抛物线与几何图形
高中数学选修2抛物线教案

高中数学选修2 抛物线教案一、教学内容本节课选自高中数学选修2第三章《圆锥曲线与方程》中的抛物线部分。
具体内容包括:抛物线的定义、标准方程、图形及性质;抛物线焦点、准线、对称轴等相关概念;抛物线在实际问题中的应用。
二、教学目标1. 理解并掌握抛物线的定义、标准方程及图形性质。
2. 学会利用抛物线的性质解决实际问题。
3. 培养学生的几何想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程及图形性质。
难点:抛物线焦点、准线、对称轴等概念的理解及其应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中的抛物线实例,如篮球投篮、卫星通信等,引导学生发现抛物线的特点。
2. 知识讲解(10分钟)(1)抛物线的定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。
(2)抛物线的标准方程:y^2=2px、x^2=2py。
(3)抛物线的图形性质:开口方向、对称轴、顶点、焦点、准线等。
3. 例题讲解(15分钟)(1)求解抛物线y^2=8x的焦点和准线。
(2)已知抛物线x^2=12y,求顶点坐标、对称轴及焦点坐标。
4. 随堂练习(5分钟)(1)求抛物线y^2=4x的焦点和准线。
(2)已知抛物线x^2=6y,求顶点坐标、对称轴及焦点坐标。
5. 课堂小结(5分钟)六、板书设计1. 定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。
2. 标准方程:y^2=2px、x^2=2py。
3. 图形性质:开口方向、对称轴、顶点、焦点、准线。
4. 例题及解答。
七、作业设计1. 作业题目:(1)求抛物线x^2=16y的焦点和准线。
(2)已知抛物线y^2=10x,求顶点坐标、对称轴及焦点坐标。
2. 答案:八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等方式,使学生掌握了抛物线的定义、标准方程、图形性质等基本概念。
初中教学 数学说课 抛物线的图像及其性质

《二次函数y=ax2的图像及其性质》说课稿广水市李店初级中学黄欣一、说教材我说课的内容为《二次函数y=ax2的图像及其性质》,是人教版九年级数学下册第二十六章的第一节的第二课时。
本章由三个部分构成.1.二次函数的图象与性质.2.二次函数与一元二次方程之间的关系.3.二次函数的实际应用.知识方面,它是在一次函数,反比例函数的基础上,对函数认识的完善与提高;也是对方程的理解的补充同时,也是以后学习初等函数的基础.本章配有丰富的实际应用实例,让学生充分感受到数学的应用价值与实际意义,激发学生学习数学的热情,让他们在应用中得到锻炼,各方面能力得到提高.我所说的《二次函数y=ax2的图像及其性质》是本章的抛物线图像基础和模型,对下一步认知抛物线的各种形式是一种引导和入门。
二、说教学目标。
1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质。
(根据大纲和课标要求:学生对函数图像必须达到会识别、会画、掌握其图像性质,并加以应用。
)2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.(数形结合的思想是学习数学的重要思想和方法,是解决动态几何、图形变换的有效手段。
)3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.(数学的乐趣在于掌握其理论依据后,去解决生活生产中的具体问题。
)三、说教材的重点、难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质。
2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.四、说教法1、预习自学。
在讲授新课前,先用多媒体揭示本节课的教学目标,然后学生根据老师的教学目标有计划的自学。
2、合作交流共同探究。
这样不但在教学突出了学生的主体地位,而且可以针对学生感兴趣的问题进行研究,使教学的实际意义更大。
3、数形结合。
学生根据所画的图像总结规律,有利于函数图像的更好的掌握。
二次函数中几何图形周长的最值问题题型及解法

4.两个动点分别在两条相交直线上求三角形周长的最小值
“将军饮马”模型——两次对称(一定点两动点)
如图:一位将军骑马从驻地A出发,先牵马去草地OM 吃草,再牵马去河边ON喝水, 最后回到驻地A,
问:这位将军怎样走路程最短?
