(完整word版)系统动力学步骤
系统动力学

系统动力学—管理科学与工程王江坤S090091374一、系统动力学介绍1956年,Jay W.Forrester 放弃了其在电机控制领域的研究,转而将反馈控制的基本原则用于社会经济学系统。
1961年,他在MIT工业管理学院研究公司管理问题,出版了其专著Industrial Dynomics, 这标志着这一学科的创立。
在过去的40年中,系统动力学有了长足的发展。
系统动力学的理论、思想方法和工具,对于分析社会经济中许多复杂动态问题非常有效。
另一方面,系统动力学的分析方法、建模方法、模拟方法和模拟工具比较规范,易于学习和应用。
(1)事件-行为-结构在日常生活中,我们往往是从事件开始认识事物的。
事件一般是在固定的时间点上出现的。
我们要正确的认识事件,须要联系相关事件,并从它们的发展过程中去观察。
也即,要考察事件所在的行为模式。
行为模式是系统的外在表现,可表现为一系列的相关事件随事件的演变过程,是多个关联事件表现出的过去现在和未来。
行为摸式是由系统的内部结构决定的。
结构是产生行为模式的物质的、能量的、信息的内在关系。
系统的结构决定其行为模式,而事件是行为模式的重要片段。
利用系统动力学分析问题,要由事件出发,分析系统的结构与行为模式的关系,以采取成功的政策和策略,调整系统结构,干预和控制系统,改善系统的行为模式,大大避免坏的事件的发生。
(2)系统动力学处理问题的过程●提出问题:明确建立模型的目的。
即要明确要研究和解决什么问题。
●参考行为模式分析:分析系统的事件,及实际存在的行为模式,提出设想和期望的系统行为模式。
作为改善和调整系统结构的目标。
●提出假设建立模型:由行为模式,提出系统的结构假设。
由假设出发,设计系统的因果关系图,流图,并列出方程,定义参数。
从而将一系列的系统动力学假设,表示成了清晰的数学关系集合。
●模型模拟:调整参数,运行模型,产生行为模式。
建立好的模型是一个实验室,可以由试验参数和结构的变化理解结构与系统行为模式的关系。
(完整word版)系统动力学(自己总结)

系统动力学1.系统动力学的发展系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。
系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。
是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。
从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。
它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。
系统动力学的发展过程大致可分为三个阶段:1)系统动力学的诞生—20世纪50-60年代由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。
这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。
后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。
2)系统动力学发展成熟—20世纪70-80这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。
这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。
3)系统动力学广泛运用与传播—20世纪90年代-至今在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。
许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。
2.系统动力学的原理系统动力学是一门分析研究信息反馈系统的学科。
它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。
第五章系统动力学方法

热风调节
室温增加
室温
延迟+反馈
❖ 把这个因果关系图转换成流图。室温是一个存量,室温增加 是对应的速率,它们用实物流相连。热风调节使热量积累, 所以热量积累是一个存量,热风调节是使其增加的对应速率 ,它们也用实物流相连。热量积累使室温增加,这是存量对 速率的影响,它是一个信息链,用温升时间常数辅助表示这 个关系。
2.速率方程:计算速率变量的方程, 是决策函数的具体形式。
R RATE.KL=f( L.K, A.K, C, …) 1、无标准形式(f不定)。 2、速率的值在DT内不变。速率方程是在K时刻进行计算,而在自K至L的时间间隔(即DT) 中假定保持不变。
