、功能的测试和调试等。
对于系统的稳定性和准确性进行优化和改善,如增加滤波电路来提高温度信号的稳定性、使用PID控制算法来提高温度控制的精度等。
5.系统应用该系统可以广泛应用于电子厂、化工厂、冶金厂等工业领域,用于实现电阻炉的精确温度控制。
通过控制电阻炉的温度,可以保证产品质量和生产效率,避免过热或过冷对生产过程的影响。
总结:基于单片机的电阻炉温度控制系统是一种应用广泛的温度控制系统,通过实时监测电阻炉的温度,并根据设定的温度范围进行自动控制,可以稳定地保持电阻炉的温度在设定值附近。
该系统的设计原理、硬件设计和软件设计都有较为详细的介绍和说明,为实现电阻炉的精确温度控制提供了可行的方案。
如有兴趣,欢迎了解。
电阻炉的温度控制系统设计(课程设计)

、电阻炉的温度控制系统设计摘要电阻炉在冶金工业中的运用相当广泛,其温度参数在生产过程中的自动控制系统也随着微机单片机可控硅技术在工业控制领域的推广、应用,正朝着高精度、高稳定性、高智能化的方向发展。
电阻加热炉是典型的工业过程控制对象。
其温度控制具有升温单向性、大惯性、大滞后、时变性等特点,且其升温、保温是依靠电阻丝加热,降温则是依靠环境自然冷却。
温度是工业对象中主要的被控参数之一。
尤其是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。
由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。
但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。
但对于电阻加热炉来说,当其温度一旦超调就无法用控制手段使其降温,因而很难用数学方法建立精确模型和确定参数。
而传统PID控制是一种建立在经典控制理论基础上的控制策略,其设计依赖于被控对象的数学模型,因此对于加热炉这类控制对象采用传统PID 的控制方案很难达到理想的控制效果。
为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。
因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。
在电阻炉温度控制系统的设计中,应尽量考虑到如何有效地避免各种干扰因素而采用一个较好的控制方案,选择合适芯片及控制算法是非常有必要的本设计要用单片机设计一个电阻炉温度控制系统。
~关键词:恒温;热处理;控温系统…Design for Temperature Control System of Resistance FurnaceAbstractThe resistance furnace in metallurgical industry is widely application, its temperature parameters in the production process of automatic control system with single-chip microcomputer control technology in the field of industrial silicon, the popularization and application in high precision, high stability, high intelligent direction. Resistance furnace is typical of industrial process control object. The temperature control with temperature mono-direction and large inertia, the lag and time-varying characteristics, such as temperature, heat preservation and heat resistance wire depend on environment, cooling is natural cooling.Temperature is the main objects of accused of parameters. Especially in metallurgy, chemical, machinery, widely used in various industries of heating furnace, heat treatment furnace, reactors. Because of the different kinds of heating method is adopted, and the fuel is not identical also, such as coal gas, natural gas etc. But control system dynamic characteristics of itself, all belong to a first-order lagging pure, in