四年级奥数计算复杂数字谜

合集下载

2018四年级奥数.计算综合.复杂数字谜(B级).学生版

2018四年级奥数.计算综合.复杂数字谜(B级).学生版

知识框架一、基本概念数字谜数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指+、-、×、÷、()、[]、{}。

数阵图定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵图:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.幻方幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。

二、数字谜分类1、竖式谜2、横式谜3、填空谜4、幻方5、数阵图6、数独复杂数字谜(二)三、解题技巧与方法竖式数字谜1、技巧(1)从首位或者末尾找突破口(突破口:指在做数字谜问题开始时的入口,一般在算式的首位或者末尾,可以确定其数字或者范围然后通过推理很快可以确定其值为后面的推理做好铺垫);(2)要根据算式性质逐步缩小范围,并进行适当的估算逐步排除不符合的数字;(3)题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;(4)注意结合进位及退位来考虑;(5)数字谜中的文字,字母或其它符号,只取0~9中的某个数字。

(6)数字谜解出之后,最好验算一遍.2、数字迷加减法(1)个位数字分析法;(2)加减法中的进位与退位;欢迎关注:奥数轻松学(3)余老师薇芯:69039270(4)乘除法中的进位与退位;(5)奇偶性分析法。

横式数字谜解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

小学四年级奥数教程-数字谜(二)

小学四年级奥数教程-数字谜(二)

数字谜(二)例1 把下面算式中缺少的数字补上:分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100。

四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100。

由此我们找出解决本题的突破口在百位数上。

(1)填百位与千位.由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1。

(2)填个位。

由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9。

(3)填十位。

由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9。

所求算式如右式。

由例1看出,考虑减法算式时,借位是一个重要条件.例2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”.从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学"=2或7.如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6。

此时,百位上的和为“学”+“学”+1=2+2+1=5≠4.因此“学”≠2。

如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2。

百位上两个7相加要向千位进位1,由此可得“我"代表数字3。

满足条件的解如右式.(2)由千位看出,“努"=4。

由千、百、十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式。

同理,由左下式看出,“力”=8,988—888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1。

小学四年级奥数教程-数字谜(二)

小学四年级奥数教程-数字谜(二)

数字谜(二)例1 把下面算式中缺少的数字补上:分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100。

四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100。

由此我们找出解决本题的突破口在百位数上。

(1)填百位与千位。

由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1。

(2)填个位。

由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9。

(3)填十位。

由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9。

所求算式如右式。

由例1看出,考虑减法算式时,借位是一个重要条件。

例2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”。

从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学”=2或7。

如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6。

此时,百位上的和为“学”+“学”+1=2+2+1=5≠4。

因此“学”≠2。

如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2。

百位上两个7相加要向千位进位1,由此可得“我”代表数字3。

满足条件的解如右式。

(2)由千位看出,“努”=4。

由千、百、十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式。

同理,由左下式看出,“力”=8,988-888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1。

满足条件的算式如右下式。

小学奥数数字谜(文档4篇)

小学奥数数字谜(文档4篇)

小学奥数数字谜(文档4篇)以下是网友分享的关于小学奥数数字谜的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。

小学奥数-数字谜(一)小学奥数-数字谜例 1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

解:将5568质因数分解为5568=2×3×29。

由此容易知道,将5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464,16×348,24×232,29×192,32×174,48×116。

