计算机图形图像实验一
计算机图形学实验报告

计算机图形学实验报告学号:姓名:班级:计算机 2班指导老师:何太军2010.6.19实验一、Windows 图形程序设计基础1、实验目的1)学习理解Win32 应用程序设计的基本知识(SDK 编程);2)掌握Win32 应用程序的基本结构(消息循环与消息处理等); 3)学习使用VC++编写Win32 Application 的方法。
4)学习MFC 类库的概念与结构;5)学习使用VC++编写Win32 应用的方法(单文档、多文档、对话框);6)学习使用MFC 的图形编程。
2、实验内容1)使用WindowsAPI 编写一个简单的Win32 程序,调用绘图API 函数绘制若干图形。
(可选任务)2 )使用MFC AppWizard 建立一个SDI 程序,窗口内显示"Hello,Thisis my first SDI Application"。
(必选任务)3)利用MFC AppWizard(exe)建立一个SDI 程序,在文档视口内绘制基本图形(直线、圆、椭圆、矩形、多边形、曲线、圆弧、椭圆弧、填充、文字等),练习图形属性的编程(修改线型、线宽、颜色、填充样式、文字样式等)。
定义图形数据结构Point\Line\Circle 等保存一些简单图形数据(在文档类中),并在视图类OnDraw 中绘制。
3、实验过程1)使用MFC AppWizard(exe)建立一个SDI 程序,选择单文档;2)在View类的OnDraw()函数中添加图形绘制代码,说出字符串“Hello,Thisis my first SDI Application”,另外实现各种颜色、各种边框的线、圆、方形、多边形以及圆弧的绘制;3)在类视图中添加图形数据point_pp,pp_circle的类,保存简单图形数据,通过在OnDraw()函数中调用,实现线、圆的绘制。
4、实验结果正确地在指定位置显示了"Hello,This is my first SDI Application"字符串,成功绘制了圆,椭圆,方形,多边形以及曲线圆弧、椭圆弧,同时按指定属性改绘了圆、方形和直线。
图形图像处理实验

W=(1/16>*G*f*G
实验结果:
W =
3.1875 0.0625 -0.8125 0.0625
0.0625 -0.0625 0.0625 -0.0625
0.1875 0.0625 -0.8125 0.0625
0.0625 -0.0625 0.0625 -0.0625
C1=dct2(I>。
C2=fftshift(C1>。
subplot(122>。imshow(log(abs(C2>>+1,[0 10]>。
实验结果:
原始图像 DCT系数
3.3 已知二维数字图像矩阵f,求此图像的二维DWT,并反求f。
f=[2 5 5 2。3 3 3 3。3 3 3 3。2 5 5 1]。
len=28。
theta=14。
PSF=fspecial('motion' , len , theta>。
wnr1 = deconvwnr(blurred,PSF>。 %维娜滤波复原图像
figure, imshow(wnr1>。
------------- %读入有噪声模糊图像并命名为blurrednoisy
reg2=deconvreg(Edged,PSF,NP*1.2>。
subplot(2,2,2>, imshow(reg2>。 %大NP
subplot(1,2,1>,imshow(J>。
N=numel(J>。
pr = imhist(J>/N。
kБайду номын сангаас0:255。
《计算机图形学》实验指导书

计算机图形学实验指导书袁科计算机技术实验中心目录实验一实现DDA、中点画线算法和Bresenham画线算法 (24)实验二实现Bezier曲线 (25)实验三实现B样条曲线 (26)实验四实现多边形填充的边界标志算法 (27)实验五实现裁剪多边形的Cohen-Sutherland算法 (28)实验六二维图形的基本几何变换 (30)实验七画图软件的编制 (31)实验一实现DDA、中点画线算法和Bresenham画线算法【实验目的】1、掌握直线的多种生成算法;2、掌握二维图形显示原理。
【实验环境】VC++6.0/ BC【实验性质及学时】验证性实验,2学时,必做实验【实验内容】利用任意的一个实验环境,编制源程序,分别实现直线的三种生成算法,即数字微分法(DDA)、中点画线法以及Bresenham画线算法。
【实验原理】1、数字微分法(Digital Differential Analyzer,DDA)算法思想:基于直线的微分方程来生成直线。
ε=1/max(|△x|,|△y|)max(|△x|,|△y|)=|△x|,即|k|≤1 的情况:max(|△x|,|△y|)=|△y|,此时|k|≥1:2、中点画线法算法思想:每次在最大位移方向上走一步,另一方向是否走步取决于误差项的判断。
3、Bresenham画线算法算法思想:其基本思想同中点算法一样,即每次在最大位移方向上走一步,而另一个方向是否走步取决于误差项的判断。
【实验要求】1.上交源程序;2.上交实验报告,实验报告内容如下:(1) 实验名称(2) 实验目的(3) 算法实现的设计方法及程序流程图(4) 程序结果分析【分析与思考】(1) 上述所阐述的三个算法,其基本算法只能适用于直线的斜率(|K|<=1) 的情形,如何将上述算法进行推广,使其能够处理任意斜率的直线?(2) 计算机显示屏幕的坐标圆心在哪里,与我们平时的习惯有什么差异,如何协调二者?实验二 实现Bezier 曲线【实验目的】1、掌握Bezier 曲线的定义;2、能编程实现N 次Bezier 曲线的绘制与显示。
计算机图形学实验报告

计算机图形学实验二维填充图的生成1. 图元填充利用多种图元填充的方法绘制一面五星红旗。
方法有: 扫描转换多边形的逐点判断法(编码算法), 扫描线算法, 区域填充的扫描线算法, 自创的向内复制边法。