A1 P
做法:
1.作A点关于直线OM的对称点对称点A1
2.作A点关于直线OM的对称点对称点A2 3此.链时接的A交1A点2与就O是M,我O们N相做交要于找点的P吃,草Q,和 喝水的位置
0
4.作定点关于动点所在直线的对称点,连接对应点,通过轴对称性
1
质,将几何图形周长转化为线段和差最值问题,连线与动点所在
直线的交点既是所找之点
0
2.若求最大值,利用线段之间的转化,将三角形周长转化为某条线段
2
的最值
审清题意,弄清楚是求最大值还是最小值,判断出哪些点是定点哪些点是动点,选取正确 的解题方向
E 做法:
D’
1.作E点关于X轴的对称点对称点E’
NM
2.作D点关于y轴的对称点对称点D’
3.链接D’E’与x轴,y轴相交于点M,N,此时的交 点就是我们做要找的点的位置
4.连接EM,DN
5.此时四边形的周长最小 E‘
贰
第三部分 方法总结
方法总结
运用相关知识和方法求出 几何图形的最值
若求最小值,找准定点所 在的直线
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合)
,过点M作x轴的垂线,与直线AC交于点E,与抛物
线交于点P,过点P作PQ∥AB交抛物线于点Q,过
F
点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形
PQMN的周长最大时,求△AEM的面积;
抛物线及其标准方程的教学反思(通用5篇)

抛物线及其标准方程的教学反思(通用5篇)作为一位刚到岗的教师,教学是重要的工作之一,写教学反思能总结我们的教学经验,那么写教学反思需要注意哪些问题呢?以下是小编为大家收集的抛物线及其标准方程的教学反思(通用5篇),仅供参考,希望能够帮助到大家。
抛物线及其标准方程的教学反思1本学期,大学区的活动搞得轰轰烈烈,听课、学习的机会比较多。
在这一大环境下,我校为了促进教师的教学水平,举办了本次青年教师赛教活动。
我觉得这也是一次锻炼和展示自己的机会,所以花了一周时间做课件和准备工作。
希望得到评委老师的点评,知道自己讲课不足的地方。
今天下午我讲的公开课是《抛物线及其标准方程》。
抛物线是学生接触到的第三种圆锥曲线,它相对于椭圆和双曲线要简单一些。
但是作为圆锥曲线它具有和其它圆锥曲线相似的学习过程和方法。
本节的教学重点是抛物线的定义及其标准方程的推导。
通过学生自主建立直角坐标系和对方程式的讨论选择突出重点。
教学难点是抛物线概念的形成及其标准方程的指导。
所以我在设置教案时将学生作为主体,引导学生完成抛物线定义及标准方程的推导,学生的配合也较理想。
本节课在这点上是我比较满意的地方,只是在讲解第三种推导方法时我习惯了板书给学生示范,结果在练习这个环节的时间有些紧张。
本节是解析几何关于圆锥曲线的知识,如果学生能观察到这些动点的关系曲线方程就会迎刃而解,也是解析几何的基本功的一个培训,同时本节课希望促进学生的动手动脑能力,所以本节课在设置上更大程度上让学生观察得到结论。
抛物线及其标准方程的教学反思2首先感谢我的师傅对我过关课得指导和同备课组的教师的指点与帮助。
同时也非常感谢听课的教师课后对我这次过关课的点评,指出我存在的缺点和不足。
从和师傅商量定题,定稿试讲,到站在教室讲授,我有种时间飞逝的感觉,就像“会诊课”、“汇报课”仿佛就在昨天。
从“会诊”到“汇报”到这次的“过关”我们经历了“四课”中的三课每一次的感触都不近相同。
讲“会诊”课的时候,我提前很长时间就开始着手准备了,但自己弄的东西凌乱、没有任何头绪,是师傅及时的为我把住了方向,定下了要讲的内容,反复的推敲承上启下的过渡语言。
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
《抛物线及其标准方程》教案
《抛物线及其标准方程》教案一、教学内容本节课的教学内容选自普通高中课程标准实验教科书,人教A版,必修5,第一章,抛物线及其标准方程。
具体内容包括:1. 抛物线的定义及其图形特征;2. 抛物线的标准方程及其性质;3. 抛物线与坐标轴的交点;4. 抛物线的焦点和准线。
