加热炉温度控制系统设计

合集下载

加热炉温度控制系统设计

加热炉温度控制系统设计

加热炉温度控制系统设计一、引言加热炉是一种常见的工业设备,用于将物体加热至一定温度。

在许多工业过程中,加热炉的温度控制至关重要,它直接影响到产品的质量和生产效率。

因此,设计一个稳定可靠的温度控制系统对于提高工业生产的效益十分重要。

本文将介绍一个基于控制理论的加热炉温度控制系统的设计。

二、控制系统设计原理1.温度传感器:温度传感器是测量加热炉内部温度的重要组成部分。

常用的温度传感器包括热电偶和热敏电阻。

传感器将温度信号转换为电信号,并将其发送给控制器。

2.控制器:控制器接收温度传感器发送的信号,并与设定值进行比较。

根据比较结果,控制器将控制信号发送给加热器以调整加热功率。

控制器通常使用PID控制算法,它根据偏差、积分和微分项来计算控制信号。

3.加热器:加热器是加热炉温度控制系统中的执行器。

根据控制信号,加热器可以调整加热功率,从而控制加热炉的温度。

三、温度传感器选择温度传感器的选择对于温度控制系统的性能至关重要。

常见的温度传感器有热电偶和热敏电阻。

在选择传感器时需要考虑以下因素:1.测量范围:根据加热炉的工作温度范围选择合适的传感器。

不同的传感器有不同的工作温度范围。

2.精度:传感器的精度对于控制系统的准确性非常重要。

一般来说,热电偶的精度比热敏电阻高。

3.响应时间:加热炉温度的变化通常需要快速响应。

因此,传感器的响应时间也是一个重要的考虑因素。

四、控制器设计1.控制算法选择:常见的控制算法有比例控制、积分控制和微分控制。

PID控制算法结合了这三种控制算法,被广泛应用于温度控制系统。

2. 参数调节:根据具体的应用场景和系统性能要求,需要对PID控制器进行参数调节。

常见的调节方法有Ziegler-Nichols方法和临时增减法。

3.控制信号输出:控制信号输出给加热器,影响加热功率。

一般来说,控制信号越大,加热功率越高,温度升高的速度越快。

五、系统测试和优化完成控制系统的设计后,需要进行系统测试和优化。

基于PLC控制的加热炉温度控制系统设计

基于PLC控制的加热炉温度控制系统设计

基于PLC控制的加热炉温度控制系统设计概述加热炉是工业生产中常见的设备之一,其主要作用是提供高温环境用于加热物体。

为了确保加热炉的稳定性和安全性,需要设计一个可靠的温度控制系统。

本文将介绍一个基于PLC(可编程逻辑控制器)控制的加热炉温度控制系统设计方案。

系统设计原理在加热炉温度控制系统中,PLC作为核心控制器,通过监测温度传感器的输出信号,根据预设的温度设定值和控制策略,控制加热炉的加热功率,从而实现对加热炉温度的稳定控制。