1.1说明:1.1.1 宏定义和类型定义:#define max 400#define pi 3.14159265#define STACK_INIT_SIZE 100#define STACKINCREMENT 10#define false 0#define true 1#define ok 1#define error 0#define infeasible -1#define overflow -2typedef int Status;typedef int bool;typedef struct {int y,xLeft,xRight;}SElemType;typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;typedef struct Edge{int ymax;float x,deltax;struct Edge *nextEdge;}Edge;Edge *EL[max];typedef struct{float x,y;}point;Status SetStackEmpty(SqStack *s){s->base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));if(!s->base) return overflow;s->top=s->base;s->stacksize=STACK_INIT_SIZE;return ok;}Status PushStack(SqStack *s,SElemType e){if(s->top-s->base>=s->stacksize){s->base=(SElemType*)(s->base,(s->stacksize+STACKINCREMENT)*sizeof(SElemType));if(!s->base) return error;s->top=s->base+s->stacksize;s->stacksize+=STACKINCREMENT;}*s->top++=e;return ok;}Status PopStack(SqStack *s,SElemType *e){ if(s->top==s->base) return error;*e=*(--s->top);return ok;}Status IsStackEmpty(SqStack *s){if(s->base==s->top) return true;else return false;}1.1.2其他由于要填充五角星, 我们就要得到五角星的十个顶点。
计算机图形学基础实验指导书

计算机图形学基础实验指导书目录实验一直线的生成 ............................................................... -..2.-实验二圆弧及椭圆弧的生成........................................................ -..3 -实验三多边形的区域填充 ......................................................... - (4)-实验四二维几何变换 ............................................................. -..5.-实验五裁剪算法 ................................................................. -..6.-实验六三维图形变换 ............................................................. -..7.-实验七BEZIER 曲线生成......................................................... -..8.-实验八交互式绘图技术实现........................................................ -..10-实验一直线的生成一、实验目的掌握几种直线生成算法的比较,特别是Bresenham 直线生成算法二、实验环境实验设备:计算机实验使用的语言: C 或Visual C++ 、OpenGL三、实验内容用不同的生成算法在屏幕上绘制出直线的图形,对不同的算法可设置不同的线形或颜色表示区别。
四、实验步骤直线Bresenham 生成算法思想如下1)画点(x i, y i), dx=x2-x i, dy=y2-y i,计算误差初值P i=2dy-dx , i=1;2)求直线下一点位置x i+i=x i+i 如果P i>0,贝U y i+i=y i+i,否则y i+i=y i;3)画点(x i+i ,y i+i );4)求下一个误差P i+i 点,如果P i>0,贝U P i+i=P i+2dy-2dx,否则P i+i=P i+2dy;i=i+i ,如果i<dx+i 则转步骤2,否则结束操作。
《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。
三维变换类似于二维,在画图时,把三维坐标转换为二维即可。
三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。
关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。
通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。
下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。
通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。
2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。
我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。