3.辅助方程:辅助说明速率变量或简化决策函数的方程。
室温
热风调节
正反馈
❖ 相反,正反馈环总是加大环内的偏差或扰动,它具有不平 衡、不断增长的特性。例如在人口系统中,人口数增加了 ,每年所出生的人就增加,这就使人口数按指数规律很快 的增长下去。这样,从“人口数”到“每年出生的人”又 返回到“人口数”之间就存在一个正反馈。增强而不是抵 消环中某个元素的变化是所有正反馈环的共同特征。
SD模型的重要环节。
基本思想
❖ 系统动力学的基本思想是充分认识 系统中的反馈和延迟,并按一定的规则 从因果关系图逐步的建立系统动力学流 式图的结构模式。
二、 因果关系图和流程图
1.因果关系图 因果箭:连接因果要素的有向线段。箭尾始于原因,箭头终于结果。因
果关系有正负极之分。正(+)为加强,负(—)为减弱。 因果链:因果关系具有传递性。在同一链中,若含有奇数条极性为负的
第三节 基本反馈回路的DYNAMO的仿真分析
一、基本DYNAMO方程
DYNAMO(Dynamic Models)是采用差分方程式描述有反馈回路的社会系统 的宏观动态行 为,并通过对差分及代数方程式的求解进行计算机仿真的专用语言。其最大特点是简单明了,容易 使用
系统动力学建模与仿真的基本步骤

系统动力学建模与仿真的基本步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 简介系统动力学建模与仿真是一种重要的工程方法,可用于研究复杂系统的行为和性能。
系统动力学建模与分析

系统动力学建模与分析系统动力学(System Dynamics)是一种用于建模和分析系统行为的量化方法。
它可以帮助我们理解和预测各种复杂系统的动态性质,例如经济系统、生态系统和社会系统等。
本文将介绍系统动力学的基本原理和建模步骤,并探讨分析和应用系统动力学模型的重要性。
一、系统动力学基本原理系统动力学的基本原理是基于系统思维和动态模型的分析方法。
它将系统看作是由相互作用的组成部分组成的整体,这些部分之间存在着反馈环路和时滞效应。
系统动力学认为,一个系统的行为是由其内部结构和外界影响共同决定的,并且会随着时间的推移而发生变化。
二、系统动力学建模步骤1. 确定系统范围:首先需要明确要研究的系统范围,确定系统的边界和内外部要素。
2. 构建系统结构图:根据对系统的理解,用流程图或者思维导图等方法构建系统结构图,明确系统内各个要素之间的关系和相互作用。
3. 建立动态方程:根据系统结构图,建立系统的动态方程,描述系统内各要素的变化规律。
这一步需要考虑时滞效应和反馈环路等因素。
4. 设定模型参数:为了使模型能够与实际情况相符合,需要设定模型中的各种参数,如初始条件、阻尼系数和增长率等。
这些参数的设定需要基于对系统的实地观察和数据分析。
5. 模型验证与修正:建立模型后,需要进行模型验证和修正,与实际数据进行对比,判断模型的可靠性和准确性。
三、系统动力学分析方法系统动力学模型可以通过数值模拟和仿真进行分析。
常用的分析方法包括敏感性分析、参数优化和策略研究等。
通过这些分析方法,可以预测系统的行为和未来发展趋势,为决策提供参考依据。
1. 敏感性分析:通过对模型中的参数进行变化,观察系统行为的变化情况,从而了解系统最为敏感的因素。
2. 参数优化:通过调整模型中的各种参数,寻找系统达到最佳性能的参数组合。
3. 策略研究:通过对系统行为的仿真和模拟,评估各种决策对系统的影响,为制定合理的策略提供科学依据。
四、系统动力学模型的应用系统动力学模型已广泛应用于许多领域,如经济学、环境科学和管理学等。
系统动力学

t
3.速率(Rate)变量
• 速率(流速) (Rate)仍是系统中的流的 流动速度,即系统中水平变量变化的强 度。水平变量是系统活动结果的状态变 量,而速率则是对水平变量变化过程及 其控制的描述。 • 速率的基本形式有两种,流入速率和流 出速率。
ห้องสมุดไป่ตู้
• 从速率的控制作用上说,速率变量,又 可叫“控制变量”,“决策函数”、“ 政策变量”。 • 从流体力学的角度看,它是控制水流的 “阀门” (Valve) 。因此,在流图上 ,“速率”用阀门符号表示。
Inventory production
POPULATION BIRTH DEATH
sales
inventory coverag
速率是流入或者流出水平变量(容器) 的流的瞬时速度,用微分形式可以表示 为: 速率方程的一般形式是:
R. KL f (水平变量或者常量 )
这个方程的右边表示与水平变量和常量 有关的任何一种函数或者一种关系,它 描述了控制速率变量的决策(政策)。
R1 R2 库存L
怎样计算水平变量?