以下是系统设计的主要步骤:1.硬件设备选择:选择适合的温度传感器和控制元件,如热电偶、温度控制继电器等。

2.PLC选型:根据实际需求,选择合适的PLC型号。

PLC需要具备足够的输入输出点数和计算能力。

3.传感器连接:将温度传感器接入PLC的输入端口,读取实时温度数据。

4.温度控制策略设计:根据加热炉的特性和工艺需求,设计合适的温度控制策略。

常见的控制策略包括比例控制、积分控制和微分控制。

5.控制算法实现:根据温度控制策略,编写PLC程序,在每个采样周期内计算控制算法的输出值。

6.加热功率控制:使用控制继电器或可调功率装置,控制加热炉的加热功率。

7.温度反馈控制:通过监测实际加热炉温度和设定值之间的差异,不断修正加热功率控制,使加热炉温度稳定在设定值附近。

系统硬件设计基于PLC控制的加热炉温度控制系统的硬件设计主要包括以下几个方面:1.温度传感器:常用的温度传感器有热电偶和热敏电阻。

根据加热炉的工艺需求和温度范围,选择适合的温度传感器。

2.PLC:选择适合的PLC型号,根据实际需求确定PLC的输入输出点数和计算能力。

3.控制继电器或可调功率装置:用于控制加热炉的加热功率。

根据加热炉的功率需求和控制方式,选择合适的继电器或可调功率装置。

4.运行指示灯和报警器:用于显示系统的运行状态和报警信息。

PLC程序设计PLC程序是基于PLC的加热炉温度控制系统的关键部分,其主要功能是实现温度控制算法。

管式加热炉温度温度串级控制系统的设计说明

管式加热炉温度温度串级控制系统的设计说明

管式加热炉温度温度串级控制系统的设计说明一、引言二、系统结构温度串级控制系统主要由上位机、温度传感器、控制器、执行机构等组成。

1.上位机:负责启动和监控系统运行,提供温度设定值和参考模型,按照系统控制算法生成控制指令发送给下位控制器。

2.温度传感器:负责实时采集管式加热炉内的温度数据,并将其传输给控制器进行处理。

3.控制器:根据上位机提供的设定值和参考模型,根据传感器采集到的温度数据进行处理,生成控制指令并发送给执行机构。

4.执行机构:根据控制器发送的控制指令,调节管式加热炉内的加热功率或其他参数,以实现温度控制。

三、温度控制策略1.温度设定值的调整:上位机会根据需要设定管式加热炉内的目标温度,并将其发送给控制器。

控制器会根据设定值和参考模型,生成合适的控制指令来调节温度。

2.温度比例控制:控制器会根据当前温度和设定值之间的差异,生成一个控制量来调节加热功率,使加热炉内的温度趋近于设定值。

3.温度积分控制:为了消除静态误差,控制器会根据温度偏差的积分值生成一定的控制量,以提高系统的稳定性。

4.温度微分控制:为了快速响应温度变化,控制器还会根据温度变化的速率生成相应的控制量。

四、系统性能指标1.温度响应时间:系统需要具备较快的响应时间,即加热炉内的温度能够尽快达到设定值。

2.温度稳定度:系统应当保持较好的温度稳定度,即经过一定时间后,温度偏差应尽可能小。

3.抗干扰能力:系统需要具备较好的抗干扰能力,对于外界干扰因素的影响应尽可能小。

五、系统设计优化1.选择合适的温度传感器:合适的温度传感器能够提供准确的温度数据,为控制系统提供可靠的输入信号。

2.高性能控制器的选择:通过选用性能较好的控制器,能够提高控制系统的稳定性和响应速度。

3.优化控制策略:通过合理选择温度比例、积分和微分参数,能够提高控制系统的性能。

4.加入滤波器和抗干扰装置:通过加入合适的滤波器和抗干扰装置,能够降低系统对外界干扰的敏感度,提高系统的抗干扰能力。

电加热炉温度控制系统的设计

电加热炉温度控制系统的设计

电加热炉温度控制系统的设计目录引言 (6)1 模糊控制器的设计 (13)1.1 模糊逻辑基础 (13)1.1.1 模糊集合的概念和基本运算 (13)1.1.2 模糊关系 (14)1.1.3 模糊规则 (15)1.2 模糊控制系统 (17)1.2.1 模糊控制的基本思想 (18)1.2.2 模糊控制系统的组成 (18)1.3 基本模糊控制器的设计 (20)1.3.1 精确量的模糊量化处理 (20)1.3.2 模糊推理 (23)1.3.3 反模糊化处理 (24)2 MATLAB下的仿真实验 (26)2.1 PID控制仿真实验 (26)2.2 基本模糊控制仿真实验 (27)3 电加热炉控制系统监控程序的设计 (31)3.1 组态王简介 (31)3.1.1 概述 (31)3.1.2 组态王与I/O设备 (31)3.1.3 组态王的开放性 (32)3.1.4 建立应用工程的一般流程 (32)3.1.5 如何得到组态王的帮助 (33)3.2 组态王的设计 (33)3.2.1 设计画面 (33)3.2.2 动画连接 (36)3.3 电加热炉控制监控画面 (42)结论 (47)参考文献 (48)摘要在冶金、化工,机械等各类工业控制中,电加热炉都得到了广泛的应用。