the same basic control algorithm, PID control or other pure lag compensation algorithm. But for resistance furnace, when the temperature once overshoot cannot use control means that the cooling, so it is difficult to use mathematical method to establish precise model and parameters. While the traditional PID control is an established in classical control theory, the control strategy based on its design depend on mathematical model of the controlled objects, so this kind of control for furnace adopts the traditional PID control object to achieve the ideal control scheme.In order to guarantee the normal production process, improve product safely quantity and quality and to reduce the labor intensity, energy saving, with all kinds of electric heating requirements under certain conditions, not with remains constant voltage fluctuations or furnace changes, or some objects according to the technical requirement of electric furnace temperature or a designated in accordance with the law and heat changes, etc.Therefore, in industrial and agricultural production and scientificexperiments to constantly measuring temperature will not only, and to control System.In the resistance furnace temperature control system design, should try to consider how to effectively avoid distractions and USES a better control scheme, select the appropriate chip and control algorithm is necessary to the design with a single-chip microcomputer temperature control system of resistance furnace.\Keywords: temperature; Heat treatment; Temperature control system目录摘要 (1)Abstract (2)一、总体方案设计 (4)1、设计内容及要求 (4)—2、工艺要求 (4)3、要求实现的系统基本功能 (5)4、对象分析 (5)5、系统功能设计 (5)二、硬件的设计和实现 (5)1、计算机机型 (5)2、设计支持计算机工作的外围电路 (5)3、设计输入输出通道 (8)(4、元器件的选择 (10)三、数字控制器的设计 (7)1、控制算法 (10)2、计算过程 (11)四、软件设计 (12)1、系统程序流程图 (12)2、程序清单 (15)五、完整的系统电路图 (27)《六、系统调试 (27)七、设计总结 (27)八、参考文献 (27)附录 (28)一、总体方案设计!设计任务:用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计2014 年1 月10 日课程设计任务书学生姓名:柳元辉专业班级:自动化1005指导教师:刘小珠工作单位:自动化学院题目:电阻炉温度控制系统设计初始条件:1.课程设计辅导资料:“过程控制系统和应用”、“过程控制系统与仪表”、“过程控制仪表及控制系统”、“过程控制系统”等;2.先修课程:仪表与过程控制系统等。