显然,符合题意的只有下面一种填法:174×32=58×96=5568。

例3 在443后面添上一个三位数,使得到的六位数能被573整除。

6分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。

由443000÷573=773 (71)推知,443000+(573-71)=443502一定能被573整除,所以应添502。

例4 已知六位数33□□44是89的倍数,求这个六位数。

小学数学竞赛四 较复杂的数字谜

小学数学竞赛四 较复杂的数字谜

四较复杂的数字谜例1 在下面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式.分析这是一个六位数乘以一位数,积仍然是六位数的乘法算式.因此突破口应选择“数”和“好”.解显然好≠1,又因为在十万位上,数×好+ 进位后不再进位,所以好≠9.因此好的取值范围是2、3、4、5、6、7、8.因为好≥2,所以数≤4,即数的取值范围是1、2、3、4.下面从数入手,分别试验求解.(1)数= 1时,赛×好的个位是1,所以好为3或7.若好=3,则赛=7,由此可依次推出竞=5,力=8,智=2,学=4;若好=7,则赛=3,此时竞只能是3,与赛重复.(2)数=2时,好只能是3或4.因为赛×好的个位是2,所以当好= 3时,赛= 4,由此可依次推出竞= 1,力= 7,智=5,学=8;当好=4时,赛=3或8.经试验可知,3或8均不符合条件.(3)数=3时,好只能为2,根据赛×好的个位是2,可知赛无解.(4)数=4时,好只能为2,根据赛×好的个位是4,可推出赛=7,竞=3或8,但力无解.所以满足条件的算式为:例2 在下面的算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,求这个算式.解突破口在个位和十位上.(1)在个位和十位上,因为 Y+ N+ N的个位是 Y,所以N=0或5;同理, T+E+E的个位也是T(此时个位不能向十位进位,否则E无解),可推出E=0或5.因此只能N=0,E=5.(2)在万位上,由于千位必须向万位进位1,因此F+1=S,即F、S 相邻.(3)在千位上,由于百位可以向千位进位1或2,因此O=8或9.若O=8,则百位向千位进位2,此时I=0,与N重复.若O= 9,则百位也必向千位进位2(否则I= 0,仍与N重复),由此推出I= 1.(4)在百位上,由于R+T+T+1(进位)≥022(X≠0或1,否则与N、I重复),因此T=7或8.若T=7,则R=8,由此推出X=3.此时还剩下数字2、4、6,不能满足F、S相邻的条件.若T=8,则R=6或7,当R=6时,可推出X=3,剩下数字2、4、7,也不满足F、S相邻的条件.所以只能R=7,由此推出X=4.此时剩下数字2、3、6,有F=2,S=3,Y=6.所以加法算式为例3在下面的算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,求这个算式.分析突破口选在和的首位数字T上.解显然T=1.(1)在十位上,由于和的个位是1 ,因此十位必须向百位进位.(2)在百位上,由于 D+I+I+进位后的个位还是D,因此十位必须向百位进位2,由此推出I=4.(3)在万位上,V=8或9.若V=8,则千位上,4+ C+ C+ 1(进位)>21,所以C= 9,由此推出E=3,Q=6,但此时N、G无解.所以只能V= 9,R=0,且千位向万位进位1.(4)在千位上,由于4+C+C+1(进位)<19,因此,C<7,又因为4+C+C+1(进位)>11,所以 C>3,故C=5或6(I已取4).若C= 5,则E=5,重复.所以只有C= 6,E= 7,由此可推出个位上 Q=3.(5)在十位上,因为十位必须向百位进位2,所以只能N=8,G=5.最后剩下D=2.所以加法算式为通过上面几个例题我们看到,试验求解是解数字谜不可缺少的一种方法.试验时,应先对所确定的数字进行估算,以缩小数字的取值范围,减少试验次数.。