二、教学目标1. 理解抛物线的定义及其图形特征,掌握抛物线的标准方程及其性质;2. 能够运用抛物线的性质解决一些简单问题;3. 培养学生的空间想象能力、逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 抛物线的定义及其图形特征;2. 抛物线的标准方程及其性质;3. 抛物线与坐标轴的交点;4. 抛物线的焦点和准线。
四、教具与学具准备1. 教具:黑板、粉笔、投影仪;2. 学具:教科书、笔记本、尺子、圆规、直尺。
五、教学过程1. 实践情景引入:通过展示一些实际问题,如投篮、射击等,引导学生思考这些问题的背后是否存在某种数学模型。
2. 概念讲解:讲解抛物线的定义及其图形特征,让学生通过观察、思考、讨论,理解并掌握抛物线的概念。
3. 性质讲解:讲解抛物线的标准方程及其性质,引导学生通过举例、分析、归纳,掌握抛物线的性质。
4. 例题讲解:选取一些典型的例题,引导学生运用所学的抛物线性质解决问题,巩固所学知识。
5. 随堂练习:设计一些随堂练习题,让学生独立完成,检验学习效果。
6. 焦点和准线讲解:讲解抛物线的焦点和准线,让学生通过观察、思考、讨论,理解并掌握焦点和准线的作用。
7. 作业布置:布置一些有关抛物线的问题,让学生课后巩固所学知识。
六、板书设计1. 抛物线的定义及其图形特征;2. 抛物线的标准方程及其性质;3. 抛物线与坐标轴的交点;4. 抛物线的焦点和准线。
七、作业设计1. 题目:已知抛物线的标准方程为 \( y^2 = 4ax \),求证抛物线与坐标轴的交点。
答案:抛物线与x轴的交点为 (a, 0),与y轴的交点为 (0, 2a)。
2. 题目:已知抛物线的焦点为F(1,2),求抛物线的标准方程。
圆锥曲线知识点总结
圆锥曲线知识点总结第一篇:圆锥曲线基础知识圆锥曲线是一类重要的几何图形,它由一固定点(焦点)和一条直线(直母线)确定。
圆锥曲线包括椭圆、双曲线、抛物线和圆。
1. 椭圆椭圆是所有圆锥曲线中最简单的一种。
当一个圆锥截面与其直母线平行时,得到的图形就是一个椭圆。
椭圆具有如下性质:(1) 椭圆中心:椭圆的中心是其两个焦点的中垂线的交点。
(2) 焦点:椭圆上有两个焦点,它们在椭圆的长轴上,且到椭圆中心的距离相等。
(3) 长轴和短轴:椭圆上的两个焦点和中心共线,中心到焦点的距离称为焦距,长轴是椭圆上离焦点最远的两个点之间的距离,短轴是椭圆上离焦点最近的两个点之间的距离,长轴和短轴的长度之间的比值称为离心率。
(4) 方程:椭圆的标准方程为(x/a)^2+(y/b)^2=1, 其中a和b分别为长轴和短轴的一半。
(5) 旋转:如果椭圆不是以坐标轴为轴旋转的,则称其为斜椭圆,斜椭圆可以通过平移和旋转把它转变为标准方程的椭圆。
2. 双曲线双曲线是圆锥曲线中另一个重要的图形,当一个圆锥截面与其直母线的夹角小于圆锥的母线夹角时,得到的图形就是双曲线。
双曲线具有如下性质:(1) 中心:双曲线的中心是对称轴与渐近线的交点。
(2) 焦点:双曲线有两个焦点,它们位于对称轴上,且到中心的距离相等。
(3) 渐近线:一条直线是双曲线的渐近线,当直线与双曲线的距离接近于零时,该直线就称为双曲线的渐近线。
(4) 方程:双曲线的标准方程为(x/a)^2-(y/b)^2=1,其中a和b分别为双曲线上的两个焦点之间的距离的一半和中心到直线y=0的距离。
(5) 分类:双曲线可以分为右开口和左开口的两种,短轴在x轴的正半轴上的为右开口,反之为左开口。
3. 抛物线抛物线是圆锥曲线中另一种重要的图形,当一个圆锥截面与其直母线垂直时,得到的图形就是抛物线。
抛物线具有如下性质:(1) 焦点和直线:抛物线有一个焦点F和一条直线L,直线L称为准线。
对于抛物线上的任意一点P,它到焦点F的距离等于它到准线L的距离。
解析几何椭圆双曲线抛物线
令 x=0,解得 y0=-1+6k4k2. 由QA? (? 2,? y0 ),QB ? (x1, y1 ? y0 ),
QA?QB ? ?2x1 ? y0 ( y1 ? y0 )
=-21(+2-4k82k2)+1+6k4k2(1+4k4k2+1+6k4k2) =4(16(k14++41k52k)22-1)=4,
(2)设直线 l与椭圆相交于不同的两点 A ,B ,已知点 A 的
坐标为(-a,0),点 Q (0,y0)在线段 AB 的垂直平分线上,且
QA?QB =4,求 y0 的值.