目前国内的电加热炉温度控制器大多还停留在国际60年代水平,仍在使用继电—接触器控制或常规PID控制,自动化程度低,动态控制精度差,满足不了日益发展的工艺技术要求。

电加热炉的温度是生产工艺的一项重要指标,温度控制的好坏将直接影响产品的质量。

电加热炉由电阻丝加热,温度控制具有非线性、大滞后、大惯性、时变性、升温单向性等特点。

而且,在实际应用和研究中,电加热炉温度控制遇到了很多困难:第一,很难建立精确的数学模型;第二,不能很好地解决非线性、大滞后等问题。

以精确数学模型为基础地经典控制理论和现代控制论在解决这些问题时遇到了极大地困难,而以语言规则模型(IF-THEN)为基础的模糊控制理论却是解决上述问题的有效途径和方法。

加热炉温度控制系统

加热炉温度控制系统

加热炉温度控制系统标题:加热炉温度控制系统摘要:加热炉温度控制系统是一种用于控制加热炉温度的设备。

它通过监测加热炉内的温度并相应地调节加热器的工作状态,以保持加热炉内的温度在设定范围内稳定。

本文将介绍加热炉温度控制系统的原理、组成部分以及工作流程,并探讨其在工业生产中的应用。

关键词:加热炉、温度控制、加热器、工业生产1. 引言加热炉是一种常见的热处理设备,广泛应用于冶金、机械加工和材料研究等领域。

在加热炉的使用过程中,保持加热炉内的温度稳定是非常重要的。

过低的温度会导致加热不充分,影响产品的质量;过高的温度则会造成能源的浪费,甚至导致设备损坏。

因此,开发一种稳定且可靠的加热炉温度控制系统对于提高生产效率和节约能源具有重要意义。

2. 温度控制系统的原理温度控制系统通常由温度传感器、控制器和执行器组成。

温度传感器用于实时监测加热炉内的温度变化,将温度信号传输给控制器。

控制器根据设定的温度范围和温度传感器反馈的实时温度,计算出相应的控制信号。

执行器根据控制信号调节加热器的工作状态,从而实现加热炉温度的稳定控制。

3. 温度控制系统的组成部分3.1 温度传感器温度传感器是温度控制系统中的重要组成部分。

常用的温度传感器有热电阻和热电偶两种。

热电阻传感器的工作原理是利用金属电阻随温度变化而发生的电阻变化,通过测量电阻的变化来确定温度。

热电偶传感器则是利用两种不同材料的接触产生的热电势随温差变化而变化,通过测量热电势的变化来确定温度。

3.2 控制器控制器是温度控制系统的核心部件,负责计算控制信号并将其传输给执行器。

控制器根据设定的温度范围和温度传感器反馈的实时温度,做出相应的控制决策。

常见的控制器包括PID控制器和模糊控制器。

PID控制器根据比例、积分和微分三个方面来调节控制信号;模糊控制器则利用模糊逻辑推断得出控制信号。

3.3 执行器执行器根据控制器传输的控制信号调节加热器的工作状态。

常见的执行器包括电动阀和可调电阻。