3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。
通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。
4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。
通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。
5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。
通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。
6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。
通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。
7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。
通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。
8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。
计算机图形学实验报告

实验结果与结论
• 在本次实验中,我们成功地实现了复杂场景的渲染,得到了具有较高真实感和视觉效果的图像。通过对比 实验前后的效果,我们发现光线追踪和着色器的运用对于提高渲染质量和效率具有重要作用。同时,我们 也发现场景图的构建和渲染脚本的编写对于实现复杂场景的渲染至关重要。此次实验不仅提高了我们对计 算机图形学原理的理解和实践能力,也为我们后续深入研究渲染引擎的实现提供了宝贵经验。
2. 通过属性设置和变换操作,实现了对图形的定 制和调整,加深了对图形属性的理解。
4. 实验的不足之处:由于时间限制,实验只涉及 了基本图形的绘制和变换,未涉及更复杂的图形 处理算法和技术,如光照、纹理映射等。需要在 后续实验中进一步学习和探索。
02
实验二:实现动画效果
实验目的
掌握动画的基本原 理和实现方法
04
实验四:渲染复杂场景
实验目的
掌握渲染复杂场景的基本流程和方法 理解光线追踪和着色器在渲染过程中的作用
熟悉渲染引擎的实现原理和技巧 提高解决实际问题的能力
实验步骤
• 准备场景文件 • 使用3D建模软件(如Blender)创建或导入场景模型,导出为常用的3D格式(如.obj或.fbx)。 • 导入场景文件 • 在渲染引擎(如Unity或Unreal Engine)中导入准备好的场景文件。 • 构建场景图 • 根据场景的层次结构和光照需求,构建场景图(Scene Graph)。 • 设置光照和材质属性 • 为场景中的物体设置光照和材质属性(如漫反射、镜面反射、透明度等)。 • 编写渲染脚本 • 使用编程语言(如C或JavaScript)编写渲染脚本,控制场景中物体的渲染顺序和逻辑。 • 运行渲染程序 • 运行渲染程序,观察渲染结果。根据效果调整光照、材质和渲染逻辑。 • 导出渲染图像 • 将渲染结果导出为图像文件(如JPEG或PNG),进行后续分析和展示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位图的读取与显示物联一班谢鑫1231. 实验目的通过位图文件的解析,进一步理解位图文件的格式;熟悉Windows环境下图片的显示方式。
2. 实验内容在Windows环境下,通过解析位图文件的格式,读入位图并进行显示,不能使用Windows中已有的API(如LoadImage函数)读取位图文件,即自己实现LoadImage函数的功能:LoadImage(NULL, “lenna.bmp”, IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE)三、实验原理及步骤:基本知识:BMP位图文件格式BMP位图文件中主要由4部分内容组成:1、文件头BITMAPFILEHEADER为一STRUCTURE:typedef struct tagBITMAPFILEHEADER {WORD bfType;//文件类型,必须为“BM”或0x424dDWORD bfSize;//文件大小WORD bfReserved1;//保留WORD bfReserved2;//保留DWORD bfOffBits;//从文件头到实际位图数据的偏移字节数} BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER;2、位图信息头BITMAPINFOHEADER,定义如下:typedef struct tagBITMAPINFOHEADER{DWORD biSize;//structure sizeLONG biWidth;//image widthLONG biHeight;//image heightWORD biPlanes;//value is 1WORD biBitCount;//color bitsDWORD biCompression;//compression or notDWORD biSizeImage;//Image size=width*height( 其中width必须为4的倍数。
LONG biXPelsPerMeter;//LONG biYPelsPerMeter;DWORD biClrUsed;//DWORD biClrImportant;} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;3、调色板typedef struct tagRGBQUAD {BYTE rgbBlue;BYTE rgbGreen;BYTE rgbRed;BYTE rgbReserved;} RGBQUAD;用于存放图像的颜色。
4、图像的实际数据。
对于2色图,用1位表示像素的值。