3.主要涉及的知识点:过程控制仪表、控制系统、被控过程等要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.课程设计时间:1.5周;2.课程设计内容:根据指导老师给定的题目,按规定选择其中1套完成;本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目所涉及的生产工艺和控制原理进行介绍,针对具体设计选择相应的控制参数、被控参数以及过程检测控制仪表,并画出控制流程图及控制系统方框图。
3.课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括:①目录;②摘要;③生产工艺和控制原理介绍;④控制参数和被控参数选择;⑤控制仪表及技术参数;⑥控制流程图及控制系统方框图;⑦总结与展望;(设计过程的总结,还有没有改进和完善的地方);⑧课程设计的心得体会(至少500字);⑨参考文献(不少于5篇);⑩其它必要内容等。
时间安排:指导教师签名:2013 年12月27日系主任(或责任教师)签名:年月日目录摘要 (1)1 生产工艺和控制原理介绍 (2)1.1 生产工艺. (2)1.2 控制原理. (3)2 控制方案设计 (5)2.1 被控参数选择. (5)2.2 控制变量选择. (5)2.3 建立数学模型. (6)2.4 调节器控制规律. (7)2.5 仪表选择. (9)2.6 控制系统框图. (9)3 总结与展望 (10)4 心得体会 (11)参考文献 (12)摘要自动化技术在工业、农业、科技以及人们的日常生活中发挥着重要的作用,而过程控制通常是指连续生产的自动控制,是自动化技术最重要的组成部分。
过程控制系统与仪表在各个领域尤其是工业领域中有着及其广泛的应用。
其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、纺织等许多领域。
过程控制的主要任务是对生产过程的有关参数,如温度、压力等进行控制,使其保持恒定或按一定规律变化。
在保证产品质量和生产安全的前提下,使连续生产过程自动地进行下去。
温度控制是控制系统中最为常见的控制类型之一。
电阻炉在国民经济中有着广泛的应用,而大功率的电阻炉则应用在各种工业生产过程中。
然而,大多数电阻炉存在着各种干扰因素,将会给工业生产带来极大的不便。
因此,在电阻炉温度控制系统的设计中,应尽量考虑到如何有效地避免各种干扰因素而采用一个较好的控制方案,选择合适的芯片及控制算法是非常有必要的。
本设计要求用单片机设计一个能在多种领域得到广泛应用的电阻炉温度控制系统。
关键字:过程控制、有关参数、温度控制、电阻炉电阻炉温度控制系统设计1生产工艺和控制原理介绍1.1生产工艺电阻炉是工农业生产中常用的电加热设备,广泛应用于冶金、机械、建材等行业,而大功率的电阻炉则应用在各种工业生产过程中。
然而,大多数电阻炉存在着各种干扰因素,将会给工业生产带来极大的不便。
因此,在电阻炉温度控制系统的设计中,应尽量考虑到如何有效地避免各种干扰因素而采用一个较好的控制方案,选择合适的芯片及控制算法是非常有必要的。
电阻炉是利用电流通过电热体元件将电能转化为热能来加热或者熔化工件和物料的热加工设备。
电阻炉由炉体、电气控制系统和辅助系统组成。
炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。
电气控制系统包括电子线路、微机控制、仪表显示及电气部件等。
辅助系统通常指传动系统、真空系统、冷却系统等,虽炉种的不同而已。
但电阻炉的主要参数由额定电压、额定功率、额定温度、工作空间尺寸。
生产率、空炉损耗功率、空炉升温时间、炉温控制精度及炉温均匀性等。
.电阻炉的热效率高。
电阻炉不需要燃烧气体,没有因排除燃烧气体而产生的废气造成的热损失。
炉膛室内热强度高,能达到较高的温度,因此能是高熔点金属得熔化。
除此之外,能满足工件在各种工艺樊为中的要求,并使之成为可控。
能用质量流量计对所控气氛进行检测。
由保护气氛来保证炉内气氛的清洁。
比如保护气氛改为真空,可以将炉内的残余气体抽走,保护气氛改为氢气,各种可随之运出。
高纯度的氢气,气含氧量可小于O.lppm,气露点小于—70°C。
能够满足工作空间温度场均匀分布和恒温的精度要求。
比如在48小时内温度漂移±).5 C。
整个工艺过程能用微机和智能化程序控制。
有利于连锁保护,报警、防爆、数显、曲线记录。
操作简单,寿命长,安全有保障。
场所利用率大,噪声较稳定等特点。
在工业生产中,温度是极为普遍又极为重要的热工参数之一,为了保证生产过程正常安全的运行,提高产品的质量,减轻工人的劳动强度,同时节约能源,须要求加热用的各种电炉在一定的条件下保持恒温,不能随电压的波动而变化•或者有的电炉根据工艺要求按照某个指定的升温或保温律而变化,且超调量小或者无超调量,稳定性好,不振荡。
根据工艺的要求不同,大体上可以归纳为以下几个过程:(1)自由升温段,这一工艺过程要求执行元件向电阻炉输送最大能量,使加热炉全速升温到某一值,升温的时间和速度没有具体要求,这时单片机不需要进行控制工作,只需检测炉温。
(2)恒温段,这一工艺过程是温度控制的主要工艺过程,它要求控制系统保证炉温在各种干扰下能稳定在允许范围内。
(3)自由降温段,这一工艺过程中执行元件不再向炉子输送能量,让其自然冷却到某一温度,此时单片机只需监测炉温即可,有时甚至无须做任何工作。