电阻加热炉温度控制系统设计

电阻加热炉温度控制系统设计

电阻加热炉温度控制系统设计一、温度控制系统的要求:1.稳定性:系统应能快速响应温度变化,并能在设定温度范围内保持稳定的温度。

2.精度:控制系统应具备高精度,确保炉内温度与设定温度的偏差控制在允许范围内。

3.可靠性:系统应具备高可靠性,能长时间稳定运行,并能在发生异常情况时及时报警或自动停止加热。

4.人机界面:温度控制系统应提供方便直观的人机界面,操作简单易懂。

二、温度控制系统的设计:1.传感器选择:选择合适的温度传感器进行温度检测。

常用的温度传感器有热电偶和热电阻。

根据实际需求选择合适的传感器类型和量程。

2.温度控制器选择:根据控制需求,选择适用于电阻加热炉的温度控制器。

具备温度显示功能的控制器可以直观地显示炉内温度。

还可以选择具备PID控制功能的控制器,以提高温度控制精度。

3.控制循环设计:将温度控制系统设计成闭环控制系统,以实现炉内温度的精确控制。

控制循环包括采样、比较、控制和执行四个环节。

采样环节将实际温度值与设定温度值进行比较,然后控制环节根据比较结果输出控制信号,最后执行环节根据控制信号调节电阻加热炉的加热功率。

4.温度传感器布置:将温度传感器布置在炉内合适位置,确保能够准确测量到炉内温度。

传感器的安装位置应避免热点和冷点,以避免温度不均匀。

5.控制参数调整:根据实际情况进行PID参数的调整。

通过实验或仿真等方法,逐步调整PID参数,使得系统能够快速响应温度变化、准确跟踪设定温度,并保持稳定的温度输出。

6.报警和保护设计:设计温度控制系统时,应考虑到电阻加热炉的过热或温度异常等情况,并设置相应的报警和保护功能。

当温度超过安全范围时,系统应及时报警,并自动停止加热。

7.人机界面设计:为了方便操作和监控,可以在温度控制系统上设置触摸屏或显示屏。

通过人机界面,操作人员可以方便地设定温度、监测炉内温度,并能够实时查看温度曲线和报警信息。

总之,电阻加热炉温度控制系统的设计需要考虑到温度控制精度、稳定性、可靠性和人机界面等方面的要求。

加热炉出口温度与炉膛温度串级控制系统设计

加热炉出口温度与炉膛温度串级控制系统设计

加热炉出口温度与炉膛温度串级控制系统设计一、引言加热炉是一种常用于工业生产中的设备,其作用是通过燃烧燃料加热空气或其他介质,使其达到所需温度。

加热炉的出口温度和炉膛温度是评估加热炉性能的关键指标。

为了提高加热炉的控制精度和稳定性,需要设计出一个合理的加热炉出口温度与炉膛温度串级控制系统。

二、串级控制系统的基本原理串级控制系统是一种将两个或以上的控制回路串接在一起,将一个控制器的输出作为另一个控制器的输入,通过不同层次的控制,实现对被控对象的精确控制。