解 (1)由 e=ac= 23,得 3a2=4c2.再由 c2=a2-b2, 得 a=2b. 由题意可知21×2a×2b=4,即 ab=2.
的双曲线满足-4≤x≤4 的部分;
当34<λ<1 时,点 M 的轨迹为中心在原点、长轴在 x 轴上
的椭圆满足-4≤x≤4 的部分;
当 λ≥1 时,点 M 的轨迹为中心在原点,长轴在 x 轴上
的椭圆.
探究提高 (1)求轨迹方程时,先看轨迹的形状能否预 知,若能预先知道轨迹为圆锥曲线,则可考虑用定义法 求解或用待定系数法求解. (2)讨论轨迹方程的解与轨迹上的点是否对应,即应注 意字母的取值范围.
2
44
③当 l 与 x 轴不重合也不垂直时,设 l:y=k(x-1),
P (x1,y1),Q(x2,y2).
??y=k(x-1), 由???x42+y32=1,
整理,得 (4k2+3)x2-8k2x+4k2-12
=0.
Δ=144k2+144>0 恒成立.
∴x1+x2=4k82+k2 3,x1x2=44kk22-+132.
变式训练 3 已知圆 F1:(x+1)2+y2=41,圆 F2:(x-1)2 +y2=449,动圆 M 与圆 F1、F2 都相切. (1)求动圆圆心的轨迹 C 的方程;
二次函数与几何图形综合训练题精选(含19题)
二次函数与几何图形综合训练题精选(含19题)1.如图1,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣4,0),B(3,0)两点,动点D 从点A出发,以每秒2个单位长度的速度沿AC方向运动,以AD为边作矩形ADEF(点E在x轴上),设运动的时间为t秒.(1)求抛物线y=ax2+bx﹣3的表达式;(2)过点D作DN⊥x轴于点N,交抛物线于点M,当t=时,求点M的坐标;(3)如图2,动点P同时从点B出发,以每秒3个单位长度的速度沿BA方向运动,以BP为边作等腰直角三角形BPQ(∠BPQ=90°),EF与PQ交于点G.给出如下定义:在四边形ABCD中,AB=AD,CB=CD且AB≠BC,我们把这种两组邻边分别相等的四边形叫做“筝形”,当矩形ADEF和等腰三角形BPQ重叠的四边形是“筝形”时,求“筝形”的面积.2.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P 的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.3.如图1,抛物线C1:y=ax2+bx+c经过A(﹣1,0),B(5,0),C(0,)三点,直线DF为该抛物线的对称轴,连接线段AC,∠CAB的平分线AE交抛物线C1于点E.(1)求抛物线C1的表达式;(2)如图1,作点C关于x轴的对称点C′,将原抛物线沿对称轴向下平移经过点C′得到抛物线C2,在射线AE上取点Q,连接CQ,将射线QC绕点Q逆时针旋转120°交抛物线C2于点P,当△CAQ为等腰三角形时,求点P的横坐标;(3)如图2,将抛物线C1沿一定方向平移,使顶点D′落在射线AE上,平移后的抛物线C3与线段CB相交于点M、N,线段CB与DF相交于点Q,当点Q恰好为线段MN 的中点时,求抛物线C3的顶点坐标.4.如图抛物线y=﹣x2与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C.C,D两点关于抛物线对称轴对称,连接BD交y轴于点E,抛物线对称轴交x轴于点F.(1)点P为线段BD上方抛物线上的一点,连接PD,PE.点M是y轴上一点,过点M 作MN⊥y轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+NF的最小值;(2)如图2,在(1)中PM+MN+NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PM′E′,点G是MN的中点,连接M′G交抛物线的对称轴于点H,过点H作直线l∥PM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.5.在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.(1)求此抛物线解析式;(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标;(3)在(2)的条件下,P A交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连接NF,求证:NF∥y轴.6.如图,抛物线y=ax2﹣2x+c与x轴相交于A(﹣1,0),B(3,0)两点.(1)求抛物线的函数表达式;(2)点C在抛物线的对称轴上,且位于x轴的上方,将△ABC沿直线AC翻折得到△AB'C,点B'恰好落在抛物线的对称轴上.若点G为直线AC下方抛物线上的一点,求当△AB'G 面积最大时点G的横坐标;(3)点P是抛物线上位于对称轴右侧的一点,在抛物线的对称轴上存在一点Q使得△BPQ为等边三角形,请直接写出此时直线AP的函数表达式.7.已知抛物线y=ax2+bx+c交x轴于点A(﹣1,0),B(5,0),交y轴于点C(0,5),点D是该抛物线上一点,且点D的横坐标为4,连BD,点P是线段AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN,设点P的坐标为(t,0).