对于16色图,用4位表示像素的值。
对于256色图,一个字节刚好表示1个像素。
对于用到调色板的位图,图像数据就是该像素颜色在调色板中索引值,对于真彩色,不用调色板,三个字节的数据分别代表图像的B、G、R。
实验步骤:1、生成一名为Gsm的基于MFC的应用程序框架:选择file菜单new选项,在打开的窗口中选择project选项,选中MFC AppWizard(exe)。
并在project name输入Gsm ,选择存放project 的位置。
如下图所示。
选择确定,进入下一步。
选择single document,并在最后CdipView 类的基类中选择CscrollView,使应用程序视图具有滚动条。
2、在应用程序中加入具体的函数和变量。
在Class View中选择CGsmView单击右键选择添加成员变量,加入下列变量:public:int m_x;HBITMAP m_Bmp;LPVOID m_ColorList;LPBYTE m_Image;LPBITMAPINFOHEADER m_DibHead;enum allocate {None, crtallocate, heapallocate};allocate m_nBmpallocate;allocate m_nImageallocate;DWORD m_ImageSize;int m_nPalette;HANDLE m_hFile;HANDLE m_hMap;LPVOID m_lpvFile;HPALETTE m_hPalette;HGLOBAL m_hGlob;在Class View中选择CGsmView单击右键选择添加成员函数,把下列函数加入到C++View类中void SetPaletteSize(int nBitCount);void Clear();BOOL ReadFile(CFile *pFile);BOOL SetPalette();BOOL GetPalette();BOOL DibToDC(CDC* pDC,CSize size);BOOL MemToDib(LPVOID lmem);CSize GetDibSize();3、把对应函数代码拷贝到新的函数中;void CGsmView::SetPaletteSize(int nBitCount){if(m_DibHead->biSize != sizeof(BITMAPINFOHEADER)) {throw new CException;}m_ImageSize = m_DibHead->biSizeImage;if(m_ImageSize == 0) {DWORD dwBytes = ((DWORD) m_DibHead->biWidth *m_DibHead->biBitCount) / 32;if(((DWORD) m_DibHead->biWidth * m_DibHead->biBitCount) % 32){dwBytes++;}dwBytes *= 4;m_ImageSize = dwBytes * m_DibHead->biHeight;}m_ColorList = (LPBYTE) m_DibHead + sizeof(BITMAPINFOHEADER);if((m_DibHead == NULL) || (m_DibHead->biClrUsed == 0)) { switch(nBitCount) {case 1:m_nPalette = 2;break;case 4:m_nPalette = 16;break;case 8:m_nPalette = 256;break;case 16:case 24:case 32:m_nPalette = 0;break;default:ASSERT(FALSE);}}else {m_nPalette = m_DibHead->biClrUsed;}ASSERT((m_nPalette >= 0) && (m_nPalette <= 256));}void CGsmView::Clear(){if(m_hFile == NULL) return;::UnmapViewOfFile(m_lpvFile);::CloseHandle(m_hMap);::CloseHandle(m_hFile);m_hFile = NULL;if(m_nBmpallocate == crtallocate) {delete [] m_DibHead;}else if(m_nBmpallocate == heapallocate) {::GlobalUnlock(m_hGlob);::GlobalFree(m_hGlob);}if(m_nImageallocate == crtallocate) delete [] m_Image;if(m_hPalette != NULL) ::DeleteObject(m_hPalette);if(m_Bmp != NULL) ::DeleteObject(m_Bmp);m_nBmpallocate = m_nImageallocate = None;m_hGlob = NULL;m_DibHead = NULL;m_Image = NULL;m_ColorList = NULL;m_nPalette = 0;m_ImageSize = 0;m_lpvFile = NULL;m_hMap = NULL;m_hFile = NULL;m_Bmp = NULL;m_hPalette = NULL;}BOOL CGsmView::ReadFile(CFile *pFile){int nCount, nSize;BITMAPFILEHEADER bmfh;Clear();try {nCount = pFile->Read((LPVOID) &bmfh, sizeof(BITMAPFILEHEADER));if(nCount != sizeof(BITMAPFILEHEADER)) {throw new CException;}if(bmfh.bfType != 0x4d42) {throw new