dL L(t dt) L(t ) Lim R1 R2 dt dt dt 0
L(t dt) L(t ) dt( R1 R2 )
用DT近似表示dt ,上式写成
L(t DT ) L(t ) DT ( R1 R2 )
1.系统的流
• • • • • 系统动力学主要利用四种流来构成模型 物流 订货流 资金流 信息流
2.水平(积累、状态)level
• 水平(积累)是系统的流的积累。例如, 库存量、存款、人口、资源等都可作为 水平变量。一个水平方程相当于—个容 器,它积累变化的流速率。其流速有输 入流速和输出流速,容器内的水平正是 其输入流速与输出流速的差量的积累。
系统动力学
1.系统动力学基本概念
因果关系图:
表示系统反馈结构的重要工具,因果图包 含多个变量,变量之间由标出因果关系的 箭头所连接。变量是由因果链所联系,因 果链由箭头所表示。
杯中水位 + 斟水速率 + + 决定添水 水位差 + 期望 水位
因果链极性:
每条因果链都具有极性,或者为正(+)或者 为负(-)。
反馈回路的极性:
反馈回路的极性取决于回路中各因果链符 号。回路极性也分为正反馈和负反馈,正 反馈回路的作用是使回路中变量的偏离增 强,负则趋于稳定。
1.系统动力学基本概念
系统动力学模型流图:是指由专用符号组成用以表示因果关
系环中各个变量之间相互关系的图示。专用符号主要如下
1.系统动力学基本概念
状态变量:代表事物(包括物质和非物质的)的积累。其数值大小是表
系统流图
公路货物运输系统流图,如图所示
公路货物运输系统用公路货运量 ( LGLHY) 总人口数 ( LZRK ) 和GDP 作 为每个子系统的状态变量,分别用公路货运量年增长量 ( DHY) 年净增 人口数 ( DRK ) GDP 年增长量 ( DGDP ) 作为速率变量,其他变量均为 辅助变量
Contents
系统动力学基本概念 系统动力学分析问题的步骤 系统动力学的应用
1 2
3
5
3.系统动力学的应用
系统动力学以一种结构性的视角,通过对各种系统关 系进行精确的定量分析研究解决问题。系统动力学的应用 几乎遍及各类系统,深入到各个领域,例如在区域货运系 统与经济互动关系研究、城市私家车拥有量发展问题、 航空系统客运量预测、 城市物流园区规划中的需求预测、 机动化发展政策对城市发展、城市交通系统的影响以及城 市公交价格组合策略研究等方面都有所应用。 下例是将系统动力学的方法应用于公路货物运输系统, 建立货物运输系统动力学模型,对未来运量预测,并以黑 龙江省公路货物运输相关统计数据对模型进行验证。
系统动力学建模步骤
系统动力学建模步骤一、引言系统动力学是一种研究复杂系统行为的方法,它通过建立数学模型来描述系统的结构和运动规律。
这种方法在工程、经济、社会科学等领域得到了广泛应用。
本文将介绍系统动力学建模的步骤。
二、确定研究对象和目标在进行系统动力学建模之前,首先需要明确研究对象和目标。
研究对象可以是一个生态系统、一个产业链、一个城市交通网络等等,而目标则是要解决什么问题或达到什么效果。
例如,我们可能想要了解某个生态系统中物种数量的变化规律,或者预测某个城市交通拥堵情况的发展趋势。
三、建立概念模型接下来,需要建立概念模型。
概念模型是对研究对象进行抽象和简化的过程,它用图形和符号表示出各个元素之间的关系。
例如,在研究生态系统时,我们可以将各物种看作节点,并用箭头表示它们之间的食物链关系。
四、确定变量及其关系在概念模型确定后,需要明确变量及其关系。