(1)求抛物线解析式;(2)若点Q在线段AD上时,延长PQ与抛物线交于点G,求t为何值时,线段QG最长;(3)在AB上是否存在点P,使△OCM为等腰三角形?若存在,求P点坐标,若不存在,请说明理由;(4)设正方形PQMN与△ABD重叠部分面积为s,求s与t的函数关系式.8.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点的坐标分别为A(0,2),B(﹣1,0),点C为线段AB的中点,现将线段BA绕点B按逆时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)、经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣1.①求点D的坐标及该抛物线的解析式;②连接CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(﹣1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.9.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.10.已知抛物线y=ax2+bx(a≠0)的顶点在直线上,且过点A(4,0).(1)求这个抛物线的解析式;(2)设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OP AB为梯形?若存在,求出点B的坐标;若不存在,请说明理由;(3)设点C(1,﹣3),请在抛物线的对称轴确定一点D,使|AD﹣CD|的值最大,请直接写出点D的坐标.11.已知抛物线过点(8,0),(1)求m的值;(2)如图a,在抛物线内作矩形ABCD,使点C、D落在抛物线上,点A、B落在x轴上,设矩形ABCD的周长为L,求L的最大值;(3)如图b,抛物线的顶点为E,对称轴与直线y=﹣x+1交于点F.将直线EF向右平移n个单位后(n>0),交直线y=﹣x+1于点M,交抛物线于点N,若以E、F、M、N 为顶点的四边形是平行四边形,求n的值.12.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是线段BC上方抛物线上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.13.抛物线y=ax2+bx﹣3(a≠0)的图象与x轴交于点B(﹣3,0),C(1,0),与y轴交于点A.(1)求抛物线的表达式和顶点坐标;(2)抛物线上是否存在一点D(不与点A,B,C重合),使得直线DA将四边形DBAC 的面积分为3:5两部分,若存在,求出点D的坐标;若不存在,请说明理由;(3)点P是抛物线对称轴上一点,在抛物线上是否存在一点Q,使以点P,Q,A,B为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x轴交于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD 的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.15.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.16.如图,抛物线y=﹣x2+x+4与x轴和y轴的正半轴分别交于点A和B.(1)求点A,点B的坐标及AB的长;(2)已知M为AB的中点,∠PMQ在AB的同侧以点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D,设AD的长为m(m>0),BC的长为n.①求n随m变化的函数解析式;②若点E(﹣k﹣1,﹣k2+1)在抛物线y=﹣x2+x+4上,且点E不在坐标轴上,当m,n为何值时,∠PMQ的边过点E?17.如图,抛物线y=ax2+bx+c经过O(0,0),A(﹣1,﹣),B(﹣3,)三个点.(1)求抛物线解析式;(2)若点P(﹣4,p),Q(t,q)为该抛物线上的两点,且q<p.求t的取值范围.(3)在线段AB上是否存在一点C(不与点A,点B重合),使点A,点B到直线OC的距离之和最大?若存在,求∠BOC的度数,并直接写出点C的坐标;若不存在,请说明理由.18.在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.19.如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c (a≠0)经过A、B、C三点.(1)求此抛物线的函数表达式;(2)点P(2,﹣3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.第11页(共11页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17课时:抛物线与几何图形(3) 班级_________ 姓名__________学号 学习目标:经历探索抛物线与圆有关问题的过程,体会知识之间的相互联系,综合运用所学的知识,提高分析和解决问题的能力,感受数形结合等思想方法.