数字谜08四下04复杂竖式

数字谜08四下04复杂竖式

四年级下学期第四讲,数字谜第08讲复杂竖式【内容概述】重点是三位数及三位数以上的乘、除法,涉及小数乘、除法的竖式填空格问题.补填空格与破译字母相结合的竖式问题,涉及较强推理能力的竖式问题.对审题、选择突破口和试验求解三个步骤有较高要求,通过“破泽”提高推理能力和对运算法则深入、灵活的理解.【典型问题】【基础题】1.【40401】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★)请在图15-1所示乘法算式的每个方框中填入一个数字,使其成为正确的竖式.那么计算所得的乘积应是多少?2.【40402】(导引偶数题,四下第04讲,复杂竖式,数字谜第08讲★★)图15-2是一个乘法竖式,请在其中的10个空格内分别填入0至9这10个数字,使算式成立.3. 【40403】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★)请把图15-3所示的除法竖式中空缺的数字补上.问其中的商是多少?4. 【40404】(导引偶数题,四下第04讲,复杂竖式,数字谜第08讲★★★)图15-4是一个残缺的除法竖式,其中只写出了5个3.那么,这个算式的商数是多少?6 10 6图15-3图15-45. 【40405】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★★)请在图15-5中的每个方框内填入恰当的数字,使这个除法算式成立.求其中的商数、除数与被除数.6. 【40406】(导引偶数题,四下第04讲,复杂竖式,数字谜第08讲★★)请补全如图15-6所示的除法竖式.问这个算式中的被除数是多少?7. 【40407】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★★)在图15-7中的每个方框内填入适当的数字,使这个小数除法竖式成立.图15-50 图15-68. 【40408】(导引偶数题,四下第04讲,复杂竖式,数字谜第08讲★★)在图15-8所示算式的各方格内填入适当的数字,并将A ,B ,C ,D 分别替换为不同的数字,使算式成立.问:A ,B ,C ,D 各代表哪个数字?9. 【40409】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★★)图15-9是一个正确的乘法算式,其中的每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,且“总”字所代表的数字大于2.问:“总决赛”所表示的三位数是多少?图15-710.【40410】(导引偶数题,四下第04讲,复杂竖式,数字谜第08讲★★★)在图15-10所示的乘法算式中,每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,这个乘法算式的最后乘积是多少?11.【40411】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★★)在图15-11所示的乘法算式中,每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,这个乘法算式的最后乘积是多少?12.【40412】(导引偶数题,四下第04讲,复杂竖式,数字谜第08讲★★★)在图15-12所示的乘法算式中,每个方框和字母都代表一个数字,相同的字母代表相同的数字,不同的字母代表不同的数字.那么a+b+c等于多少?13.【40413】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★★)图15-13是一个乘法算式,其中的每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,当算式成立时,“巴西法国争夺冠军”这8个字所代表的八位数是多少?14.【40414】(导引偶数题,四下第04讲,复杂竖式,数字谜第08讲★★★)在如图15-14所示的算式中,每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,当算式成立时,最后的乘积是多少?15.【40415】(导引奇数题,四下第04讲,复杂竖式,数字谜第08讲★★★★)按照图15-15给出的各数字的奇偶性补全这个除法竖式.奇奇偶奇奇 6 偶偶奇奇偶偶奇偶奇奇奇奇偶偶偶奇偶偶奇偶图15-1516.【40416】(汪岩、四下第04讲,复杂竖式,数字谜第08讲★★)在图1的乘法竖式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,那么“北京举办奥运会”所代表的七位数是什么?526×308=162008,代表的七位数是5216308。

一起学奥数数字谜四年级

一起学奥数数字谜四年级
为保证乘积是二位数,还需要考虑个位相乘后进位的数。 测试B=0或B=5,都能保证乘积为两位数,所以AB为10或15
例2、在下面算式的□内各填入一个合适的数字,使算式成立。
□0 0 □
- 5 0□9
1□ 9 3
□7 0 0 □ 2 - 5 0 □ 90
1 □ 93 9
【分析】竖式运算中,补上某些漏掉的数的关键,是找到突破点。这是一个减法,观察已知的各个位置,可以发现个
558÷6=93,所以可以确定除数的个位为3 在□41-551时,产生连续借位,且差最高位为0,所以被除数最高位为6, 余数为83。 被除数的个位是非常清楚的,应该一眼就能够看出为7 接着,只要做837÷93=9即可。
第三讲 提高篇
例1、如图,请在右图每个方框中填入一个不是8的数字,使乘法竖式成立。则最后
确定两个乘数后,其它的就很容易确定了。
注意:有没有学生不理解第二行的乘数十位是奇数
例5、在下面竖式的□里填入合适的数字,使竖式成立。
□ 6□ 9
9□3 ) □6 4 1 □7
5 5 □8 □8 3 7 □8 □3 □7 0
【分析】利用5×99<550,7×90>559,可以确定商十位为6。 因为与3相加个位为1的数只有8,所以可以确定第三行个位数为8。
3)8× □-17=47
4)36-150÷ ☆=6
【分析】用实物来表示数(如苹果、足球等),之前应该已学习过。用符号表示数,有的小朋友也应该碰到过了。下一步 我们将会学习更加抽象的,用字母来表示数,这些都是学习方程的基础。
我们可以把一个等式看作是天平,左边放着符号,右边放着表示重量的数字。我们知道天平两边同事加减等量的 东西,天平不会倾斜。所以,等号的两边加减或乘除相等的数,等号仍然能够成立。

四年级奥数数字谜综合(有答案)

四年级奥数数字谜综合(有答案)