在加热炉出口温度与炉膛温度串级控制系统中,可以将炉膛温度作为外环控制,将加热炉出口温度作为内环控制。

三、串级控制系统的设计步骤1.确定控制目标:在此串级控制系统中,控制目标是将加热炉出口温度控制在一定范围内,并同时保持炉膛温度稳定。

2.确定输入变量和输出变量:输入变量为控制器输出信号,输出变量为加热炉出口温度。

3.系统的数学模型:确定加热炉出口温度与炉膛温度之间的动态关系,建立数学模型。

可以采用传统的PID控制器或者现代控制理论中的模型预测控制等方法。

4.设计外环控制器:外环控制器根据炉膛温度的反馈信号调整燃料供给,以控制炉膛温度的稳定性。

5.设计内环控制器:内环控制器根据外环控制器的输出信号和加热炉出口温度的反馈信号调整燃料供给,以控制加热炉出口温度。

6.仿真与优化:使用仿真软件对设计的串级控制系统进行仿真,观察系统的响应特性,并根据实际需求进行调整和优化。

7.实际系统应用:将优化后的串级控制系统应用到实际加热炉中,并进行调试和验证。

四、串级控制系统的优势1.提高控制精度:串级控制系统将控制精度分为两个层次进行控制,可以快速响应外环控制器的调整,从而提高系统的控制精度。

2.提高稳定性:串级控制系统通过多层次的控制,减少了外界扰动对系统稳定性的影响。

3.提高动态响应速度:串级控制系统可以根据内环的控制效果对外环的控制进行调整,从而实现更快的动态响应。

基于单片机的电加热炉温度控制系统设计

基于单片机的电加热炉温度控制系统设计

基于单片机的电加热炉温度控制系统设计一、概述电加热炉温度控制系统是一种常见的自动化控制系统。

它通过控制加热元件的加热功率来维持加热炉内的温度,从而实现对加热过程的精确控制。

本文将介绍一种基于单片机的电加热炉温度控制系统的设计。

二、系统设计1. 硬件设计本系统采用单片机作为控制核心,传感器检测加热炉内的温度,并将数据反馈给单片机进行处理。

通过触摸屏交互界面,用户可以设定希望维持的温度值,单片机将控制加热元件的加热功率,以实现温度的稳定控制。

2. 软件设计单片机程序主要分为三个部分:(1)传感器数据采集和处理,通过定时器进行数据的采样,然后通过计算分析实现温度值的读取。

(2)温度控制,设定一个目标温度值后,单片机通过PID算法来控制加热元件的加热功率,保持温度的稳定。

(3)交互界面的设计,实现用户与系统的交互,包括设定目标温度值和实时温度显示等。

三、系统优势相对于传统的手动控制方式,本系统具有以下优势:(1)精度高,通过PID算法,可以实现对温度的精确控制,大大提高了生产效率。

(2)舒适度高,传统的手动控制方式需要人员长时间待在生产车间,而本系统的自动化控制方式,可以让人员远离高温环境。

(3)可靠性高,系统精度高,响应迅速,可以有效减少因为控制失误带来的损失。

四、结论本系统的设计基于单片机实现电加热炉温度的精确控制。

相对于传统的手动控制方式,具有精度高、舒适度高和可靠性高等优势。

在未来的生产过程中,随着物联网的发展,本系统也可以进行联网控制,实现对设备的远程控制和监控,提高设备的效率和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西工业职业技术学院设计说明书课题名称:加热炉温度控制系统设计姓名:吴雨冬专业:过程控制班级:自动化1031起止日期 2011年12月 1日~2011年 12月30日指导教师:黎鸿坤广西工业职业技术学院设计说明书题目:加热炉温度控制系统设计目录前言 (1)第一章设计的目的及意义 (2)第二章控制系统工艺流程及控制要求 (2)2.1 生产工艺介绍2.2 控制要求第三章总体设计方案 (3)3.1 系统控制方案3.2 系统结构和控制流程图第四章控制系统设计 (5)4.1 系统控制参数确定第五章控制仪表的选型和配置 (6)5.1一体化温度变送器5.2 DX2000型无纸记录仪5.3 调节器5.4 执行器5.5 电/气阀门定位器ZPD-015.6 安全栅5.7 配电器5.8 薄膜气动调节阀ZMBS-16K第六章联锁保护 (11)第七章系统控制接线图 (12)第八章收获和体会 (13)参考文献前言在工业中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中温度控制也也越来越重要。

在工业生产的很多领域中,人们都需要对环境中的温度进行控制。

在石油工业中,加热炉尤为重要,加热炉应用非常明显。

而对加热炉进行温度控制在整个工艺生产中的重要性尤为突出。

第一章设计的目的及意义加热炉被广泛应用于工业生产和科学研究中。

由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。

在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定性已成为产品质量的决定性因素。

对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。

在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。

在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。

为此,可靠的温度的监控在工业中是十分必要的。

第二章控制系统工艺流程及控制要求2.1 生产工艺介绍加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。