CException;}nSize = bmfh.bfOffBits - sizeof(BITMAPFILEHEADER);m_DibHead = (LPBITMAPINFOHEADER) new char[nSize];m_nBmpallocate = m_nImageallocate = crtallocate;nCount = pFile->Read(m_DibHead, nSize);SetPaletteSize(m_DibHead->biBitCount);GetPalette();m_Image = (LPBYTE) new char[m_ImageSize];nCount = pFile->Read(m_Image, m_ImageSize);}catch(CException* tmpc) {AfxMessageBox("文件读取错误");tmpc->Delete();return FALSE;}return TRUE;}BOOL CGsmView::SetPalette(){if(m_nPalette!=0)return FALSE;CClientDC dc(this);CDC *pDC=&dc;m_hPalette=::CreateHalftonePalette(pDC->GetSafeHdc());return TRUE;}BOOL CGsmView::GetPalette(){if(m_nPalette==0)return FALSE;if(m_hPalette!=NULL)::DeleteObject(m_hPalette);LPLOGPALETTE pTempPalette=(LPLOGPALETTE) new char[2*sizeof(WORD)+ m_nPalette*sizeof(PALETTEENTRY)]; pTempPalette->palVersion=0x30;pTempPalette->palNumEntries=m_nPalette;LPRGBQUAD pRGBQuad=(LPRGBQUAD)m_ColorList;for(int i=0;i<m_nPalette;i++){pTempPalette->palPalEntry[i].peRed=pRGBQuad->rgbRed;pTempPalette->palPalEntry[i].peGreen=pRGBQuad->rgbGreen;pTempPalette->palPalEntry[i].peBlue=pRGBQuad->rgbBlue;pTempPalette->palPalEntry[i].peFlags=0;pRGBQuad++;}m_hPalette=::CreatePalette(pTempPalette);delete pTempPalette;return TRUE;}BOOL CGsmView::DibToDC(CDC *pDC, CSize size){if(m_DibHead==NULL)return FALSE;if(m_hPalette!=NULL){HDC hdc=pDC->GetSafeHdc();::SelectPalette(hdc,m_hPalette,TRUE);}pDC->SetStretchBltMode(COLORONCOLOR);::StretchDIBits(pDC->GetSafeHdc(),0,0,size.cx,size.cy,0,0,m_DibHead->biWidth,m_DibHead->biHeight,m_Image,(LPBITMAPINFO)m_DibHead,DIB_RGB_COLORS,SRCCOPY);return TRUE;}BOOL CGsmView::MemToDib(LPVOID lmem){Clear();m_DibHead=(LPBITMAPINFOHEADER)lmem;SetPaletteSize(m_DibHead->biBitCount);m_Image=(LPBYTE)m_ColorList+sizeof(RGBQUAD)*m_nPalette;GetPalette();return TRUE;}CSize CGsmView::GetDibSize(){if(m_DibHead==NULL)return CSize(0,0);return CSize((int)m_DibHead->biWidth,(int)m_DibHead->biHeight); }4、编译检验没有出现错误;5、在程序资源中创建位图条为默认;6、修改OnInitialUpdate函数中的代码;void CGsmView::OnInitialUpdate(){CScrollView::OnInitialUpdate();m_x=25;CSize MaxSize(24000,32000);CSize MinSize(MaxSize.cx/100,MaxSize.cy/100);SetScrollSizes(MM_HIMETRIC,MaxSize,MaxSize,MinSize);LPVOID lFirstBMP=(LPVOID)::LoadResource(NULL,::FindResource(NULL,MAKEINTRESOURCE(IDB_BITMAP1),RT_BITMAP));MemToDib(lFirstBMP);}7、修改OnDraw函数中的代码;void CGsmView::OnDraw(CDC* pDC){CGsmDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);BeginWaitCursor();CSize DibSize = GetDibSize();DibSize.cx *= m_x;DibSize.cy *= -m_x;DibToDC(pDC, DibSize);EndWaitCursor();}8、建立打开文件的消息响应函数在Menu中打开菜单编辑窗口,单击“文件”,在下拉菜单中选中“打开”,右键单击,在弹出菜单中选择“类向导”并打开。