变量可以分为状态变量和流量变量。
状态变量是指系统中的某一状态,如生态系统中各物种的数量,而流量变量则是指这些状态之间的转移。
例如,在生态系统中,食物链上的物种数量就是状态变量,而它们之间的捕食关系就是流量变量。
五、建立数学模型建立数学模型是系统动力学建模的核心步骤。
在这一步骤中,需要将概念模型转化为数学方程组。
这些方程通常采用微分方程或差分方程来描述系统中各个元素之间的关系。
例如,在研究生态系统时,我们可以使用Lotka-Volterra模型来描述各物种之间的捕食关系。
六、进行仿真和验证建立好数学模型后,需要进行仿真和验证。
仿真可以通过计算机程序来实现,它可以帮助我们预测系统在不同条件下的行为。
验证则是通过与实际观测数据进行比较来检验模型的准确性。
如果模型与实际情况相符,则说明该模型具有很好的预测能力。
七、应用和优化最后一步是应用和优化模型。
应用包括将模型用于实际问题求解,并针对特定问题进行优化。
例如,在研究城市交通拥堵问题时,我们可以通过模拟不同的交通管理措施来找到最佳的解决方案。
系统动力学
1.系统的流
• • • • • 系统动力学主要利用四种流来构成模型 物流 订货流 资金流 信息流
2.水平(积累、状态)level
• 水平(积累)是系统的流的积累。例如, 库存量、存款、人口、资源等都可作为 水平变量。一个水平方程相当于—个容 器,它积累变化的流速率。其流速有输 入流速和输出流速,容器内的水平正是 其输入流速与输出流速的差量的积累。
如何区别水平变量和速率变量? 如何区别水平变量和速率变量? • 同一个变量在系统动力学模型中往往可设为水平变量, 同一个变量在系统动力学模型中往往可设为水平变量, 也可设为速率变量,区别它们的原则是什么?显然, 也可设为速率变量,区别它们的原则是什么?显然,它们 的量纲不同,水平变量的量纲是某物流或信息流的某种 的量纲不同, 度量“单位” 速率的量纲是“水平变量的单位/ 度量 “ 单位 ” ; 速率的量纲是 “ 水平变量的单位 / 时间 单位” 但是,这不是识别它们的原则。 单位 ” 。 但是 , 这不是识别它们的原则 。 识别它们要靠 它们的本质上的区别。 它们的本质上的区别。 • 速率是控制变量,当抑制作用不存在时,速率就不存在( 速率是控制变量,当抑制作用不存在时,速率就不存在( 为零) 水平变量(积累变量)是流的积累, 为零)了。水平变量(积累变量)是流的积累,是过去速率 控制作用结果的积累,是连续存在的, 控制作用结果的积累,是连续存在的,即使没有现时速 率的控制作用,速率为零,也能观测到它们。例如, 率的控制作用,速率为零,也能观测到它们。例如,一 个人虽然停止了生长,但他的高度、 个人虽然停止了生长,但他的高度、重量等水平变量并 不会消失。 个工厂的各项活动虽然停止了 个工厂的各项活动虽然停止了, 不会消失。—个工厂的各项活动虽然停止了,但工厂里 工人、设备、资金等水平变量仍然存在,仍可观测到。 工人、设备、资金等水平变量仍然存在,仍可观测到。
系统动力学的实施步骤
系统动力学的实施步骤1. 概述系统动力学是一种用于描述和分析动态系统行为的方法。
它能够通过模拟系统内部各个变量之间的相互作用来预测系统的未来发展趋势。
在实施系统动力学前,我们需要明确以下几个步骤。
2. 确定问题范围首先,我们需要明确需要研究和解决的问题范围。
这可以是一个具体的业务问题,例如市场份额下降或供应链管理优化,也可以是一个更宽泛的战略问题,例如业务增长策略或组织变革。