四年级奥数数字谜综合(有答案)第十九讲数字谜综合(二)内容概述涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.典型问题1.试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次: 口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2×3×7×17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少【分析与解】设每个小三角形三个顶点上的数的和都是个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.【分析与解】记两个乘数为7a b和cd其中a、b、c、d的值只能取自2、3、5或7.由已知条件,b与c相乘的个位数字仍为质数,这只可能是b与c中有一个是5另一个是3、5或7,如果b不是5,那么c必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b是5,c是3、5、7中的一个,同样道理,d也是3、5、7中的一个.再由已知条件,75a 的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于2000且a 、c 取质数,只有以下六种情况:775×3=2325,575×5=2875,775×5=3875,375×7=2625,575×7 =4025,775×7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d 也是3.最终算式即为775×33=255754.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少【分析与解】设原来的两位数为xy ,则交换十位数字与个位数字后的两位数为,两个数的和为yx ,两个数和为xy +yx =1010x y x y +++()11x y =+是ll 的倍数,因为它是完全平方数,所以也是11 ×11=121的倍数.但是这个和小于100+100=200 <121×2,所以这个和数只能是121.5. 迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少【分析与解】好好好=好×111=好×3×37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74.当“迎杯”为37时,“春杯”为“好”×3,且“杯”为7,此时“春杯”为27,“好”为9,“迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好”×3÷2,且“杯”为4,此时“春杯”为24,“好”为16,显然不满足.所以“迎+春+杯+好”之和为3+2+7+9=21.6.数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l 的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.“数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少【分析与解】3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79;表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.8.六年级的学生总人数是三位数,其中男生占35,男生人数也是三位数,而组成以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人【分析与解】设六年级总人数为xyz ,其中男生有abc 人.有xyz×35=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c不能是偶数(不然z应为0),所以只能是l,2,6或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243这6种可能,验证只有当abc=261时,对应xyz为261÷3×5=435.所以六年级共有学毕435人.9.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法【分析与解】设1992=abc×d(a,b,c,d可以相同),有1992=2×2×2×3×83,其中d可以取2,3,4,6,8这5种,对应的算式填法有5种.10.在图19-4残缺的算式中,只写出3个数字l,其余的数字都不是1.那么这个算式的乘积是多少【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为AB×C,其个位为1,那么B×C的个位数字也是1,而B、C又均不能为1,所以只有3×7,9×9对应为1,那么B为9、7或3.第3行10口对应为AB×D,可能为100、102、103、104、105、106、107、108、、107、109均为质数,没有两位数的约数,不满足;100、105没有个位数字为3、7、9的约数,不满足;102=17×6、104=13×8、106=53×2、108=27×4,但102、104对应的AB中4均为1,不满足.所以AB为53或27.当AB为27时,第4行为27×C,且个位数字为1,所以只能为27×3=8l,但不是三位数,不满足.当AB为53时,第4行为53×C,且个位数字为1,所以只能为53×7=371,因此被乘数必须为53,乘数为72,积为3816.11.图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式.那么所得的乘积是多少【分析与解】方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C,其中C不可能为1,又不能为2,那么最小为3.当C为3时,22口=AB×3,那么A只能为7,B只能为4,5或6,(1)当B为4时,74×3=222,第5行个位为2,不满足题意;(2)当B为5时,AB×CDE对应为75×3DE,小于30000,不满足;(3)当B为6时,AB×CDE对应为76×3DE,D只能为9,此时第4行对应为AB×D即76×9=684.因为30000÷76>394,所以39E只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.验证C 取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式.问这个除法算式的商数是多少【分析与解】易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.第二行9口对应为CD×A ,(1)9口不可能为90,不然第一行前三位10口与第二行90的差不可能为一位数,不满足第三行特征;(2)9口对应为91时,第三行的首位对应为10口-91,最小为9,所以只能为9,那么有91=CD×A,928=CD×B,不可能;(3)9口对应为92时,第三行的首位对应为10口-92,最小为8,所以可能为8、9,①如果为9,那么对应有92=CD×A,928=CD×B,不可能;②如果为8,那么对应有92=CD×A,828=CD×B,不难得知A=l,B=9,CD=92时满足,那么被除数为92×109=10028.验证没有其他的情况满足,所以这个除法算式的商数为109.13.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑×5=勤动脑学习好×8中,“学习好勤动脑”所表示的六位数最小是多少【分析与解】设“学习好”为x,“勤动脑”为Y ,则“学习好勤动脑”为1000X+Y ,“勤动脑学习好”为1000y+x ,有(1000x+Y)×5=(1000y+x)×8,化简有4992x=7995y,4992=128×3×13,7995=3×41×5×13,即128x=205y,有205,128x y =??=?410,256x y =??=?615,384x y =??=?820512x y =??=?所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l 不是互为反序的数.)【分析与解】首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数.设ABC ×CBA =92565,那么C 、A 中必定有一个为5,一个为奇数.不妨设C 为5.5AB ×5BA =92565,那么A 只能为1,1551B B =92565.又注意到92565=3×3×5×11×1l×17.验证只有15B 为165时满足,所以这两个自然数为165、561.15.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少【分析与解】我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B 的约数,因此口不会是“盼”所代表的数字,要不然A 就等于1,这说明口内不会是5,而1不是7的倍数,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B÷3=,不符合要求;当“盼”时2时,B÷3=,也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A 就成了一个九位数,说明口内不能是4;类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用91111...1123个=×9,可以得到91442443个盼盼盼盼...盼=×9 ×盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知◇=盼=7,即×9=7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂数字迷知识框架一、基本概念 数字谜数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