随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。

加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。

本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。

物料被加热后,温度达到生产要求后,进入下一个工艺环节。

用泵将从初馏塔底得到的拔顶油送入加热炉中加热到360 ℃~370 ℃后,再送入常压分馏塔中。

经分馏,在塔顶可得到低沸点汽油馏分,经冷凝和冷却到30 ℃~40 ℃时,一部分作为塔顶回流液,另一部分作为汽油产品。

此外,还设有1~2个中段回流。

在常压塔中一般有3~4个侧线,分别馏出煤油、轻柴油。

侧线产品是按人们的不同需要而取的不同沸点范围的产品,在不同的流程中并不相同。

有的侧线产品仅为煤油和轻柴油,而重油为塔底产品;有的侧线为煤油、轻柴油和重柴油,而塔底产品为常压渣油。

初底油用泵加压后与高温位的中段回流、产品、减渣进行换热,一般换后温度能达到260°C以上,如果换热流程优化的好,换热温度可达到310°C 左右。

初底油在进入常压炉进一步加热至365°C(各装置设定的炉出口温度随所炼不同原油的组成性质而差异,一般都在360°C至370°C之间)。

最后初底油进入常压塔进行分离。

加热炉设备主要工艺流程图如图2-1所示。

图2-1 加热炉设备主要工艺流程图2.2 控制要求加热炉设备的控制任务是根据生产负荷的需要,供应热量,同时要使加热炉在安全、经济的条件下运行。

按照这些控制要求,加热炉设备将有主要的控制要求:加热炉燃烧系统的控制方案要满足燃烧所产生的热量,适应物料负荷的需要,保证燃烧的经济型和加热炉的安全运行,使物料温度与燃料流量相适应,保持物料出口温度在一定范围内。

第三章总体设计方案3.1 系统控制方案随着控制理论的发展,越来越多的智能控制技术,如自适应控制、模型预测控制、模糊控制、神经网络等,被引入到加热炉温度控制中,改善和提高控制系统的控制品质。

本加热炉温度控制系统较为简单,故采用数字PID算法作为系统的控制算法。

采用PID调节器组成的PID自动控制系统调节炉温。

PID调节器的比例调节, 可产生强大的稳定作用; 积分调节可消除静差; 微分调节可加速过滤过程, 克服因积分作用而引起的滞后。

控制系统通过温度检测元件不断的读取物料出口温度,经过温度变送器转换后接入调节器,调节器将给定温度与测得的温度进行比较得出偏差值,然后经PID算法给出输出信号,执行器接收调节器发来的信号后,根据信号调节阀门开度,进而控制燃料流量,改变物料出口温度,实现对物料出口温度的控制。

本加热炉温度控制系统采用单回路控制方案,即可实现控制要求。

在运行过程中,当物料出口温度受干扰影响改变时,温度检测元件测得的模拟信号也会发生对应的改变,该信号经过变送器转换后变成调节器可分析的数字信号,进入调节器,将变动后的信号再与给定相比较,得出对应偏差信号,经PID算法计算后输出,通过执行器调节燃料流量,不断重复以上过程,直至物料出口温度接近给定,处于允许范围内,且达到稳定。

由此消除干扰的影响,实现温度的控制要求。

3.2 系统结构和控制流程图根据控制要求和控制方案设计的加热炉温控制系统结构如图3-1所示, 该系统主要由调节对象(加热炉)、检测元件(测温仪表)、变送器、调节器和执行器等5个部分组成, 构成单回路负反馈温度系统。

其中显示器是可选接次要器件,故用虚线表示;θ为物料出口温度,Qg为燃料流量。

箭头方向为信号流动方向,温度信号由检测元件进入控制系统,经过一系列器件和运算后,由执行器改变燃料流量,进而实现温度控制。

图3-1 加热炉温度控制系统结构图图3-2 加热炉温度控制系统整体控制流程图Qg为燃料流量,θ为物料出口温度,加热炉作为控制对象。

第四章控制系统设计4.1 系统控制参数确定4.1.1 被控参数选择单回路控制系统选择被控参数时要遵循以下原则:在条件许可的情况下,首先应尽量选择能直接反应控制目的的参数为被控参数;其次要选择与控制目的有某种单值对应关系的间接单数作为被控参数;所选的被控参数必须有足够的变化灵敏度。