电阻炉温度控制工艺曲线如图1-1所示。
图1-1 电阻炉温度控制的工艺曲线1.2控制原理电阻炉温度控制系统是闭合的反馈系统。
温控系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图1-2所示。
被控制对象常常是大容量、大惯性的电热炉温度对象,是典型的多阶容积迟后特性, 在工程上往往近似为包含有纯滞后的二阶容积迟后。
电阻炉按热量产生的方法不同,可分为间接加热式和直接加热式二大类。
间 接加热式电阻炉、就是在炉子内部有专用的电阻材料做的发热元件。
电流通过加 热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。
直接加热式电阻炉,电源直接接在所需加热的材料上,使强大的电流直接流过所 需加热的材料而使材料自己发热达到加热效果。
工业电阻炉,大部分是采用间接 加热式的,只有一部分因加热工艺人的特殊需要而采用直接加热式。
按传热方式, 电阻炉分为辐射式电阻炉和对流式电阻炉。
辐射式电阻炉以辐射传热为主,对流 传热作用较小;对流式电阻炉以对流传热为主,通常称为空气循环电阻炉,靠热 空气进行加热,炉温多低于650C 。
电阻炉温度控制往往不是直接控制系统的温度,直接控制系统温度也是不太 可能实现的,经常是直接控制电阻炉的电压或电流从而控制电阻炉的温度, 进而控制电阻的产热,通过电阻的产热来控制温度。
随着生产过程中被加热物料的变 化,电阻炉内的温度必然变化,所以必须经温度检测与变送装置及时测得温度, 以便温度控制器作用于执行结构从而使电阻炉内的温度满足需要。
2 控制方案设计要进行控制系统设计必须先明确过程控制系统方案设计的基本要求, 生产过 程对过程控制系统的要求可简要归纳为安全性、 稳定性和经济性三个方面。
控制 系统的技术要求与性能指标一般由生产过程设计制造单位或用户提出, 这些技术 要求与性能指标是控制系统设计的基本依据, 设计者必须全面、 深入的了解与掌 握。
技术要求与性能指标必须科学合理、 切合实际。
其次要知道过程控制系统设 计的主要内容即包括控制系统方案设计、 工程设计、 工程安装和仪表调校、 调节 器参数整定等四个主要内容。
其中控制方案设计是控制系统设计的核心。
2.1 被控参数选择给定值图1-2系统控制结构框图被控参数又称作被控变量,是指生产过程中希望借助自动控制保持恒定值(或按一定规律变化)的变量。
合理选择被控变量,关系到生产工艺能否达到稳定操作、保证质量、保证安全等目的。
被控变量的选择依据:(1)根据生产工艺的要求,找出影响生产的关键变量作为被控变量。
(2)当不能用直接工艺参数作为被控变量时,应选择与直接工艺参数有单值函数关系的间接工艺参数作为被控变量。
(3)被控变量必须有足够大的灵敏度且容易被测量。
(4)选择被控变量时,必须考虑工艺合理性。
显然对于电阻炉温度控制系统被控参数基本上都是电阻炉内的温度值,控制的目标就是使电阻炉内的温度恒定在某个允许的范围内或者是按某种规律变化。
2.2 控制变量选择控制变量又称操纵变量,把用来克服干扰对被控变量的影响,实现控制作用的变量称为控制变量或操纵变量。
最常见的操纵变量是介质的流量,也有以转速、电压等作为操纵变量的。
被控变量选定以后,应对工艺进行分析,找出所有影响被控变量的因素。
在这些变量中,有些是可控的,有些是不可控的。
在诸多影响被控变量的因素中选择一个对被控变量影响显著且便于控制的变量,作为控制变量;其它未被选中的因素则视为系统的干扰。
控制变量的选择依据:(1)控制通道应当放大系数大、时间常数小、纯滞后越小越好。
(2)控制变量应是工艺上允许控制的变量,并且要考虑工艺的合理性与生产的经济性。
对于各种不同类型的电阻炉温度控制系统,影响被控量即电阻炉内的温度的因素是多种多样的,要从所有允许控制的变量中尽可能地选择一个对被控参数影响显著、控制性能好的输入变量作为控制变量。
显然对于几乎所有的电阻炉而言,理想的被控变量是电阻炉的功率。
而影响功率的两个量就是电压和电流,通过控制电压或电流或控制两者来调控被控量。
2.3 建立数学模型被控过程数学模型是控制系统分析与设计的基础,建立数学模型是过程控制系统设计的重要一步。
控制变量与被控变量确定以后,则过程的输入与输出关系就确定了,就可以利用各种已知的方法建立被控过程的数学模型。
常用的建立对象数学模型的方法有以下几种:(1)机理法建模通过分析生产过程的内部机理,找出变量之间的关系。
如物料平衡方程、能量平衡方程、化学反应定律、电路基本定律等,从而导出对象的数学模型。
机理法建模的首要条件是必须对生产过程的机理有充分的认识,并且能够比较准确的用数学语言加以描述。
机理法建模需要充分而可靠的先验知识,如果先验知识不充分,就无法得到正确的数学模型。
(2)测试法建模根据工业过程中某因果变量的实测数据,进行数学处理后得到的数学模型。
测定对象特性的实验方法主要有三种:时域法——输入阶跃或方波信号,测对象的飞升曲线或方波响应曲线;频域法——输入正弦波或近似正弦波,测对象的频率特性;统计相关法——输入随机噪音信号,测对象参数的变化。