数阵图定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵图:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.幻方幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。

二、数字谜分类1、 竖式谜2、 横式谜3、 填空谜4、 幻方5、 数阵图6、 数独三、解题技巧与方法 竖式数字谜1、 技巧(1) 从首位或者末尾找突破口(突破口:指在做数字谜问题开始时的入口,一般在算式的首位或者末尾,可以确定其数字或者范围然后通过推理很快可以确定其值为后面的推理做好铺垫);(2) 要根据算式性质逐步缩小范围,并进行适当的估算逐步排除不符合的数字;(3)题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;(4)注意结合进位及退位来考虑;(5)数字谜中的文字,字母或其它符号,只取0~9中的某个数字。

(6)数字谜解出之后,最好验算一遍.2、数字迷加减法(1)个位数字分析法;(2)加减法中的进位与退位;(3)乘除法中的进位与退位;(4)奇偶性分析法。

横式数字谜解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

最值问题(1)横式转化为竖式数字谜,乘法转化为除法;(2)找突破口:末位和首位、进位和借位、个位数字、位数的差别等.(3)采用特殊分析方法:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.(4)除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.(5)数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

数阵图解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数独数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围。

总结4个小技巧:1、巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制。

2、相对不确定法:有的时候我们不能确定2个方格中的数字,却可以确定同一单元其他方格中肯定不会出现什么数字,这个就是我们说的相对不确定法。

举例说明,A1可以填入1或者2,A2也可以填入1或者2,那么我们可以确定,1和2必定出现在A1和A2两者之中,A行其他位置不可能出现1或者2.3、相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字进行对比分析来确定它们中的某一个或者几个空格。

举例说明,A行中已经确定5个数字,还有4个数字(我们假设是1、2、3、4)没有填入,通过这4个空格所在的其他单元我们知道A1可以填入1、2、3、4,A2可以填入1、3,A3可以填入1、2、3,A4可以填入1、3,这个时候我们可以分析,数字4只能填入A1中,所以A1可以确定填入4,我们就可以不用考虑A1,这样就可以发现2只能填入A3中,所以A3也能确定,A2和A4可以通过其他办法进行确定。

4、假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳。

举例说明,B3可以填入1或者2,A3可以填入2或者3,B4可以填入1或者2,这个时候我们就应该假设B3填入2,这样就可以确定A3填入3,B4填入1,然后以这个为基础进行推理。

幻方⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有:①求幻和:所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、奇数和偶数的简单性质1、整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.2、性质:(1)奇数≠偶数.(2)整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.(3)整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.(4)整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.五、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.六、数独简介:数独前身为“九宫格”,最早起源于中国。

数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。

中国古籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。

而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。

1783年,瑞士数学家莱昂哈德·欧拉发明了一种当时称作“拉丁方块”(Latin Square )的游戏,这个游戏是一个n×n 的数字方阵,每一行和每一列都是由不重复的n 个数字或者字母组成的。