综合以上原则,在本系统中选择物料的出口温度θ作为被控参数。

该参数可直接反应控制目的。

4.1.2 控制参数选择工业过程的输入变量有两类:控制变量和扰动变量。

其中,干扰时客观存在的,它是影响系统平稳操作的因素,而操纵变量是克服干扰的影响,使控制系统重新稳定运行的因素。

而控制参数选择的基本原则为:①选择对所选定的被控变量影响较大的输入变量作为控制参数;②在以上前提下,选择变化范围较大的输入变量作为控制参数,以便易于控制;③在①的基础上选择对被控变量作用效应较快的输入变量作为控制参数,使控制系统响应较快;综合以上原则,选择燃料的流量Qg量作为控制参数。

第五章控制仪表的选型5.1 测温元件本控制系统的测温元件采用Pt100热电阻,工业用铂电阻作为温度测量变送器,通常用来和显示、记录、调节仪表配套,直接测量各种生产过程中从0 ~ 500℃范围内的液体、蒸汽和气体介质以及固体等表面温度。

5.2度变送器型号:DBW-4230,环境温度:0~50℃,环境湿度:90%RH,供电电源:220AC、220VAC(开关电源)功耗:≤6W ,分度号:热电阻Pt100,测量范围:0~500℃,输入信号:1-5V ,输出信号:4-20mA ,精度等级:0.5级5.2 DX2000型无纸记录仪:DX2000系列新型无纸记录仪,为DX200系列无纸记录仪的升级产品,DX2000最多可达48通道.可以广泛应用于各种环境中。

额定电源电压:220VAC +10-15 %,使用电源电压范围:90 ~ 260 VAC ,额定电源频率:50 ~ 60 Hz ,功耗:< 15W 环境温度 0 ~ 50 ℃环境湿度: 20 ~ 80% RH ( 5 ~ 40 ℃)5.3 调节器DDZ-III 型PID 调节器TDM-400性能指标如下表所示: 表5.2 DDZ-III 型PID 调节器性能指标2.DDZ-III 型调节器接线端子如下图所示:图5-6 DDZ-III 型调节器调节器接线端子名称 性能输入信号 1~5V 直流电压外给定信号 4~20mA 直流电流(输入电阻250Ω)输出信号 4~20mA 直流电流 负载电阻 250Ω~750Ω输入与给定指示 0~100%,指示误差为±1.0%输出信号指示0~100%,指示误差为±2.5%整定参数 (F=1情况下)比例带Xp=2~500%连续可调,最大值刻度误差±2.5%; 积分时间Ti 有两档0.01~2.5分与0.1~25分。

分别连续可调,最大值与最小值刻度误差为2550-+%;微分时间Td=0.04~10分,连续可调,最大刻度误差为2550-+%干扰系数F I T /T 1F D += 积分增益Kd Kd ≈10 闭环跟踪误差 %5.0±≤5.4 执行器5.4.1 执行器选型本系统中,执行器是系统的执行机构,是按照调节器所给定的信号大小和方向,改变阀的开度,以实现调节燃料流量的装置。

1.执行器的结构形式:执行器在结构上分为执行机构和调节机构。

其中执行机构包括气动、电动和液动三大类,而液动执行机构使用甚少,同时气动执行机构中使用最广泛的是气动薄膜执行机构,因此执行机构的选择主要是指对气动薄膜执行机构和电动执行机构的选择,由于气动执行机构的工作温度范围较大,防爆性能较好,故本系统选择气动薄膜执行机构并配上电/气阀门定位器。

调节阀的开、关形式需要考虑到以下几种因素:①生产安全角度:当气源供气中断,或调节阀出故障而无输出等情况下,应该确保生产工艺设备的安全,不至发生事故;②保证产品质量:当发生控制阀处于无源状态而恢复到初始位置时,产品的质量不应降低;③尽可能的降低原料、产品、动力损耗;④从介质的特点考虑。

综合以上各种因素,在加热炉温度控制系统中,执行器的调节阀选择气开阀:执行机构采用正作用方式,调节机构正装以实现气开的气动薄膜调节蝶阀。

1.调节阀的流量特性:调节阀的流量特性的选择,在实际生产中常用的调节阀有线性特性、对数特性、抛物线特性和快开特性四种,在本系统中执行器的调节阀的流量特性选择等百分比特性。

相关文档
最新文档