3. 收集相关数据和信息在开始建立系统动力学模型之前,我们需要收集相关的数据和信息。
这可以包括系统内各个变量的历史数据、相关的研究报告、专家意见等。
收集到的数据和信息将用于验证和调整系统动力学模型。
4. 确定系统边界和变量在开始建立系统动力学模型之前,我们还需要明确系统的边界和关键变量。
系统边界确定了模型所要涵盖的范围,而关键变量则是对系统行为产生重要影响的变量。
通过确定系统边界和变量,我们可以将问题复杂性降低,并集中精力分析关键因素。
5. 建立系统动力学模型建立系统动力学模型是实施系统动力学的核心步骤。
在这一步骤中,我们使用系统动力学的符号表示法建立系统的数学模型。
该模型描述了系统内各个变量之间的关系,并通过差分方程或微分方程表示变量的动态演化过程。
6. 验证和调整模型建立模型后,我们需要使用收集到的数据和信息来验证和调整模型。
这一步骤是非常重要的,因为它能够帮助我们确保模型的准确性和可靠性。
如果模型与实际情况存在差异,我们需要对模型进行调整,直到模型能够较好地拟合现实情况。
7. 运行模型并进行模拟实验完成模型验证和调整后,我们可以运行模型并进行模拟实验。
模拟实验是通过改变系统内某些变量的初始值或参数来观察系统的行为变化。
通过模拟实验,我们可以测试不同的策略和方案,并对其可能的结果进行评估。
8. 分析模拟结果并提出建议分析模拟结果是系统动力学实施的一个重要步骤。
在这一步骤中,我们需要对模拟实验的结果进行深入分析,并根据分析结果提出针对问题的建议和解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统动力学分析步骤
(1)系统分析(分析问题,剖析要因)
1)调查收集有关系统的情况与统计数据
2)了解用户提出的要求、目的与明确所要解决的问题
3)分析系统的基本问题与主要问题、基本矛盾与主要矛盾、变量与主要变
量
4)初步划分系统的界限,并确定内生变量、外生变量和输入量
5)确定系统行为的参考模式
(2)系统的结构分析(处理系统信息,分析系统的反馈机制)
1)分析系统总体的与局部的反馈机制
2)划分系统的层次与子块
3)分析系统的变量、变量之间的关系,定义变量(包括常数),确定变量的
种类及主要变量。
4)确定回路及回路间的反馈耦合关系,初步确定系统的主回路及它们的性
质,分析主回路随时间转移的可能性
(3)确定定量的规范模型
1)确定系统中的状态、速率、辅助变量和建立主要变量之间的关系;
2)设计各非线性表函数和确定、估计各类参数;
3)给所有N方程、C方程与表函数赋值;
(4)模型模拟与政策分析
1)以系统动力学的理论为指导进行模型模拟与政策分析,进而更深入地剖
析系统的问题;
2)寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富
的信息,发现新的矛盾与问题;
3)修改模型,包括结构与参数的修改;
(5)模型的检验和评估
这一步骤的任务不是放在最后一起来做的,其中相当一部分是在上述过程中分散进行的。
参考模式:用图形表示重要变量,并推论和绘出与这些最有关的其他重要的两,从而突出、集中的勾画出有待研究的问题的发展趋势和轮廓,我们称这类随时间变化的变量图形为行为参考模式。
在建模的过程中,要反复地参考这些模式。
当系统的模型建成后,检验其有效性标准之一就是看模型产生的行为模式与参考模式是否大体一致。