19世纪70年代,美国的一家数学逻辑游戏杂志《戴尔铅笔字谜和词语游戏》(Dell Puzzle Mαgαzines )开始刊登现在称为“数独”的这种游戏,当时人们称之为“数字拼图”(Number Place ),在这个时候,9×9的81格数字游戏才开始成型。

填充完整后1984年4月,在日本游戏杂志《字谜通讯Nikoil 》(《パズル通信ニコリ》)上出现了“数独”游戏,提出了“独立的数字”的概念,意思就是“这个数字只能出现一次”或者“这个数字必须是唯一的”,并将这个游戏命名为“数独”(sudoku )。

一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould )在1997年3月到日本东京旅游时,无意中发现了。

他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。

从此,这个游戏开始风靡全球。

后来更因数独的流行衍生了许多类似的数学智力拼图游戏,例如:数和、杀手数独。

中国大陆是在2007年2月28日正式引入数独. 2007年2月28日,北京晚报智力休闲数独俱乐部(数独联盟sudokufederation 前身)在新闻大厦举行加入世界谜题联合会的颁证仪式,会上谜题联合会秘书长皮特-里米斯特和俱乐部会长在证书上签字,这标志着北京晚报智力休闲俱乐部成为世界谜题联合会的39个成员之一,这也标志着俱乐部走向国际舞台,它将给数独爱好者带来更多与世界数独爱好者们交流的机会。

例题精讲【例 1】 下面是一个n 进制中的加法算式,其中不同的字母表示不同的数,求n 和ABCDE 的值.A B CD C BE B C E A BE+ 【考点】加减法的进位与借位 【难度】5星 【题型】填空【解析】 由于算式中出现5个不同的数字,所以n 至少为5.在n 进制中,就像在10进制中一样,两个四位数相加得到一个五位数,那么这个五位数的首位只能为1(因为这两个四位数都小于10000,它们的和小于20000,故首位为1),即1C =.由于A 最大为1n -,则11111A C n n ++≤-++=+,11A C n n +≤-+=,即两个四位数的首位向上位进1后最多还剩下1,即E 最大为1,又因为不同的字母表示不同的数,E 不能C 与相同,所以E 只能为0.则D B n +=,末位向上进1位;12C E ++=,即2B =;4B B +=,不向上进位,所以4A =;A C E n +=+,得5n =,则3D n B =-=.所以n 为5,ABCDE 为42130.【答案】n 为5,ABCDE 为42130【巩固】 如图,在加法算式中,八个字母“QHFZLBDX ”分别代表0到9中的某个数字,不同的字母代表不同的数字,使得算式成立,那么四位数“QHFZ”的最大值是多少?20091Q H F Z Q H L B Q H D X+【考点】加减法的进位与借位【难度】5星【题型】填空【解析】原式为20091QHFZ QHLB QHDX++=,即120097991QHFZ QHDX QHLB DX LB=--=+-.为了使QHFZ最大,则前两位QH先尽量大,由于DX LB-小于100,所以QH最大可能为80.若80QH=,则继续化简为9FZ DX LB=--.现在要使FZ尽量大.由于8和0已经出现,所以此时9DX LB--最大为9712976--=,此时出现重复数字,可见FZ小于76.而9612975--=符合题意,所以此时FZ最大为75,QHFZ的最大值为8075.【答案】8075【例2】把0,1,2,…,8,9这十个数字填到下列加法算式中四个加数的方格内,要求每个数字各用一次,那么加数中的三位数的最小值是多少?2007+【考点】加减法的进位与借位【难度】5星【题型】填空【解析】从式中可以看出,千位上的方框中的数为1,那么百位上两方框中的数再加上低位进位的和为10.由于三位数的百位上不能为1和0,所以要使三位数最小,它的百位应该为2,十位应该为0.那么十位向百位的进位为1,所以四位数的百位为7,且十位上三个方框中的数之和再加上个位的进位的和为10.又剩下的数字3,4,5,6,8,9中除345618+++=只向十位进1外,其余任选四数字的和都大于20,由于3456+++的尾数不为7,所以个位上四个数字不能是3,4,5,6,所以个位向十位进位为2,也就是十位上的三个方框中的数的和为8(其中有一个为0),而剩下的3,4,5,6,8,9中只有358+=,所以个位上的四个方框中的数为4,6,8,9,那么加数中的三位数最小为204.【答案】204。

相关文档
最新文档