探索活动:
问题一.抛物线y=41x2+mx+n经过点(0,23)与(4,23). (1)求这条抛物线的解析式,并写出它的顶点坐标; (2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标.
问题二.如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式; (2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为⊙A与x轴的交点,求抛物线的解析式; (3)试判断点C是否在抛物线上,并说明理由.
问题三.已知:抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)两点. (1)求抛物线的解析式; (2)设抛物线与x轴的另一个交点为C,以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连结MD,已知点E的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示); (3)延长DM交⊙M于点N,连结ON,OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形PCMD=S△DON,请求出此时点P的坐标.
问题四.如图,已知直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线 y=ax2+bx(a<0)的顶点B在直线AC上. (1)求A、C两点的坐标; (2)求出抛物线的函数关系式; (3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长; (4)若E为⊙B优弧ACO上一动点,连结AE、OE,问在抛物线上是否存在一点M,使 ∠MOA︰∠AEO=2︰3,若存在,试求出点M的坐标;若不存在,试说明理由.
第六章 二次函数 A B O E y ● F D x C x C y
B A D O
B P E D
M C
O
A x
y D B O ● P A
C x
y
课后作业: 1、如图,P是射线y=53x(x>0)上的一动点,以P为圆心的圆与y轴相切于C点,与x轴的正半轴交于A、B两点. (1)若⊙P的半径为5,则P点坐标是( , );A点坐标是( , );以P为顶点,且经过A点的抛物线的解析式是 ; (2)在(1)的条件下,上述抛物线是否经过点C关于原点的对称点D,请说明理由; (3)试问:是否存在这样的直线l,当P在运动过程中,经过A、B、C三点的抛物线的顶点都在直线l上?若存在,请求出直线l的解析式;若不存在,请说明理由. 2、如图,直角坐标系中,O为坐标原点,A点坐标为(-3,0),B点坐标为(12,0),以AB的中点P为圆心,AB为直径作OP与y轴的负半轴交于点C,抛物线2yaxbxc经过A、B、C三点,其顶点为M点. (1)求此抛物线的解析式; (2)设点D是抛物线与⊙P的第四个交点(除A、B、C三点外),求直线MD的解析式; (3)判定(2)中的直线MD是⊙P的位置关系,并说明理由. 3、如图,在平面直角坐标系中,已知点(220)B,,(0)Am,(20)m,以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连结BE与AD相交于点F. (1)求证:BF=DO; (2)设直线l是BDO△的边BO的垂直平分线,且与BE相交于点G.若G是BDO△的外心,试求经过BFO,,三点的抛物线的解析表达式; (3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.
A B C P x y O x53y
A E O
D C
B
G F
x
y l ● x y O B A O1
例3、如图,在平面直角坐标系中,O为坐标原点,A点坐标为(-8,0),B点坐标为(2,0)以AB的中点P为圆心,AB为直径作⊙P与y轴的负半轴交于点C. ① 求图象经过A,B,C三点的抛物线的解析式; ② 设M点为①中抛物线的顶点,求出顶点M的坐标和直线MC的解析式; ③ 判定②中的直线MC和⊙P的位置关系,并说明理由;④ 过坐标原点O作直线BC的平行线OG,与②中的直线MC相交于点G,连结AG,求出点G的坐标,并证明AG⊥MC.
三、学生练习 1、如图,抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴交于点C,D是抛物线上一
点,其坐标为47,21,B点坐标为(1,0). ① 求抛物线的解析式; ② 经过A、B、D三点的圆交AC于点F,交直线y=x+3于点E.试判断△BEF的形状,并加以证明.
2、已知:半径为1的⊙O1与X轴交于A、B 两点,圆心O1的坐标为(2, 0),二次函数y=-x2+bx+c的图象经过A、B两点,其顶点为F.
(1)求 b、c的值及二次函数顶点F的坐标; (2)写出将二次函数y=-x2+bx+c的图象向下平移1个单位再向左平移2个单位的图象的函数表达式;
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.
3、已知一个二次函数的图象经过A(4,-3),B(2,1)和C(-1,-8)三点. ① 求这个二次函数的解析式以及它的图象与x轴的交点M,N(M在N的左边)的坐标; ② 若以线段MN为直径作⊙G,过坐标原点O作⊙G的切线OD,切点为D,求OD的长;③ 在直线OD上是否存在点P,使得△MNP是直角三角形?如果存在,求出点P的坐标,若不存在,请说明理由.
问题三.如图,等边△ABC的边长为23,以BC边所在直线为x轴,BC的边上的高线AO所在直线为y轴,建立平面直角坐标系. (1)求过A、B、C三点的抛物线的解析式; (2)设⊙P是△ABC的内切圆,点D为y轴上一动点,以D点为圆心,3为半径的⊙D与直线..
AB、AC都相切时,试判断⊙O与⊙P的位置关系,并简要说明理由; (3)若(2)中⊙P的大小不变,圆心P沿y轴运动,设P点坐标为(0,a),则⊙P与直线AB、AC有几种位置关系?并写出相应位置关系时,a的取值范围.
x A P O B
C
y ●
x C D
B O A
F
y E
F ● x y O P C B
E 图 O A B D E y x C y A C O B D
x
4、如图,在直角坐标系中,以点(30)A,为圆心,以23为半径的圆与x轴相交于点BC,,与y轴相交于点DE,.
(1)若抛物线213yxbxc经过CD,两点,求抛物线的解析式,并判断点B是否在该抛物线上. (2)在(1)中的抛物线的对称轴上求一点P,使得PBD△ 的周长最小. (3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上 是否存在这样的点M,使得四边形BCQM是平行四边形.若 存在,求出点M的坐标;若不存在,说明理由.
已知:如图,抛物线mxxy332312与x轴交于A、B两点,与y轴交于C点,∠ACB=90°, ⑴求m的值及抛物线顶点坐标; ⑵过A、B、C的三点的⊙M交y轴于另一点D,连结DM并延长交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;
⑶在条件⑵下,设P为CBD上的动点(P不与C、D重合),连结PA交y轴于点H,问是否存在一个常数k,始终满足AH·AP=k,如果存在,请写出求解过程;如果不存在,请说明理由.
例1、如图,在平面直角坐标系中,以点M(0,1)为圆心,以2为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连结AM并延长交⊙M于P点,连结PC交x轴于E. (1)求出CP所在直线的解析式; (2)连结AC,求△ACP的面积. (3)求出过A、B、C三点的抛物线解析式 (4)在过A、C、B三点的抛物线上是否存在点Q,使△ABQ与△ABC相似? (5)在过A、C、B三点的抛物线上是否存在点Q,使△ABQ为等腰三角形?
例3、如图,在平面直角坐标系xOy中,半径为1的⊙O分别交x轴、y轴于A、B、C、D四点,抛物线y=x2+bx+c经过点C且与直线AC只有一个公共点. (1)求直线AC的解析式 (2)求抛物线y=x2+bx+c的解析式 (3)点P为(2)中y轴左边抛物线上的点,由点P作x轴的垂线,垂足为点Q,问:此抛物线上是否存在这样的点P,使△PQB~ADB?若存在,求出P点坐标;若不存在,请说明理由.
A · B C
D
E F
G M
x
y
O